board.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856
  1. /*
  2. * Copyright (c) 2022-2024 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_i2c_drv.h"
  10. #include "hpm_gpio_drv.h"
  11. #include "hpm_femc_drv.h"
  12. #include "pinmux.h"
  13. #include "hpm_pmp_drv.h"
  14. #include "assert.h"
  15. #include "hpm_clock_drv.h"
  16. #include "hpm_sysctl_drv.h"
  17. #include "hpm_sdxc_drv.h"
  18. #include "hpm_pwm_drv.h"
  19. #include "hpm_trgm_drv.h"
  20. #include "hpm_pllctlv2_drv.h"
  21. #include "hpm_enet_drv.h"
  22. #include "hpm_pcfg_drv.h"
  23. #include "hpm_debug_console.h"
  24. static board_timer_cb timer_cb;
  25. ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag;
  26. /**
  27. * @brief FLASH configuration option definitions:
  28. * option[0]:
  29. * [31:16] 0xfcf9 - FLASH configuration option tag
  30. * [15:4] 0 - Reserved
  31. * [3:0] option words (exclude option[0])
  32. * option[1]:
  33. * [31:28] Flash probe type
  34. * 0 - SFDP SDR / 1 - SFDP DDR
  35. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  36. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  37. * 6 - OctaBus DDR (SPI -> OPI DDR)
  38. * 8 - Xccela DDR (SPI -> OPI DDR)
  39. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  40. * [27:24] Command Pads after Power-on Reset
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [23:20] Command Pads after Configuring FLASH
  43. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  44. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  45. * 0 - Not needed
  46. * 1 - QE bit is at bit 6 in Status Register 1
  47. * 2 - QE bit is at bit1 in Status Register 2
  48. * 3 - QE bit is at bit7 in Status Register 2
  49. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  50. * [15:8] Dummy cycles
  51. * 0 - Auto-probed / detected / default value
  52. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  53. * [7:4] Misc.
  54. * 0 - Not used
  55. * 1 - SPI mode
  56. * 2 - Internal loopback
  57. * 3 - External DQS
  58. * [3:0] Frequency option
  59. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  60. *
  61. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  62. * [31:20] Reserved
  63. * [19:16] IO voltage
  64. * 0 - 3V / 1 - 1.8V
  65. * [15:12] Pin group
  66. * 0 - 1st group / 1 - 2nd group
  67. * [11:8] Connection selection
  68. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  69. * [7:0] Drive Strength
  70. * 0 - Default value
  71. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  72. * JESD216)
  73. * [31:16] reserved
  74. * [15:12] Sector Erase Command Option, not required here
  75. * [11:8] Sector Size Option, not required here
  76. * [7:0] Flash Size Option
  77. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  78. */
  79. #if defined(FLASH_XIP) && FLASH_XIP
  80. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  81. #endif
  82. #if defined(FLASH_UF2) && FLASH_UF2
  83. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  84. #endif
  85. void board_init_console(void)
  86. {
  87. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  88. #if CONSOLE_TYPE_UART == BOARD_CONSOLE_TYPE
  89. console_config_t cfg;
  90. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  91. uart rx pin when configuring pin function will cause a wrong data to be received.
  92. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  93. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  94. /* Configure the UART clock to 24MHz */
  95. clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
  96. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  97. cfg.type = BOARD_CONSOLE_TYPE;
  98. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  99. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  100. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  101. if (status_success != console_init(&cfg)) {
  102. /* failed to initialize debug console */
  103. while (1) {
  104. }
  105. }
  106. #else
  107. while (1) {
  108. }
  109. #endif
  110. #endif
  111. }
  112. void board_print_clock_freq(void)
  113. {
  114. printf("==============================\n");
  115. printf(" %s clock summary\n", BOARD_NAME);
  116. printf("==============================\n");
  117. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  118. printf("axi:\t\t %luHz\n", clock_get_frequency(clock_axi));
  119. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  120. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  121. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  122. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  123. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  124. printf("==============================\n");
  125. }
  126. void board_init_uart(UART_Type *ptr)
  127. {
  128. /* configure uart's pin before opening uart's clock */
  129. init_uart_pins(ptr);
  130. board_init_uart_clock(ptr);
  131. }
  132. void board_print_banner(void)
  133. {
  134. const uint8_t banner[] = {"\n\
  135. ----------------------------------------------------------------------\n\
  136. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  137. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  138. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  139. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  140. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  141. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  142. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  143. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  144. ----------------------------------------------------------------------\n"};
  145. #ifdef SDK_VERSION_STRING
  146. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  147. #endif
  148. printf("%s", banner);
  149. }
  150. void board_ungate_mchtmr_at_lp_mode(void)
  151. {
  152. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  153. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  154. }
  155. void board_init(void)
  156. {
  157. pcfg_dcdc_set_voltage(HPM_PCFG, 1100);
  158. board_init_clock();
  159. board_init_console();
  160. board_init_pmp();
  161. #if BOARD_SHOW_CLOCK
  162. board_print_clock_freq();
  163. #endif
  164. #if BOARD_SHOW_BANNER
  165. board_print_banner();
  166. #endif
  167. }
  168. void board_init_sdram_pins(void)
  169. {
  170. init_sdram_pins();
  171. }
  172. uint32_t board_init_femc_clock(void)
  173. {
  174. clock_add_to_group(clock_femc, 0);
  175. /* Configure the SDRAM to 166MHz */
  176. clock_set_source_divider(clock_femc, clk_src_pll0_clk1, 2U);
  177. return clock_get_frequency(clock_femc);
  178. }
  179. void board_delay_us(uint32_t us)
  180. {
  181. clock_cpu_delay_us(us);
  182. }
  183. void board_delay_ms(uint32_t ms)
  184. {
  185. clock_cpu_delay_ms(ms);
  186. }
  187. void board_timer_isr(void)
  188. {
  189. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  190. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  191. timer_cb();
  192. }
  193. }
  194. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  195. void board_timer_create(uint32_t ms, board_timer_cb cb)
  196. {
  197. uint32_t gptmr_freq;
  198. gptmr_channel_config_t config;
  199. timer_cb = cb;
  200. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  201. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  202. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  203. config.reload = gptmr_freq / 1000 * ms;
  204. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  205. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  206. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  207. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  208. }
  209. void board_i2c_bus_clear(I2C_Type *ptr)
  210. {
  211. init_i2c_pins_as_gpio(ptr);
  212. if (ptr == BOARD_APP_I2C_BASE) {
  213. gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN);
  214. gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
  215. if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN)) {
  216. printf("CLK is low, please power cycle the board\n");
  217. while (1) {
  218. }
  219. }
  220. if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN)) {
  221. printf("SDA is low, try to issue I2C bus clear\n");
  222. } else {
  223. printf("I2C bus is ready\n");
  224. return;
  225. }
  226. gpio_set_pin_output(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
  227. while (1) {
  228. for (uint32_t i = 0; i < 9; i++) {
  229. gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 1);
  230. board_delay_ms(10);
  231. gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 0);
  232. board_delay_ms(10);
  233. }
  234. board_delay_ms(100);
  235. }
  236. printf("I2C bus is cleared\n");
  237. }
  238. }
  239. void board_init_i2c(I2C_Type *ptr)
  240. {
  241. i2c_config_t config;
  242. hpm_stat_t stat;
  243. uint32_t freq;
  244. if (ptr == NULL) {
  245. return;
  246. }
  247. board_i2c_bus_clear(ptr);
  248. init_i2c_pins(ptr);
  249. clock_add_to_group(clock_i2c0, 0);
  250. clock_add_to_group(clock_i2c1, 0);
  251. clock_add_to_group(clock_i2c2, 0);
  252. clock_add_to_group(clock_i2c3, 0);
  253. /* Configure the I2C clock to 24MHz */
  254. clock_set_source_divider(BOARD_APP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  255. config.i2c_mode = i2c_mode_normal;
  256. config.is_10bit_addressing = false;
  257. freq = clock_get_frequency(BOARD_APP_I2C_CLK_NAME);
  258. stat = i2c_init_master(ptr, freq, &config);
  259. if (stat != status_success) {
  260. printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr);
  261. while (1) {
  262. }
  263. }
  264. }
  265. uint32_t board_init_spi_clock(SPI_Type *ptr)
  266. {
  267. if (ptr == HPM_SPI3) {
  268. /* SPI3 clock configure */
  269. clock_add_to_group(clock_spi3, 0);
  270. clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); /* 80MHz */
  271. return clock_get_frequency(clock_spi3);
  272. }
  273. return 0;
  274. }
  275. void board_init_gpio_pins(void)
  276. {
  277. init_gpio_pins();
  278. }
  279. void board_init_spi_pins(SPI_Type *ptr)
  280. {
  281. init_spi_pins(ptr);
  282. }
  283. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  284. {
  285. init_spi_pins_with_gpio_as_cs(ptr);
  286. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  287. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  288. }
  289. void board_write_spi_cs(uint32_t pin, uint8_t state)
  290. {
  291. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  292. }
  293. uint8_t board_get_led_gpio_off_level(void)
  294. {
  295. return BOARD_LED_OFF_LEVEL;
  296. }
  297. void board_init_led_pins(void)
  298. {
  299. init_led_pins();
  300. gpio_set_pin_output_with_initial(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, board_get_led_gpio_off_level());
  301. }
  302. void board_led_toggle(void)
  303. {
  304. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  305. }
  306. void board_led_write(uint8_t state)
  307. {
  308. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  309. }
  310. void board_init_usb_pins(void)
  311. {
  312. /* set pull-up for USBx ID pin */
  313. init_usb_pins();
  314. /* configure USBx ID pin as input function */
  315. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  316. }
  317. uint8_t board_get_usb_id_status(void)
  318. {
  319. return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  320. }
  321. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  322. {
  323. (void) usb_index;
  324. (void) level;
  325. }
  326. void board_init_pmp(void)
  327. {
  328. extern uint32_t __noncacheable_start__[];
  329. extern uint32_t __noncacheable_end__[];
  330. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  331. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  332. uint32_t length = end_addr - start_addr;
  333. if (length == 0) {
  334. return;
  335. }
  336. /* Ensure the address and the length are power of 2 aligned */
  337. assert((length & (length - 1U)) == 0U);
  338. assert((start_addr & (length - 1U)) == 0U);
  339. pmp_entry_t pmp_entry[3] = {0};
  340. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000);
  341. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  342. pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000);
  343. pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  344. pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  345. pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  346. pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  347. pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  348. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  349. }
  350. void board_init_clock(void)
  351. {
  352. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  353. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  354. /* Configure the External OSC ramp-up time: ~9ms */
  355. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
  356. /* Select clock setting preset1 */
  357. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  358. }
  359. /* Add most Clocks to group 0 */
  360. /* not open uart clock in this API, uart should configure pin function before opening clock */
  361. clock_add_to_group(clock_cpu0, 0);
  362. clock_add_to_group(clock_ahbp, 0);
  363. clock_add_to_group(clock_axic, 0);
  364. clock_add_to_group(clock_axis, 0);
  365. clock_add_to_group(clock_mchtmr0, 0);
  366. clock_add_to_group(clock_femc, 0);
  367. clock_add_to_group(clock_xpi0, 0);
  368. clock_add_to_group(clock_xpi1, 0);
  369. clock_add_to_group(clock_gptmr0, 0);
  370. clock_add_to_group(clock_gptmr1, 0);
  371. clock_add_to_group(clock_gptmr2, 0);
  372. clock_add_to_group(clock_gptmr3, 0);
  373. clock_add_to_group(clock_i2c0, 0);
  374. clock_add_to_group(clock_i2c1, 0);
  375. clock_add_to_group(clock_i2c2, 0);
  376. clock_add_to_group(clock_i2c3, 0);
  377. clock_add_to_group(clock_spi0, 0);
  378. clock_add_to_group(clock_spi1, 0);
  379. clock_add_to_group(clock_spi2, 0);
  380. clock_add_to_group(clock_spi3, 0);
  381. clock_add_to_group(clock_can0, 0);
  382. clock_add_to_group(clock_can1, 0);
  383. clock_add_to_group(clock_sdxc0, 0);
  384. clock_add_to_group(clock_ptpc, 0);
  385. clock_add_to_group(clock_ref0, 0);
  386. clock_add_to_group(clock_ref1, 0);
  387. clock_add_to_group(clock_watchdog0, 0);
  388. clock_add_to_group(clock_eth0, 0);
  389. clock_add_to_group(clock_sdp, 0);
  390. clock_add_to_group(clock_xdma, 0);
  391. clock_add_to_group(clock_ram0, 0);
  392. clock_add_to_group(clock_usb0, 0);
  393. clock_add_to_group(clock_kman, 0);
  394. clock_add_to_group(clock_gpio, 0);
  395. clock_add_to_group(clock_mbx0, 0);
  396. clock_add_to_group(clock_hdma, 0);
  397. clock_add_to_group(clock_rng, 0);
  398. clock_add_to_group(clock_mot0, 0);
  399. clock_add_to_group(clock_mot1, 0);
  400. clock_add_to_group(clock_acmp, 0);
  401. clock_add_to_group(clock_dao, 0);
  402. clock_add_to_group(clock_synt, 0);
  403. clock_add_to_group(clock_lmm0, 0);
  404. clock_add_to_group(clock_pdm, 0);
  405. clock_add_to_group(clock_adc0, 0);
  406. clock_add_to_group(clock_adc1, 0);
  407. clock_add_to_group(clock_adc2, 0);
  408. clock_add_to_group(clock_dac0, 0);
  409. clock_add_to_group(clock_i2s0, 0);
  410. clock_add_to_group(clock_i2s1, 0);
  411. clock_add_to_group(clock_ffa0, 0);
  412. clock_add_to_group(clock_tsns, 0);
  413. /* Connect Group0 to CPU0 */
  414. clock_connect_group_to_cpu(0, 0);
  415. /* Configure CPU to 480MHz, AXI/AHB to 160MHz */
  416. sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clock_source_pll1_clk0, 1, 3, 3);
  417. /* Configure PLL1_CLK0 Post Divider to 1.2 */
  418. pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 1);
  419. /* Configure PLL1 clock frequencey to 576MHz, the PLL1_CLK0 frequency = 576MHz / 1.2 = 480MHz */
  420. pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 576000000);
  421. clock_update_core_clock();
  422. /* Configure mchtmr to 24MHz */
  423. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  424. }
  425. uint32_t board_init_dao_clock(void)
  426. {
  427. return clock_get_frequency(clock_dao);
  428. }
  429. uint32_t board_init_pdm_clock(void)
  430. {
  431. return clock_get_frequency(clock_pdm);
  432. }
  433. hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
  434. {
  435. return pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 2, freq); /* pll2clk */
  436. }
  437. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  438. {
  439. (void) ptr;
  440. return 0;
  441. }
  442. void board_init_adc16_pins(void)
  443. {
  444. init_adc_pins();
  445. }
  446. uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
  447. {
  448. uint32_t freq = 0;
  449. if (ptr == HPM_ADC0) {
  450. if (clk_src_ahb) {
  451. /* Configure the ADC clock from AHB (@160MHz by default)*/
  452. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  453. } else {
  454. /* Configure the ADC clock from pll0_clk1 divided by 2 (@166MHz by default) */
  455. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  456. clock_set_source_divider(clock_ana0, clk_src_pll0_clk1, 2U);
  457. }
  458. freq = clock_get_frequency(clock_adc0);
  459. } else if (ptr == HPM_ADC1) {
  460. if (clk_src_ahb) {
  461. /* Configure the ADC clock from AHB (@160MHz by default)*/
  462. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  463. } else {
  464. /* Configure the ADC clock from pll1_clk1 divided by 2 (@166MHz by default) */
  465. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  466. clock_set_source_divider(clock_ana1, clk_src_pll0_clk1, 2U);
  467. }
  468. freq = clock_get_frequency(clock_adc1);
  469. } else if (ptr == HPM_ADC2) {
  470. if (clk_src_ahb) {
  471. /* Configure the ADC clock from AHB (@160MHz by default)*/
  472. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  473. } else {
  474. /* Configure the ADC clock from pll1_clk1 divided by 2 (@166MHz by default) */
  475. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  476. clock_set_source_divider(clock_ana2, clk_src_pll0_clk1, 2U);
  477. }
  478. freq = clock_get_frequency(clock_adc2);
  479. }
  480. return freq;
  481. }
  482. uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
  483. {
  484. uint32_t freq = 0;
  485. if (ptr == HPM_DAC) {
  486. if (clk_src_ahb == true) {
  487. /* Configure the DAC clock to 160MHz */
  488. clock_set_dac_source(clock_dac0, clk_dac_src_ahb0);
  489. } else {
  490. /* Configure the DAC clock to 166MHz */
  491. clock_set_dac_source(clock_dac0, clk_dac_src_ana3);
  492. clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
  493. }
  494. freq = clock_get_frequency(clock_dac0);
  495. }
  496. return freq;
  497. }
  498. void board_init_can(CAN_Type *ptr)
  499. {
  500. init_can_pins(ptr);
  501. }
  502. uint32_t board_init_can_clock(CAN_Type *ptr)
  503. {
  504. uint32_t freq = 0;
  505. if (ptr == HPM_CAN0) {
  506. /* Set the CAN0 peripheral clock to 80MHz */
  507. clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
  508. freq = clock_get_frequency(clock_can0);
  509. } else if (ptr == HPM_CAN1) {
  510. /* Set the CAN1 peripheral clock to 80MHz */
  511. clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
  512. freq = clock_get_frequency(clock_can1);
  513. } else {
  514. /* Invalid CAN instance */
  515. }
  516. return freq;
  517. }
  518. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  519. {
  520. uint32_t freq = 0;
  521. if (ptr == HPM_GPTMR0) {
  522. clock_add_to_group(clock_gptmr0, 0);
  523. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  524. freq = clock_get_frequency(clock_gptmr0);
  525. }
  526. else if (ptr == HPM_GPTMR1) {
  527. clock_add_to_group(clock_gptmr1, 0);
  528. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  529. freq = clock_get_frequency(clock_gptmr1);
  530. }
  531. else if (ptr == HPM_GPTMR2) {
  532. clock_add_to_group(clock_gptmr2, 0);
  533. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  534. freq = clock_get_frequency(clock_gptmr2);
  535. }
  536. else if (ptr == HPM_GPTMR3) {
  537. clock_add_to_group(clock_gptmr3, 0);
  538. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  539. freq = clock_get_frequency(clock_gptmr3);
  540. }
  541. else {
  542. /* Invalid instance */
  543. }
  544. return freq;
  545. }
  546. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  547. {
  548. /* This feature is not supported */
  549. }
  550. /*
  551. * this function will be called during startup to initialize external memory for data use
  552. */
  553. void _init_ext_ram(void)
  554. {
  555. uint32_t femc_clk_in_hz;
  556. board_init_sdram_pins();
  557. femc_clk_in_hz = board_init_femc_clock();
  558. femc_config_t config = {0};
  559. femc_sdram_config_t sdram_config = {0};
  560. femc_default_config(HPM_FEMC, &config);
  561. femc_init(HPM_FEMC, &config);
  562. femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
  563. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  564. sdram_config.prescaler = 0x3;
  565. sdram_config.burst_len_in_byte = 8;
  566. sdram_config.auto_refresh_count_in_one_burst = 1;
  567. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  568. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  569. sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
  570. sdram_config.refresh_recover_in_ns = 60; /* Trc */
  571. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  572. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  573. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  574. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  575. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  576. sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
  577. sdram_config.cs = BOARD_SDRAM_CS;
  578. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  579. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  580. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  581. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  582. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  583. sdram_config.delay_cell_disable = true;
  584. sdram_config.delay_cell_value = 0;
  585. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  586. }
  587. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  588. {
  589. uint32_t actual_freq = 0;
  590. do {
  591. if (ptr != HPM_SDXC0) {
  592. break;
  593. }
  594. clock_name_t sdxc_clk = clock_sdxc0;
  595. sdxc_enable_inverse_clock(ptr, false);
  596. sdxc_enable_sd_clock(ptr, false);
  597. /* Configure the SDXC Frequency to 200MHz */
  598. clock_set_source_divider(sdxc_clk, clk_src_pll0_clk0, 2);
  599. sdxc_enable_freq_selection(ptr);
  600. /* Configure the clock below 400KHz for the identification state */
  601. if (freq <= 400000UL) {
  602. sdxc_set_clock_divider(ptr, 600);
  603. }
  604. /* configure the clock to 24MHz for the SDR12/Default speed */
  605. else if (freq <= 26000000UL) {
  606. sdxc_set_clock_divider(ptr, 8);
  607. }
  608. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  609. else if (freq <= 52000000UL) {
  610. sdxc_set_clock_divider(ptr, 4);
  611. }
  612. /* Configure the clock to 100MHz for the SDR50 */
  613. else if (freq <= 100000000UL) {
  614. sdxc_set_clock_divider(ptr, 2);
  615. }
  616. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  617. else if (freq <= 208000000UL) {
  618. sdxc_set_clock_divider(ptr, 1);
  619. }
  620. /* For other unsupported clock ranges, configure the clock to 24MHz */
  621. else {
  622. sdxc_set_clock_divider(ptr, 8);
  623. }
  624. if (need_inverse) {
  625. sdxc_enable_inverse_clock(ptr, true);
  626. }
  627. sdxc_enable_sd_clock(ptr, true);
  628. actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr);
  629. } while (false);
  630. return actual_freq;
  631. }
  632. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  633. {
  634. (void) ptr;
  635. /* This feature is not supported */
  636. }
  637. bool board_sd_detect_card(SDXC_Type *ptr)
  638. {
  639. return sdxc_is_card_inserted(ptr);
  640. }
  641. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  642. {
  643. /* set clock source */
  644. if (ptr == HPM_ENET0) {
  645. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for ent0 ptp clock */
  646. clock_set_source_divider(clock_ptp0, clk_src_pll0_clk0, 4); /* 100MHz */
  647. } else {
  648. return status_invalid_argument;
  649. }
  650. return status_success;
  651. }
  652. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  653. {
  654. /* Configure Enet clock to output reference clock */
  655. if (ptr == HPM_ENET0) {
  656. if (internal) {
  657. /* set pll output frequency at 1GHz */
  658. if (pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1000000000UL) == status_success) {
  659. /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 (1 + 15 / 5) */
  660. pllctlv2_set_postdiv(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1, 15);
  661. /* set eth clock frequency at 50MHz for enet0 */
  662. clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5);
  663. } else {
  664. return status_fail;
  665. }
  666. }
  667. } else {
  668. return status_invalid_argument;
  669. }
  670. enet_rmii_enable_clock(ptr, internal);
  671. return status_success;
  672. }
  673. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  674. {
  675. init_enet_pins(ptr);
  676. return status_success;
  677. }
  678. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  679. {
  680. (void) ptr;
  681. return status_success;
  682. }
  683. void board_init_dac_pins(DAC_Type *ptr)
  684. {
  685. init_dac_pins(ptr);
  686. }
  687. uint32_t board_init_uart_clock(UART_Type *ptr)
  688. {
  689. uint32_t freq = 0U;
  690. if (ptr == HPM_UART0) {
  691. clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
  692. clock_add_to_group(clock_uart0, 0);
  693. freq = clock_get_frequency(clock_uart0);
  694. } else if (ptr == HPM_UART1) {
  695. clock_set_source_divider(clock_uart1, clk_src_osc24m, 1);
  696. clock_add_to_group(clock_uart1, 0);
  697. freq = clock_get_frequency(clock_uart1);
  698. } else if (ptr == HPM_UART2) {
  699. clock_set_source_divider(clock_uart2, clk_src_osc24m, 1);
  700. clock_add_to_group(clock_uart2, 0);
  701. freq = clock_get_frequency(clock_uart2);
  702. } else {
  703. /* Not supported */
  704. }
  705. return freq;
  706. }
  707. uint32_t board_init_pwm_clock(PWM_Type *ptr)
  708. {
  709. uint32_t freq = 0;
  710. (void) ptr;
  711. return freq;
  712. }
  713. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  714. {
  715. (void) ptr;
  716. return enet_pbl_16;
  717. }
  718. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  719. {
  720. if (ptr == HPM_ENET0) {
  721. intc_m_enable_irq(IRQn_ENET0);
  722. } else {
  723. return status_invalid_argument;
  724. }
  725. return status_success;
  726. }
  727. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  728. {
  729. if (ptr == HPM_ENET0) {
  730. intc_m_disable_irq(IRQn_ENET0);
  731. } else {
  732. return status_invalid_argument;
  733. }
  734. return status_success;
  735. }
  736. void board_init_enet_pps_pins(ENET_Type *ptr)
  737. {
  738. (void) ptr;
  739. init_enet_pps_pins();
  740. }