drv_sdio.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-10-10 Tanek first version
  9. */
  10. #include <rtthread.h>
  11. #include <rthw.h>
  12. #include <drivers/mmcsd_core.h>
  13. #include <board.h>
  14. #include <fsl_usdhc.h>
  15. #include <fsl_gpio.h>
  16. #include <finsh.h>
  17. #define RT_USING_SDIO1
  18. #define RT_USING_SDIO2
  19. //#define DEBUG
  20. #ifdef DEBUG
  21. static int enable_log = 1;
  22. #define MMCSD_DGB(fmt, ...) \
  23. do \
  24. { \
  25. if (enable_log) \
  26. { \
  27. rt_kprintf(fmt, ##__VA_ARGS__); \
  28. } \
  29. } while (0)
  30. #else
  31. #define MMCSD_DGB(fmt, ...)
  32. #endif
  33. #define CACHE_LINESIZE (32)
  34. #define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
  35. #define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
  36. #define IMXRT_MAX_FREQ (25UL * 1000UL * 1000UL)
  37. #define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
  38. #define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
  39. #define USDHC_READ_BURST_LEN (8U) /*!< number of words USDHC read in a single burst */
  40. #define USDHC_WRITE_BURST_LEN (8U) /*!< number of words USDHC write in a single burst */
  41. #define USDHC_DATA_TIMEOUT (0xFU) /*!< data timeout counter value */
  42. /* Read/write watermark level. The bigger value indicates DMA has higher read/write performance. */
  43. #define USDHC_READ_WATERMARK_LEVEL (0x80U)
  44. #define USDHC_WRITE_WATERMARK_LEVEL (0x80U)
  45. /* DMA mode */
  46. #define USDHC_DMA_MODE kUSDHC_DmaModeAdma2
  47. /* Endian mode. */
  48. #define USDHC_ENDIAN_MODE kUSDHC_EndianModeLittle
  49. ALIGN(USDHC_ADMA2_ADDR_ALIGN) uint32_t g_usdhcAdma2Table[USDHC_ADMA_TABLE_WORDS] SECTION("NonCacheable");
  50. struct imxrt_mmcsd
  51. {
  52. struct rt_mmcsd_host *host;
  53. struct rt_mmcsd_req *req;
  54. struct rt_mmcsd_cmd *cmd;
  55. struct rt_timer timer;
  56. rt_uint32_t *buf;
  57. //USDHC_Type *base;
  58. usdhc_host_t usdhc_host;
  59. clock_div_t usdhc_div;
  60. clock_ip_name_t ip_clock;
  61. uint32_t *usdhc_adma2_table;
  62. };
  63. static void _mmcsd_gpio_init(struct imxrt_mmcsd *mmcsd)
  64. {
  65. gpio_pin_config_t sw_config;
  66. CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */
  67. #ifdef RT_USING_SDIO1
  68. if (mmcsd->usdhc_host.base == USDHC1)
  69. {
  70. IOMUXC_SetPinMux(IOMUXC_GPIO_SD_B0_00_USDHC1_CMD, 0);
  71. IOMUXC_SetPinMux(IOMUXC_GPIO_SD_B0_01_USDHC1_CLK, 0);
  72. IOMUXC_SetPinMux(IOMUXC_GPIO_SD_B0_02_USDHC1_DATA0, 0);
  73. IOMUXC_SetPinMux(IOMUXC_GPIO_SD_B0_03_USDHC1_DATA1, 0);
  74. IOMUXC_SetPinMux(IOMUXC_GPIO_SD_B0_04_USDHC1_DATA2, 0);
  75. IOMUXC_SetPinMux(IOMUXC_GPIO_SD_B0_05_USDHC1_DATA3, 0);
  76. /* voltage select PIN */
  77. IOMUXC_SetPinMux(IOMUXC_GPIO_B1_14_USDHC1_VSELECT, 0);
  78. /* card detect PIN */
  79. IOMUXC_SetPinMux(IOMUXC_GPIO_B1_12_GPIO2_IO28, 0);
  80. /* power reset pin */
  81. IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B0_05_GPIO1_IO05, 0);
  82. IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B0_00_USDHC1_CMD, IOMUXC_SW_PAD_CTL_PAD_SRE_MASK | IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
  83. IOMUXC_SW_PAD_CTL_PAD_PUE_MASK | IOMUXC_SW_PAD_CTL_PAD_HYS_MASK |
  84. IOMUXC_SW_PAD_CTL_PAD_SPEED(2) | IOMUXC_SW_PAD_CTL_PAD_PUS(1) |
  85. IOMUXC_SW_PAD_CTL_PAD_DSE(1));
  86. IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B0_01_USDHC1_CLK, IOMUXC_SW_PAD_CTL_PAD_SRE_MASK | IOMUXC_SW_PAD_CTL_PAD_HYS_MASK |
  87. IOMUXC_SW_PAD_CTL_PAD_SPEED(1) | IOMUXC_SW_PAD_CTL_PAD_PUS(1) |
  88. IOMUXC_SW_PAD_CTL_PAD_DSE(1));
  89. IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B0_02_USDHC1_DATA0, IOMUXC_SW_PAD_CTL_PAD_SRE_MASK | IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
  90. IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
  91. IOMUXC_SW_PAD_CTL_PAD_HYS_MASK |
  92. IOMUXC_SW_PAD_CTL_PAD_SPEED(2) |
  93. IOMUXC_SW_PAD_CTL_PAD_PUS(1) | IOMUXC_SW_PAD_CTL_PAD_DSE(1));
  94. IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B0_03_USDHC1_DATA1, IOMUXC_SW_PAD_CTL_PAD_SRE_MASK | IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
  95. IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
  96. IOMUXC_SW_PAD_CTL_PAD_HYS_MASK |
  97. IOMUXC_SW_PAD_CTL_PAD_SPEED(2) |
  98. IOMUXC_SW_PAD_CTL_PAD_PUS(1) | IOMUXC_SW_PAD_CTL_PAD_DSE(1));
  99. IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B0_04_USDHC1_DATA2, IOMUXC_SW_PAD_CTL_PAD_SRE_MASK | IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
  100. IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
  101. IOMUXC_SW_PAD_CTL_PAD_HYS_MASK |
  102. IOMUXC_SW_PAD_CTL_PAD_SPEED(2) |
  103. IOMUXC_SW_PAD_CTL_PAD_PUS(1) | IOMUXC_SW_PAD_CTL_PAD_DSE(1));
  104. IOMUXC_SetPinConfig(IOMUXC_GPIO_SD_B0_05_USDHC1_DATA3, IOMUXC_SW_PAD_CTL_PAD_SRE_MASK | IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
  105. IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
  106. IOMUXC_SW_PAD_CTL_PAD_HYS_MASK |
  107. IOMUXC_SW_PAD_CTL_PAD_SPEED(2) |
  108. IOMUXC_SW_PAD_CTL_PAD_PUS(1) | IOMUXC_SW_PAD_CTL_PAD_DSE(1));
  109. /*voltage select pin*/
  110. IOMUXC_SetPinConfig(IOMUXC_GPIO_B1_14_USDHC1_VSELECT, IOMUXC_SW_PAD_CTL_PAD_SRE_MASK | IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
  111. IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
  112. IOMUXC_SW_PAD_CTL_PAD_HYS_MASK |
  113. IOMUXC_SW_PAD_CTL_PAD_SPEED(2) |
  114. IOMUXC_SW_PAD_CTL_PAD_PUS(1) | IOMUXC_SW_PAD_CTL_PAD_DSE(4));
  115. IOMUXC_SetPinConfig(IOMUXC_GPIO_B1_12_GPIO2_IO28, IOMUXC_SW_PAD_CTL_PAD_SRE_MASK | IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
  116. IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
  117. IOMUXC_SW_PAD_CTL_PAD_HYS_MASK |
  118. IOMUXC_SW_PAD_CTL_PAD_SPEED(2) |
  119. IOMUXC_SW_PAD_CTL_PAD_PUS(1) | IOMUXC_SW_PAD_CTL_PAD_DSE(1));
  120. sw_config.direction = kGPIO_DigitalOutput;
  121. sw_config.outputLogic = 0;
  122. sw_config.interruptMode = kGPIO_NoIntmode;
  123. GPIO_PinInit(GPIO1, 5U, &sw_config);
  124. GPIO_PinWrite(GPIO1, 5U, true);
  125. }
  126. else
  127. #endif
  128. #ifdef RT_USING_SDIO2
  129. if (mmcsd->usdhc_host.base == USDHC2)
  130. {
  131. // todo
  132. }
  133. #endif
  134. }
  135. static void SDMMCHOST_ErrorRecovery(USDHC_Type *base)
  136. {
  137. uint32_t status = 0U;
  138. /* get host present status */
  139. status = USDHC_GetPresentStatusFlags(base);
  140. /* check command inhibit status flag */
  141. if ((status & kUSDHC_CommandInhibitFlag) != 0U)
  142. {
  143. /* reset command line */
  144. USDHC_Reset(base, kUSDHC_ResetCommand, 1000U);
  145. }
  146. /* check data inhibit status flag */
  147. if ((status & kUSDHC_DataInhibitFlag) != 0U)
  148. {
  149. /* reset data line */
  150. USDHC_Reset(base, kUSDHC_ResetData, 1000U);
  151. }
  152. }
  153. static void _mmcsd_host_init(struct imxrt_mmcsd *mmcsd)
  154. {
  155. usdhc_host_t *usdhc_host = &mmcsd->usdhc_host;
  156. /* Initializes SDHC. */
  157. usdhc_host->config.dataTimeout = USDHC_DATA_TIMEOUT;
  158. usdhc_host->config.endianMode = USDHC_ENDIAN_MODE;
  159. usdhc_host->config.readWatermarkLevel = USDHC_READ_WATERMARK_LEVEL;
  160. usdhc_host->config.writeWatermarkLevel = USDHC_WRITE_WATERMARK_LEVEL;
  161. usdhc_host->config.readBurstLen = USDHC_READ_BURST_LEN;
  162. usdhc_host->config.writeBurstLen = USDHC_WRITE_BURST_LEN;
  163. USDHC_Init(usdhc_host->base, &(usdhc_host->config));
  164. }
  165. static void _mmcsd_clk_init(struct imxrt_mmcsd *mmcsd)
  166. {
  167. CLOCK_EnableClock(mmcsd->ip_clock);
  168. CLOCK_SetDiv(mmcsd->usdhc_div, 5U);
  169. }
  170. static void _mmcsd_isr_init(struct imxrt_mmcsd *mmcsd)
  171. {
  172. //NVIC_SetPriority(USDHC1_IRQn, 5U);
  173. }
  174. static void _mmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
  175. {
  176. struct imxrt_mmcsd *mmcsd;
  177. struct rt_mmcsd_cmd *cmd;
  178. struct rt_mmcsd_data *data;
  179. status_t error;
  180. usdhc_adma_config_t dmaConfig;
  181. usdhc_transfer_t fsl_content = {0};
  182. usdhc_command_t fsl_command = {0};
  183. usdhc_data_t fsl_data = {0};
  184. rt_uint32_t *buf = NULL;
  185. RT_ASSERT(host != RT_NULL);
  186. RT_ASSERT(req != RT_NULL);
  187. mmcsd = (struct imxrt_mmcsd *)host->private_data;
  188. RT_ASSERT(mmcsd != RT_NULL);
  189. cmd = req->cmd;
  190. RT_ASSERT(cmd != RT_NULL);
  191. MMCSD_DGB("\tcmd->cmd_code: %02d, cmd->arg: %08x, cmd->flags: %08x --> ", cmd->cmd_code, cmd->arg, cmd->flags);
  192. data = cmd->data;
  193. memset(&dmaConfig, 0, sizeof(usdhc_adma_config_t));
  194. /* config adma */
  195. dmaConfig.dmaMode = USDHC_DMA_MODE;
  196. dmaConfig.burstLen = kUSDHC_EnBurstLenForINCR;
  197. dmaConfig.admaTable = mmcsd->usdhc_adma2_table;
  198. dmaConfig.admaTableWords = USDHC_ADMA_TABLE_WORDS;
  199. fsl_command.index = cmd->cmd_code;
  200. fsl_command.argument = cmd->arg;
  201. if (cmd->cmd_code == STOP_TRANSMISSION)
  202. fsl_command.type = kCARD_CommandTypeAbort;
  203. else
  204. fsl_command.type = kCARD_CommandTypeNormal;
  205. switch (cmd->flags & RESP_MASK)
  206. {
  207. case RESP_NONE:
  208. fsl_command.responseType = kCARD_ResponseTypeNone;
  209. break;
  210. case RESP_R1:
  211. fsl_command.responseType = kCARD_ResponseTypeR1;
  212. break;
  213. case RESP_R1B:
  214. fsl_command.responseType = kCARD_ResponseTypeR1b;
  215. break;
  216. case RESP_R2:
  217. fsl_command.responseType = kCARD_ResponseTypeR2;
  218. break;
  219. case RESP_R3:
  220. fsl_command.responseType = kCARD_ResponseTypeR3;
  221. break;
  222. case RESP_R4:
  223. fsl_command.responseType = kCARD_ResponseTypeR4;
  224. break;
  225. case RESP_R6:
  226. fsl_command.responseType = kCARD_ResponseTypeR6;
  227. break;
  228. case RESP_R7:
  229. fsl_command.responseType = kCARD_ResponseTypeR7;
  230. break;
  231. case RESP_R5:
  232. fsl_command.responseType = kCARD_ResponseTypeR5;
  233. break;
  234. /*
  235. case RESP_R5B:
  236. fsl_command.responseType = kCARD_ResponseTypeR5b;
  237. break;
  238. */
  239. default:
  240. RT_ASSERT(NULL);
  241. }
  242. // command type
  243. /*
  244. switch (cmd->flags & CMD_MASK)
  245. {
  246. case CMD_AC:
  247. break;
  248. case CMD_ADTC:
  249. break;
  250. case CMD_BC:
  251. break;
  252. case CMD_BCR:
  253. break;
  254. }
  255. */
  256. fsl_command.flags = 0;
  257. //fsl_command.response
  258. //fsl_command.responseErrorFlags
  259. fsl_content.command = &fsl_command;
  260. if (data)
  261. {
  262. if (req->stop != NULL)
  263. fsl_data.enableAutoCommand12 = true;
  264. else
  265. fsl_data.enableAutoCommand12 = false;
  266. fsl_data.enableAutoCommand23 = false;
  267. fsl_data.enableIgnoreError = false;
  268. fsl_data.dataType = kUSDHC_TransferDataNormal; //todo : update data type
  269. fsl_data.blockSize = data->blksize;
  270. fsl_data.blockCount = data->blks;
  271. MMCSD_DGB(" blksize:%d, blks:%d ", fsl_data.blockSize, fsl_data.blockCount);
  272. if (((rt_uint32_t)data->buf & (CACHE_LINESIZE - 1)) || // align cache(32byte)
  273. ((rt_uint32_t)data->buf > 0x00000000 && (rt_uint32_t)data->buf < 0x00080000) /*|| // ITCM
  274. ((rt_uint32_t)data->buf >= 0x20000000 && (rt_uint32_t)data->buf < 0x20080000)*/) // DTCM
  275. {
  276. buf = rt_malloc_align(fsl_data.blockSize * fsl_data.blockCount, CACHE_LINESIZE);
  277. RT_ASSERT(buf != RT_NULL);
  278. MMCSD_DGB(" malloc buf: %p, data->buf:%p, %d ", buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
  279. }
  280. if ((cmd->cmd_code == WRITE_BLOCK) || (cmd->cmd_code == WRITE_MULTIPLE_BLOCK))
  281. {
  282. if (buf)
  283. {
  284. MMCSD_DGB(" write(data->buf to buf) ");
  285. rt_memcpy(buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
  286. fsl_data.txData = (uint32_t const *)buf;
  287. }
  288. else
  289. {
  290. fsl_data.txData = (uint32_t const *)data->buf;
  291. }
  292. fsl_data.rxData = NULL;
  293. }
  294. else
  295. {
  296. if (buf)
  297. {
  298. fsl_data.rxData = (uint32_t *)buf;
  299. }
  300. else
  301. {
  302. fsl_data.rxData = (uint32_t *)data->buf;
  303. }
  304. fsl_data.txData = NULL;
  305. }
  306. fsl_content.data = &fsl_data;
  307. }
  308. else
  309. {
  310. fsl_content.data = NULL;
  311. }
  312. error = USDHC_TransferBlocking(mmcsd->usdhc_host.base, &dmaConfig, &fsl_content);
  313. if (error == kStatus_Fail)
  314. {
  315. SDMMCHOST_ErrorRecovery(mmcsd->usdhc_host.base);
  316. MMCSD_DGB(" ***USDHC_TransferBlocking error: %d*** --> \n", error);
  317. cmd->err = -RT_ERROR;
  318. }
  319. if (buf)
  320. {
  321. if (fsl_data.rxData)
  322. {
  323. MMCSD_DGB("read copy buf to data->buf ");
  324. rt_memcpy(data->buf, buf, fsl_data.blockSize * fsl_data.blockCount);
  325. }
  326. rt_free_align(buf);
  327. }
  328. if ((cmd->flags & RESP_MASK) == RESP_R2)
  329. {
  330. cmd->resp[3] = fsl_command.response[0];
  331. cmd->resp[2] = fsl_command.response[1];
  332. cmd->resp[1] = fsl_command.response[2];
  333. cmd->resp[0] = fsl_command.response[3];
  334. MMCSD_DGB(" resp 0x%08X 0x%08X 0x%08X 0x%08X\n",
  335. cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
  336. }
  337. else
  338. {
  339. cmd->resp[0] = fsl_command.response[0];
  340. MMCSD_DGB(" resp 0x%08X\n", cmd->resp[0]);
  341. }
  342. mmcsd_req_complete(host);
  343. return;
  344. }
  345. static void _mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
  346. {
  347. struct imxrt_mmcsd *mmcsd;
  348. unsigned int usdhc_clk;
  349. unsigned int bus_width;
  350. uint32_t src_clk;
  351. RT_ASSERT(host != RT_NULL);
  352. RT_ASSERT(host->private_data != RT_NULL);
  353. RT_ASSERT(io_cfg != RT_NULL);
  354. mmcsd = (struct imxrt_mmcsd *)host->private_data;
  355. usdhc_clk = io_cfg->clock;
  356. bus_width = io_cfg->bus_width;
  357. if (usdhc_clk > IMXRT_MAX_FREQ)
  358. usdhc_clk = IMXRT_MAX_FREQ;
  359. src_clk = (CLOCK_GetSysPfdFreq(kCLOCK_Pfd2) / (CLOCK_GetDiv(mmcsd->usdhc_div) + 1U));
  360. MMCSD_DGB("\tsrc_clk: %d, usdhc_clk: %d, bus_width: %d\n", src_clk, usdhc_clk, bus_width);
  361. if (usdhc_clk)
  362. {
  363. USDHC_SetSdClock(mmcsd->usdhc_host.base, src_clk, usdhc_clk);
  364. //CLOCK_EnableClock(mmcsd->ip_clock);
  365. /* Change bus width */
  366. if (bus_width == MMCSD_BUS_WIDTH_8)
  367. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth8Bit);
  368. else if (bus_width == MMCSD_BUS_WIDTH_4)
  369. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth4Bit);
  370. else if (bus_width == MMCSD_BUS_WIDTH_1)
  371. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth1Bit);
  372. else
  373. RT_ASSERT(RT_NULL);
  374. }
  375. else
  376. {
  377. //CLOCK_DisableClock(mmcsd->ip_clock);
  378. }
  379. }
  380. #ifdef DEBUG
  381. static void log_toggle(int en)
  382. {
  383. enable_log = en;
  384. }
  385. FINSH_FUNCTION_EXPORT(log_toggle, toglle log dumple);
  386. #endif
  387. //static rt_int32_t _mmc_get_card_status(struct rt_mmcsd_host *host)
  388. //{
  389. // MMCSD_DGB("%s, start\n", __func__);
  390. // MMCSD_DGB("%s, end\n", __func__);
  391. //
  392. // return 0;
  393. //}
  394. //
  395. //static void _mmc_enable_sdio_irq(struct rt_mmcsd_host *host, rt_int32_t enable)
  396. //{
  397. //
  398. //}
  399. static const struct rt_mmcsd_host_ops ops =
  400. {
  401. _mmc_request,
  402. _mmc_set_iocfg,
  403. RT_NULL,//_mmc_get_card_status,
  404. RT_NULL,//_mmc_enable_sdio_irq,
  405. };
  406. rt_int32_t _imxrt_mci_init(void)
  407. {
  408. struct rt_mmcsd_host *host;
  409. struct imxrt_mmcsd *mmcsd;
  410. host = mmcsd_alloc_host();
  411. if (!host)
  412. {
  413. return -RT_ERROR;
  414. }
  415. mmcsd = rt_malloc(sizeof(struct imxrt_mmcsd));
  416. if (!mmcsd)
  417. {
  418. rt_kprintf("alloc mci failed\n");
  419. goto err;
  420. }
  421. rt_memset(mmcsd, 0, sizeof(struct imxrt_mmcsd));
  422. mmcsd->usdhc_host.base = USDHC1;
  423. mmcsd->usdhc_div = kCLOCK_Usdhc1Div;
  424. mmcsd->usdhc_adma2_table = g_usdhcAdma2Table;
  425. host->ops = &ops;
  426. host->freq_min = 375000;
  427. host->freq_max = 25000000;
  428. host->valid_ocr = VDD_32_33 | VDD_33_34;
  429. host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | \
  430. MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
  431. host->max_seg_size = 65535;
  432. host->max_dma_segs = 2;
  433. host->max_blk_size = 512;
  434. host->max_blk_count = 4096;
  435. mmcsd->host = host;
  436. _mmcsd_clk_init(mmcsd);
  437. _mmcsd_isr_init(mmcsd);
  438. _mmcsd_gpio_init(mmcsd);
  439. _mmcsd_host_init(mmcsd);
  440. host->private_data = mmcsd;
  441. mmcsd_change(host);
  442. return 0;
  443. err:
  444. mmcsd_free_host(host);
  445. return -RT_ENOMEM;
  446. }
  447. int imxrt_mci_init(void)
  448. {
  449. /* initilize sd card */
  450. _imxrt_mci_init();
  451. return 0;
  452. }
  453. INIT_DEVICE_EXPORT(imxrt_mci_init);