drv_adc.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-12-05 zylx first version
  9. * 2018-12-12 greedyhao Porting for stm32f7xx
  10. * 2019-02-01 yuneizhilin fix the stm32_adc_init function initialization issue
  11. * 2020-06-17 thread-liu Porting for stm32mp1xx
  12. */
  13. #include <board.h>
  14. #if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3)
  15. #include "drv_config.h"
  16. //#define DRV_DEBUG
  17. #define LOG_TAG "drv.adc"
  18. #include <drv_log.h>
  19. static ADC_HandleTypeDef adc_config[] =
  20. {
  21. #ifdef BSP_USING_ADC1
  22. ADC1_CONFIG,
  23. #endif
  24. #ifdef BSP_USING_ADC2
  25. ADC2_CONFIG,
  26. #endif
  27. #ifdef BSP_USING_ADC3
  28. ADC3_CONFIG,
  29. #endif
  30. };
  31. struct stm32_adc
  32. {
  33. ADC_HandleTypeDef ADC_Handler;
  34. struct rt_adc_device stm32_adc_device;
  35. };
  36. static struct stm32_adc stm32_adc_obj[sizeof(adc_config) / sizeof(adc_config[0])];
  37. static rt_err_t stm32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
  38. {
  39. ADC_HandleTypeDef *stm32_adc_handler;
  40. RT_ASSERT(device != RT_NULL);
  41. stm32_adc_handler = device->parent.user_data;
  42. if (enabled)
  43. {
  44. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined (SOC_SERIES_STM32MP1)
  45. ADC_Enable(stm32_adc_handler);
  46. #else
  47. __HAL_ADC_ENABLE(stm32_adc_handler);
  48. #endif
  49. }
  50. else
  51. {
  52. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined (SOC_SERIES_STM32MP1)
  53. ADC_Disable(stm32_adc_handler);
  54. #else
  55. __HAL_ADC_DISABLE(stm32_adc_handler);
  56. #endif
  57. }
  58. return RT_EOK;
  59. }
  60. static rt_uint32_t stm32_adc_get_channel(rt_uint32_t channel)
  61. {
  62. rt_uint32_t stm32_channel = 0;
  63. switch (channel)
  64. {
  65. case 0:
  66. stm32_channel = ADC_CHANNEL_0;
  67. break;
  68. case 1:
  69. stm32_channel = ADC_CHANNEL_1;
  70. break;
  71. case 2:
  72. stm32_channel = ADC_CHANNEL_2;
  73. break;
  74. case 3:
  75. stm32_channel = ADC_CHANNEL_3;
  76. break;
  77. case 4:
  78. stm32_channel = ADC_CHANNEL_4;
  79. break;
  80. case 5:
  81. stm32_channel = ADC_CHANNEL_5;
  82. break;
  83. case 6:
  84. stm32_channel = ADC_CHANNEL_6;
  85. break;
  86. case 7:
  87. stm32_channel = ADC_CHANNEL_7;
  88. break;
  89. case 8:
  90. stm32_channel = ADC_CHANNEL_8;
  91. break;
  92. case 9:
  93. stm32_channel = ADC_CHANNEL_9;
  94. break;
  95. case 10:
  96. stm32_channel = ADC_CHANNEL_10;
  97. break;
  98. case 11:
  99. stm32_channel = ADC_CHANNEL_11;
  100. break;
  101. case 12:
  102. stm32_channel = ADC_CHANNEL_12;
  103. break;
  104. case 13:
  105. stm32_channel = ADC_CHANNEL_13;
  106. break;
  107. case 14:
  108. stm32_channel = ADC_CHANNEL_14;
  109. break;
  110. case 15:
  111. stm32_channel = ADC_CHANNEL_15;
  112. break;
  113. #ifdef ADC_CHANNEL_16
  114. case 16:
  115. stm32_channel = ADC_CHANNEL_16;
  116. break;
  117. #endif
  118. case 17:
  119. stm32_channel = ADC_CHANNEL_17;
  120. break;
  121. #ifdef ADC_CHANNEL_18
  122. case 18:
  123. stm32_channel = ADC_CHANNEL_18;
  124. break;
  125. #endif
  126. #ifdef ADC_CHANNEL_19
  127. case 19:
  128. stm32_channel = ADC_CHANNEL_19;
  129. break;
  130. #endif
  131. }
  132. return stm32_channel;
  133. }
  134. static rt_err_t stm32_get_adc_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
  135. {
  136. ADC_ChannelConfTypeDef ADC_ChanConf;
  137. ADC_HandleTypeDef *stm32_adc_handler;
  138. RT_ASSERT(device != RT_NULL);
  139. RT_ASSERT(value != RT_NULL);
  140. stm32_adc_handler = device->parent.user_data;
  141. rt_memset(&ADC_ChanConf, 0, sizeof(ADC_ChanConf));
  142. #ifndef ADC_CHANNEL_16
  143. if (channel == 16)
  144. {
  145. LOG_E("ADC channel must not be 16.");
  146. return -RT_ERROR;
  147. }
  148. #endif
  149. /* ADC channel number is up to 17 */
  150. #if !defined(ADC_CHANNEL_18)
  151. if (channel <= 17)
  152. /* ADC channel number is up to 19 */
  153. #elif defined(ADC_CHANNEL_19)
  154. if (channel <= 19)
  155. /* ADC channel number is up to 18 */
  156. #else
  157. if (channel <= 18)
  158. #endif
  159. {
  160. /* set stm32 ADC channel */
  161. ADC_ChanConf.Channel = stm32_adc_get_channel(channel);
  162. }
  163. else
  164. {
  165. #if !defined(ADC_CHANNEL_18)
  166. LOG_E("ADC channel must be between 0 and 17.");
  167. #elif defined(ADC_CHANNEL_19)
  168. LOG_E("ADC channel must be between 0 and 19.");
  169. #else
  170. LOG_E("ADC channel must be between 0 and 18.");
  171. #endif
  172. return -RT_ERROR;
  173. }
  174. #if defined(SOC_SERIES_STM32MP1)
  175. ADC_ChanConf.Rank = ADC_REGULAR_RANK_1;
  176. #else
  177. ADC_ChanConf.Rank = 1;
  178. #endif
  179. #if defined(SOC_SERIES_STM32F0)
  180. ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
  181. #elif defined(SOC_SERIES_STM32F1)
  182. ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_55CYCLES_5;
  183. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  184. ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_112CYCLES;
  185. #elif defined(SOC_SERIES_STM32L4)
  186. ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_247CYCLES_5;
  187. #elif defined(SOC_SERIES_STM32MP1)
  188. ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_810CYCLES_5;
  189. #endif
  190. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
  191. ADC_ChanConf.Offset = 0;
  192. #endif
  193. #if defined(SOC_SERIES_STM32L4)
  194. ADC_ChanConf.OffsetNumber = ADC_OFFSET_NONE;
  195. ADC_ChanConf.SingleDiff = LL_ADC_SINGLE_ENDED;
  196. #elif defined(SOC_SERIES_STM32MP1)
  197. ADC_ChanConf.OffsetNumber = ADC_OFFSET_NONE; /* ADC channel affected to offset number */
  198. ADC_ChanConf.Offset = 0;
  199. ADC_ChanConf.SingleDiff = ADC_SINGLE_ENDED; /* ADC channel differential mode */
  200. #endif
  201. HAL_ADC_ConfigChannel(stm32_adc_handler, &ADC_ChanConf);
  202. /* perform an automatic ADC calibration to improve the conversion accuracy */
  203. #if defined(SOC_SERIES_STM32L4)
  204. if (HAL_ADCEx_Calibration_Start(stm32_adc_handler, ADC_ChanConf.SingleDiff) != HAL_OK)
  205. {
  206. LOG_E("ADC calibration error!\n");
  207. return -RT_ERROR;
  208. }
  209. #elif defined(SOC_SERIES_STM32MP1)
  210. /* Run the ADC linear calibration in single-ended mode */
  211. if (HAL_ADCEx_Calibration_Start(stm32_adc_handler, ADC_CALIB_OFFSET_LINEARITY, ADC_ChanConf.SingleDiff) != HAL_OK)
  212. {
  213. LOG_E("ADC open linear calibration error!\n");
  214. /* Calibration Error */
  215. return -RT_ERROR;
  216. }
  217. #endif
  218. /* start ADC */
  219. HAL_ADC_Start(stm32_adc_handler);
  220. /* Wait for the ADC to convert */
  221. HAL_ADC_PollForConversion(stm32_adc_handler, 100);
  222. /* get ADC value */
  223. *value = (rt_uint32_t)HAL_ADC_GetValue(stm32_adc_handler);
  224. return RT_EOK;
  225. }
  226. static const struct rt_adc_ops stm_adc_ops =
  227. {
  228. .enabled = stm32_adc_enabled,
  229. .convert = stm32_get_adc_value,
  230. };
  231. static int stm32_adc_init(void)
  232. {
  233. int result = RT_EOK;
  234. /* save adc name */
  235. char name_buf[5] = {'a', 'd', 'c', '0', 0};
  236. int i = 0;
  237. for (i = 0; i < sizeof(adc_config) / sizeof(adc_config[0]); i++)
  238. {
  239. /* ADC init */
  240. name_buf[3] = '0';
  241. stm32_adc_obj[i].ADC_Handler = adc_config[i];
  242. #if defined(ADC1)
  243. if (stm32_adc_obj[i].ADC_Handler.Instance == ADC1)
  244. {
  245. name_buf[3] = '1';
  246. }
  247. #endif
  248. #if defined(ADC2)
  249. if (stm32_adc_obj[i].ADC_Handler.Instance == ADC2)
  250. {
  251. name_buf[3] = '2';
  252. }
  253. #endif
  254. #if defined(ADC3)
  255. if (stm32_adc_obj[i].ADC_Handler.Instance == ADC3)
  256. {
  257. name_buf[3] = '3';
  258. }
  259. #endif
  260. if (HAL_ADC_Init(&stm32_adc_obj[i].ADC_Handler) != HAL_OK)
  261. {
  262. LOG_E("%s init failed", name_buf);
  263. result = -RT_ERROR;
  264. }
  265. else
  266. {
  267. /* register ADC device */
  268. if (rt_hw_adc_register(&stm32_adc_obj[i].stm32_adc_device, name_buf, &stm_adc_ops, &stm32_adc_obj[i].ADC_Handler) == RT_EOK)
  269. {
  270. LOG_D("%s init success", name_buf);
  271. }
  272. else
  273. {
  274. LOG_E("%s register failed", name_buf);
  275. result = -RT_ERROR;
  276. }
  277. }
  278. }
  279. return result;
  280. }
  281. INIT_BOARD_EXPORT(stm32_adc_init);
  282. #endif /* BSP_USING_ADC */