board.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442
  1. /*
  2. * Copyright (c) 2021-2024 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_femc_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_pwm_drv.h"
  21. #include "hpm_trgm_drv.h"
  22. #include "hpm_pllctl_drv.h"
  23. #include "hpm_enet_drv.h"
  24. #include "hpm_pcfg_drv.h"
  25. static board_timer_cb timer_cb;
  26. static bool invert_led_level;
  27. /**
  28. * @brief FLASH configuration option definitions:
  29. * option[0]:
  30. * [31:16] 0xfcf9 - FLASH configuration option tag
  31. * [15:4] 0 - Reserved
  32. * [3:0] option words (exclude option[0])
  33. * option[1]:
  34. * [31:28] Flash probe type
  35. * 0 - SFDP SDR / 1 - SFDP DDR
  36. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  37. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  38. * 6 - OctaBus DDR (SPI -> OPI DDR)
  39. * 8 - Xccela DDR (SPI -> OPI DDR)
  40. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  41. * [27:24] Command Pads after Power-on Reset
  42. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  43. * [23:20] Command Pads after Configuring FLASH
  44. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  45. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  46. * 0 - Not needed
  47. * 1 - QE bit is at bit 6 in Status Register 1
  48. * 2 - QE bit is at bit1 in Status Register 2
  49. * 3 - QE bit is at bit7 in Status Register 2
  50. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  51. * [15:8] Dummy cycles
  52. * 0 - Auto-probed / detected / default value
  53. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  54. * [7:4] Misc.
  55. * 0 - Not used
  56. * 1 - SPI mode
  57. * 2 - Internal loopback
  58. * 3 - External DQS
  59. * [3:0] Frequency option
  60. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  61. *
  62. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  63. * [31:20] Reserved
  64. * [19:16] IO voltage
  65. * 0 - 3V / 1 - 1.8V
  66. * [15:12] Pin group
  67. * 0 - 1st group / 1 - 2nd group
  68. * [11:8] Connection selection
  69. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  70. * [7:0] Drive Strength
  71. * 0 - Default value
  72. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  73. * JESD216)
  74. * [31:16] reserved
  75. * [15:12] Sector Erase Command Option, not required here
  76. * [11:8] Sector Size Option, not required here
  77. * [7:0] Flash Size Option
  78. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  79. */
  80. #if defined(FLASH_XIP) && FLASH_XIP
  81. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x1000, 0x0};
  82. #endif
  83. #if defined(FLASH_UF2) && FLASH_UF2
  84. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  85. #endif
  86. void board_init_console(void)
  87. {
  88. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  89. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  90. console_config_t cfg;
  91. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  92. uart rx pin when configuring pin function will cause a wrong data to be received.
  93. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  94. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  95. /* Configure the UART clock to 24MHz */
  96. clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
  97. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  98. cfg.type = BOARD_CONSOLE_TYPE;
  99. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  100. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  101. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  102. if (status_success != console_init(&cfg)) {
  103. /* failed to initialize debug console */
  104. while (1) {
  105. }
  106. }
  107. #else
  108. while (1) {
  109. }
  110. #endif
  111. #endif
  112. }
  113. void board_print_clock_freq(void)
  114. {
  115. printf("==============================\n");
  116. printf(" %s clock summary\n", BOARD_NAME);
  117. printf("==============================\n");
  118. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  119. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  120. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  121. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  122. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  123. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  124. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  125. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  126. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  127. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  128. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  129. printf("display:\t %luHz\n", clock_get_frequency(clock_display));
  130. printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
  131. printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
  132. printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
  133. printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
  134. printf("==============================\n");
  135. }
  136. void board_init_uart(UART_Type *ptr)
  137. {
  138. /* configure uart's pin before opening uart's clock */
  139. init_uart_pins(ptr);
  140. board_init_uart_clock(ptr);
  141. }
  142. void board_init_ahb(void)
  143. {
  144. clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
  145. }
  146. void board_print_banner(void)
  147. {
  148. const uint8_t banner[] = {"\n\
  149. ----------------------------------------------------------------------\n\
  150. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  151. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  152. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  153. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  154. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  155. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  156. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  157. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  158. ----------------------------------------------------------------------\n"};
  159. #ifdef SDK_VERSION_STRING
  160. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  161. #endif
  162. printf("%s", banner);
  163. }
  164. static void board_turnoff_rgb_led(void)
  165. {
  166. uint8_t p11_stat;
  167. uint8_t p12_stat;
  168. uint8_t p13_stat;
  169. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  170. HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
  171. HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
  172. HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
  173. HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
  174. HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
  175. HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
  176. p11_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 11);
  177. p12_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 12);
  178. p13_stat = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 13);
  179. invert_led_level = false;
  180. /*
  181. * check led gpio level
  182. */
  183. if ((p11_stat & p12_stat & p13_stat) == 0) {
  184. /* Rev B */
  185. invert_led_level = true;
  186. pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(0);
  187. HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
  188. HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
  189. HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
  190. }
  191. }
  192. void board_ungate_mchtmr_at_lp_mode(void)
  193. {
  194. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  195. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  196. }
  197. void board_init(void)
  198. {
  199. board_turnoff_rgb_led();
  200. board_init_clock();
  201. board_init_console();
  202. board_init_pmp();
  203. board_init_ahb();
  204. #if BOARD_SHOW_CLOCK
  205. board_print_clock_freq();
  206. #endif
  207. #if BOARD_SHOW_BANNER
  208. board_print_banner();
  209. #endif
  210. }
  211. void board_init_core1(void)
  212. {
  213. board_init_console();
  214. board_init_pmp();
  215. }
  216. void board_init_sdram_pins(void)
  217. {
  218. init_sdram_pins();
  219. }
  220. uint32_t board_init_femc_clock(void)
  221. {
  222. clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
  223. /* clock_set_source_divider(clock_femc, clk_src_pll1_clk1, 2U); [> 200Mhz <] */
  224. return clock_get_frequency(clock_femc);
  225. }
  226. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
  227. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  228. static void set_reset_pin_level_tm070rdh13(uint8_t level)
  229. {
  230. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, level);
  231. }
  232. static void set_backlight_tm070rdh13(uint16_t percent)
  233. {
  234. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
  235. }
  236. void board_init_lcd_rgb_tm070rdh13(void)
  237. {
  238. init_lcd_pins(BOARD_LCD_BASE);
  239. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  240. gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
  241. hpm_panel_hw_interface_t hw_if = {0};
  242. hpm_panel_t *panel = hpm_panel_find_device_default();
  243. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  244. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
  245. hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
  246. hw_if.set_backlight = set_backlight_tm070rdh13;
  247. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  248. hpm_panel_register_interface(panel, &hw_if);
  249. printf("name: %s, lcdc_clk: %ukhz\n",
  250. hpm_panel_get_name(panel),
  251. lcdc_pixel_clk_khz);
  252. hpm_panel_reset(panel);
  253. hpm_panel_init(panel);
  254. hpm_panel_power_on(panel);
  255. }
  256. #endif
  257. #ifdef CONFIG_HPM_PANEL
  258. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
  259. {
  260. clock_add_to_group(clock_name, 0);
  261. uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
  262. uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
  263. clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
  264. return clock_get_frequency(clock_name) / 1000;
  265. }
  266. void board_lcd_backlight(bool is_on)
  267. {
  268. hpm_panel_t *panel = hpm_panel_find_device_default();
  269. hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
  270. }
  271. void board_init_lcd(void)
  272. {
  273. #ifdef CONFIG_PANEL_RGB_TM070RDH13
  274. board_init_lcd_rgb_tm070rdh13();
  275. #endif
  276. }
  277. void board_panel_para_to_lcdc(lcdc_config_t *config)
  278. {
  279. const hpm_panel_timing_t *timing;
  280. hpm_panel_t *panel = hpm_panel_find_device_default();
  281. timing = hpm_panel_get_timing(panel);
  282. config->resolution_x = timing->hactive;
  283. config->resolution_y = timing->vactive;
  284. config->hsync.pulse_width = timing->hsync_len;
  285. config->hsync.back_porch_pulse = timing->hback_porch;
  286. config->hsync.front_porch_pulse = timing->hfront_porch;
  287. config->vsync.pulse_width = timing->vsync_len;
  288. config->vsync.back_porch_pulse = timing->vback_porch;
  289. config->vsync.front_porch_pulse = timing->vfront_porch;
  290. config->control.invert_hsync = timing->hsync_pol;
  291. config->control.invert_vsync = timing->vsync_pol;
  292. config->control.invert_href = timing->de_pol;
  293. config->control.invert_pixel_data = timing->pixel_data_pol;
  294. config->control.invert_pixel_clock = timing->pixel_clk_pol;
  295. }
  296. #endif
  297. void board_delay_ms(uint32_t ms)
  298. {
  299. clock_cpu_delay_ms(ms);
  300. }
  301. void board_delay_us(uint32_t us)
  302. {
  303. clock_cpu_delay_us(us);
  304. }
  305. void board_timer_isr(void)
  306. {
  307. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  308. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  309. timer_cb();
  310. }
  311. }
  312. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  313. void board_timer_create(uint32_t ms, board_timer_cb cb)
  314. {
  315. uint32_t gptmr_freq;
  316. gptmr_channel_config_t config;
  317. timer_cb = cb;
  318. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  319. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  320. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  321. config.reload = gptmr_freq / 1000 * ms;
  322. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  323. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  324. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  325. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  326. }
  327. void board_i2c_bus_clear(I2C_Type *ptr)
  328. {
  329. init_i2c_pins_as_gpio(ptr);
  330. if (ptr == BOARD_CAP_I2C_BASE) {
  331. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  332. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  333. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  334. printf("CLK is low, please power cycle the board\n");
  335. while (1) {
  336. }
  337. }
  338. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  339. printf("SDA is low, try to issue I2C bus clear\n");
  340. } else {
  341. printf("I2C bus is ready\n");
  342. return;
  343. }
  344. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  345. while (1) {
  346. for (uint32_t i = 0; i < 9; i++) {
  347. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  348. board_delay_ms(10);
  349. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  350. board_delay_ms(10);
  351. }
  352. board_delay_ms(100);
  353. }
  354. printf("I2C bus is cleared\n");
  355. }
  356. }
  357. void board_init_i2c(I2C_Type *ptr)
  358. {
  359. hpm_stat_t stat;
  360. uint32_t freq;
  361. i2c_config_t config;
  362. board_i2c_bus_clear(ptr);
  363. init_i2c_pins(ptr);
  364. clock_add_to_group(clock_i2c0, 0);
  365. clock_add_to_group(clock_i2c1, 0);
  366. clock_add_to_group(clock_i2c2, 0);
  367. clock_add_to_group(clock_i2c3, 0);
  368. /* Configure the I2C clock to 24MHz */
  369. clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  370. config.i2c_mode = i2c_mode_normal;
  371. config.is_10bit_addressing = false;
  372. freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
  373. stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
  374. if (stat != status_success) {
  375. printf("failed to initialize i2c 0x%x\n", (uint32_t)BOARD_CAP_I2C_BASE);
  376. while (1) {
  377. }
  378. }
  379. }
  380. uint32_t board_init_uart_clock(UART_Type *ptr)
  381. {
  382. uint32_t freq = 0U;
  383. clock_name_t clock_name = clock_uart0;
  384. bool need_init_clock = true;
  385. if (ptr == HPM_UART0) {
  386. clock_name = clock_uart0;
  387. } else if (ptr == HPM_UART1) {
  388. clock_name = clock_uart1;
  389. } else if (ptr == HPM_UART2) {
  390. clock_name = clock_uart2;
  391. } else if (ptr == HPM_UART3) {
  392. clock_name = clock_uart3;
  393. } else if (ptr == HPM_UART4) {
  394. clock_name = clock_uart4;
  395. } else if (ptr == HPM_UART5) {
  396. clock_name = clock_uart5;
  397. } else if (ptr == HPM_UART6) {
  398. clock_name = clock_uart6;
  399. } else if (ptr == HPM_UART7) {
  400. clock_name = clock_uart7;
  401. } else if (ptr == HPM_UART8) {
  402. clock_name = clock_uart8;
  403. } else if (ptr == HPM_UART9) {
  404. clock_name = clock_uart9;
  405. } else if (ptr == HPM_UART10) {
  406. clock_name = clock_uart10;
  407. } else if (ptr == HPM_UART11) {
  408. clock_name = clock_uart11;
  409. } else if (ptr == HPM_UART12) {
  410. clock_name = clock_uart12;
  411. } else if (ptr == HPM_UART13) {
  412. clock_name = clock_uart13;
  413. } else if (ptr == HPM_UART14) {
  414. clock_name = clock_uart14;
  415. } else if (ptr == HPM_UART15) {
  416. clock_name = clock_uart15;
  417. } else {
  418. /* Unsupported instance */
  419. need_init_clock = false;
  420. }
  421. if (need_init_clock) {
  422. clock_set_source_divider(clock_name, clk_src_osc24m, 1);
  423. clock_add_to_group(clock_name, 0);
  424. freq = clock_get_frequency(clock_name);
  425. }
  426. return freq;
  427. }
  428. uint32_t board_init_spi_clock(SPI_Type *ptr)
  429. {
  430. if (ptr == HPM_SPI2) {
  431. /* SPI2 clock configure */
  432. clock_add_to_group(clock_spi2, 0);
  433. clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U); /* 80MHz */
  434. return clock_get_frequency(clock_spi2);
  435. }
  436. return 0;
  437. }
  438. void board_init_cap_touch(void)
  439. {
  440. init_cap_pins();
  441. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  442. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  443. board_delay_ms(1);
  444. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
  445. board_delay_ms(10);
  446. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  447. gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  448. board_init_i2c(BOARD_CAP_I2C_BASE);
  449. }
  450. void board_init_gpio_pins(void)
  451. {
  452. uint8_t led_pin_pull_selsect;
  453. HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
  454. HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  455. led_pin_pull_selsect = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 12);
  456. init_gpio_pins(led_pin_pull_selsect);
  457. }
  458. void board_init_spi_pins(SPI_Type *ptr)
  459. {
  460. init_spi_pins(ptr);
  461. }
  462. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  463. {
  464. init_spi_pins_with_gpio_as_cs(ptr);
  465. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  466. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  467. }
  468. void board_write_spi_cs(uint32_t pin, uint8_t state)
  469. {
  470. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  471. }
  472. uint8_t board_get_led_pwm_off_level(void)
  473. {
  474. if (invert_led_level) {
  475. return BOARD_LED_ON_LEVEL;
  476. } else {
  477. return BOARD_LED_OFF_LEVEL;
  478. }
  479. }
  480. uint8_t board_get_led_gpio_off_level(void)
  481. {
  482. if (invert_led_level) {
  483. return BOARD_LED_ON_LEVEL;
  484. } else {
  485. return BOARD_LED_OFF_LEVEL;
  486. }
  487. }
  488. void board_init_led_pins(void)
  489. {
  490. board_turnoff_rgb_led();
  491. init_led_pins_as_gpio();
  492. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  493. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  494. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  495. }
  496. void board_led_toggle(void)
  497. {
  498. #ifdef BOARD_LED_TOGGLE_RGB
  499. static uint8_t i;
  500. gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, invert_led_level ? ((1 << i) << BOARD_R_GPIO_PIN) : ((7 & ~(1 << i)) << BOARD_R_GPIO_PIN));
  501. i++;
  502. i = i % 3;
  503. #else
  504. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  505. #endif
  506. }
  507. void board_led_write(uint8_t state)
  508. {
  509. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  510. }
  511. void board_init_cam_pins(void)
  512. {
  513. init_cam_pins();
  514. /* enable cam RST pin out with high level */
  515. gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
  516. }
  517. void board_write_cam_rst(uint8_t state)
  518. {
  519. gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
  520. }
  521. void board_init_usb_pins(void)
  522. {
  523. /* set pull-up for USBx OC pins and ID pins */
  524. init_usb_pins();
  525. /* configure USBx ID pins as input function */
  526. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  527. gpio_set_pin_input(BOARD_USB1_ID_PORT, BOARD_USB1_ID_GPIO_INDEX, BOARD_USB1_ID_GPIO_PIN);
  528. /* configure USBx OC Flag pins as input function */
  529. gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
  530. gpio_set_pin_input(BOARD_USB1_OC_PORT, BOARD_USB1_OC_GPIO_INDEX, BOARD_USB1_OC_GPIO_PIN);
  531. }
  532. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  533. {
  534. (void) usb_index;
  535. (void) level;
  536. }
  537. void board_init_pmp(void)
  538. {
  539. uint32_t start_addr;
  540. uint32_t end_addr;
  541. uint32_t length;
  542. pmp_entry_t pmp_entry[16];
  543. uint8_t index = 0;
  544. /* Init noncachable memory */
  545. extern uint32_t __noncacheable_start__[];
  546. extern uint32_t __noncacheable_end__[];
  547. start_addr = (uint32_t) __noncacheable_start__;
  548. end_addr = (uint32_t) __noncacheable_end__;
  549. length = end_addr - start_addr;
  550. if (length > 0) {
  551. /* Ensure the address and the length are power of 2 aligned */
  552. assert((length & (length - 1U)) == 0U);
  553. assert((start_addr & (length - 1U)) == 0U);
  554. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  555. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  556. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  557. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  558. index++;
  559. }
  560. pmp_config(&pmp_entry[0], index);
  561. }
  562. void board_init_clock(void)
  563. {
  564. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  565. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  566. /* Configure the External OSC ramp-up time: ~9ms */
  567. pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
  568. /* Select clock setting preset1 */
  569. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  570. }
  571. /* Add most Clocks to group 0 */
  572. /* not open uart clock in this API, uart should configure pin function before opening clock */
  573. clock_add_to_group(clock_cpu0, 0);
  574. clock_add_to_group(clock_mchtmr0, 0);
  575. clock_add_to_group(clock_axi0, 0);
  576. clock_add_to_group(clock_axi1, 0);
  577. clock_add_to_group(clock_axi2, 0);
  578. clock_add_to_group(clock_ahb, 0);
  579. clock_add_to_group(clock_femc, 0);
  580. clock_add_to_group(clock_xpi0, 0);
  581. clock_add_to_group(clock_xpi1, 0);
  582. clock_add_to_group(clock_gptmr0, 0);
  583. clock_add_to_group(clock_gptmr1, 0);
  584. clock_add_to_group(clock_gptmr2, 0);
  585. clock_add_to_group(clock_gptmr3, 0);
  586. clock_add_to_group(clock_gptmr4, 0);
  587. clock_add_to_group(clock_gptmr5, 0);
  588. clock_add_to_group(clock_gptmr6, 0);
  589. clock_add_to_group(clock_gptmr7, 0);
  590. clock_add_to_group(clock_i2c0, 0);
  591. clock_add_to_group(clock_i2c1, 0);
  592. clock_add_to_group(clock_i2c2, 0);
  593. clock_add_to_group(clock_i2c3, 0);
  594. clock_add_to_group(clock_spi0, 0);
  595. clock_add_to_group(clock_spi1, 0);
  596. clock_add_to_group(clock_spi2, 0);
  597. clock_add_to_group(clock_spi3, 0);
  598. clock_add_to_group(clock_can0, 0);
  599. clock_add_to_group(clock_can1, 0);
  600. clock_add_to_group(clock_can2, 0);
  601. clock_add_to_group(clock_can3, 0);
  602. clock_add_to_group(clock_display, 0);
  603. clock_add_to_group(clock_sdxc0, 0);
  604. clock_add_to_group(clock_sdxc1, 0);
  605. clock_add_to_group(clock_camera0, 0);
  606. clock_add_to_group(clock_camera1, 0);
  607. clock_add_to_group(clock_ptpc, 0);
  608. clock_add_to_group(clock_ref0, 0);
  609. clock_add_to_group(clock_ref1, 0);
  610. clock_add_to_group(clock_watchdog0, 0);
  611. clock_add_to_group(clock_eth0, 0);
  612. clock_add_to_group(clock_eth1, 0);
  613. clock_add_to_group(clock_sdp, 0);
  614. clock_add_to_group(clock_xdma, 0);
  615. clock_add_to_group(clock_ram0, 0);
  616. clock_add_to_group(clock_ram1, 0);
  617. clock_add_to_group(clock_usb0, 0);
  618. clock_add_to_group(clock_usb1, 0);
  619. clock_add_to_group(clock_jpeg, 0);
  620. clock_add_to_group(clock_pdma, 0);
  621. clock_add_to_group(clock_kman, 0);
  622. clock_add_to_group(clock_gpio, 0);
  623. clock_add_to_group(clock_mbx0, 0);
  624. clock_add_to_group(clock_hdma, 0);
  625. clock_add_to_group(clock_rng, 0);
  626. clock_add_to_group(clock_mot0, 0);
  627. clock_add_to_group(clock_mot1, 0);
  628. clock_add_to_group(clock_mot2, 0);
  629. clock_add_to_group(clock_mot3, 0);
  630. clock_add_to_group(clock_acmp, 0);
  631. clock_add_to_group(clock_dao, 0);
  632. clock_add_to_group(clock_synt, 0);
  633. clock_add_to_group(clock_lmm0, 0);
  634. clock_add_to_group(clock_lmm1, 0);
  635. clock_add_to_group(clock_pdm, 0);
  636. clock_add_to_group(clock_adc0, 0);
  637. clock_add_to_group(clock_adc1, 0);
  638. clock_add_to_group(clock_adc2, 0);
  639. clock_add_to_group(clock_adc3, 0);
  640. clock_add_to_group(clock_i2s0, 0);
  641. clock_add_to_group(clock_i2s1, 0);
  642. clock_add_to_group(clock_i2s2, 0);
  643. clock_add_to_group(clock_i2s3, 0);
  644. /* Connect Group0 to CPU0 */
  645. clock_connect_group_to_cpu(0, 0);
  646. /* Add the CPU1 clock to Group1 */
  647. clock_add_to_group(clock_mchtmr1, 1);
  648. clock_add_to_group(clock_mbx1, 1);
  649. /* Connect Group1 to CPU1 */
  650. clock_connect_group_to_cpu(1, 1);
  651. /* Bump up DCDC voltage to 1200mv */
  652. pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
  653. pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
  654. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  655. printf("Failed to set pll0_clk0 to %luHz\n", BOARD_CPU_FREQ);
  656. while (1) {
  657. }
  658. }
  659. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  660. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  661. clock_update_core_clock();
  662. clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
  663. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  664. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  665. }
  666. uint32_t board_init_cam_clock(CAM_Type *ptr)
  667. {
  668. uint32_t freq = 0;
  669. if (ptr == HPM_CAM0) {
  670. /* Configure camera clock to 24MHz */
  671. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  672. freq = clock_get_frequency(clock_camera0);
  673. } else if (ptr == HPM_CAM1) {
  674. /* Configure camera clock to 24MHz */
  675. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  676. freq = clock_get_frequency(clock_camera1);
  677. } else {
  678. /* Invalid camera instance */
  679. }
  680. return freq;
  681. }
  682. uint32_t board_init_lcd_clock(void)
  683. {
  684. uint32_t freq;
  685. clock_add_to_group(clock_display, 0);
  686. /* Configure LCDC clock to 59.4MHz */
  687. clock_set_source_divider(clock_display, (clk_src_t) clock_source_pll4_clk0, 10U);
  688. freq = clock_get_frequency(clock_display);
  689. return freq;
  690. }
  691. uint32_t board_init_dao_clock(void)
  692. {
  693. clock_add_to_group(clock_dao, 0);
  694. sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
  695. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
  696. return clock_get_frequency(clock_dao);
  697. }
  698. uint32_t board_init_pdm_clock(void)
  699. {
  700. clock_add_to_group(clock_pdm, 0);
  701. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  702. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  703. return clock_get_frequency(clock_pdm);
  704. }
  705. hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
  706. {
  707. return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq); /* pll3clk */
  708. }
  709. void board_init_i2s_pins(I2S_Type *ptr)
  710. {
  711. init_i2s_pins(ptr);
  712. }
  713. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  714. {
  715. uint32_t freq = 0;
  716. if (ptr == HPM_I2S0) {
  717. clock_add_to_group(clock_i2s0, 0);
  718. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  719. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  720. freq = clock_get_frequency(clock_i2s0);
  721. } else if (ptr == HPM_I2S1) {
  722. clock_add_to_group(clock_i2s1, 0);
  723. sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
  724. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
  725. freq = clock_get_frequency(clock_i2s1);
  726. } else {
  727. ;
  728. }
  729. return freq;
  730. }
  731. /* adjust I2S source clock base on sample rate */
  732. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  733. {
  734. uint32_t freq = 0;
  735. if (ptr == HPM_I2S0) {
  736. clock_add_to_group(clock_i2s0, 0);
  737. if ((sample_rate % 22050) == 0) {
  738. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  739. } else {
  740. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  741. }
  742. clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
  743. freq = clock_get_frequency(clock_i2s0);
  744. } else if (ptr == HPM_I2S1) {
  745. clock_add_to_group(clock_i2s1, 0);
  746. if ((sample_rate % 22050) == 0) {
  747. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  748. } else {
  749. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  750. }
  751. clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
  752. freq = clock_get_frequency(clock_i2s1);
  753. } else {
  754. ;
  755. }
  756. return freq;
  757. }
  758. void board_init_adc12_pins(void)
  759. {
  760. init_adc12_pins();
  761. }
  762. void board_init_adc16_pins(void)
  763. {
  764. init_adc16_pins();
  765. }
  766. uint32_t board_init_adc12_clock(ADC12_Type *ptr, bool clk_src_ahb)
  767. {
  768. uint32_t freq = 0;
  769. if (ptr == HPM_ADC0) {
  770. if (clk_src_ahb) {
  771. /* Configure the ADC clock from AHB (@200MHz by default)*/
  772. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  773. } else {
  774. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  775. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  776. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  777. }
  778. freq = clock_get_frequency(clock_adc0);
  779. } else if (ptr == HPM_ADC1) {
  780. if (clk_src_ahb) {
  781. /* Configure the ADC clock from AHB (@200MHz by default)*/
  782. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  783. } else {
  784. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  785. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  786. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  787. }
  788. freq = clock_get_frequency(clock_adc1);
  789. } else if (ptr == HPM_ADC2) {
  790. if (clk_src_ahb) {
  791. /* Configure the ADC clock from AHB (@200MHz by default)*/
  792. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  793. } else {
  794. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  795. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  796. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  797. }
  798. freq = clock_get_frequency(clock_adc2);
  799. }
  800. return freq;
  801. }
  802. uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
  803. {
  804. uint32_t freq = 0;
  805. if (ptr == HPM_ADC3) {
  806. if (clk_src_ahb) {
  807. /* Configure the ADC clock from AHB (@200MHz by default)*/
  808. clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
  809. } else {
  810. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  811. clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
  812. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  813. }
  814. freq = clock_get_frequency(clock_adc3);
  815. }
  816. return freq;
  817. }
  818. void board_init_can(CAN_Type *ptr)
  819. {
  820. init_can_pins(ptr);
  821. }
  822. uint32_t board_init_can_clock(CAN_Type *ptr)
  823. {
  824. uint32_t freq = 0;
  825. if (ptr == HPM_CAN0) {
  826. /* Set the CAN0 peripheral clock to 80MHz */
  827. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  828. freq = clock_get_frequency(clock_can0);
  829. } else if (ptr == HPM_CAN1) {
  830. /* Set the CAN1 peripheral clock to 80MHz */
  831. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  832. freq = clock_get_frequency(clock_can1);
  833. } else if (ptr == HPM_CAN2) {
  834. /* Set the CAN2 peripheral clock to 80MHz */
  835. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  836. freq = clock_get_frequency(clock_can2);
  837. } else if (ptr == HPM_CAN3) {
  838. /* Set the CAN3 peripheral clock to 80MHz */
  839. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  840. freq = clock_get_frequency(clock_can3);
  841. } else {
  842. /* Invalid CAN instance */
  843. }
  844. return freq;
  845. }
  846. uint32_t board_init_pwm_clock(PWM_Type *ptr)
  847. {
  848. uint32_t freq = 0;
  849. if (ptr == HPM_PWM0) {
  850. clock_add_to_group(clock_mot0, 0);
  851. freq = clock_get_frequency(clock_mot0);
  852. } else if (ptr == HPM_PWM1) {
  853. clock_add_to_group(clock_mot1, 0);
  854. freq = clock_get_frequency(clock_mot1);
  855. } else if (ptr == HPM_PWM2) {
  856. clock_add_to_group(clock_mot2, 0);
  857. freq = clock_get_frequency(clock_mot2);
  858. } else if (ptr == HPM_PWM3) {
  859. clock_add_to_group(clock_mot3, 0);
  860. freq = clock_get_frequency(clock_mot3);
  861. } else {
  862. }
  863. return freq;
  864. }
  865. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  866. {
  867. uint32_t freq = 0;
  868. if (ptr == HPM_GPTMR0) {
  869. clock_add_to_group(clock_gptmr0, 0);
  870. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  871. freq = clock_get_frequency(clock_gptmr0);
  872. }
  873. else if (ptr == HPM_GPTMR1) {
  874. clock_add_to_group(clock_gptmr1, 0);
  875. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  876. freq = clock_get_frequency(clock_gptmr1);
  877. }
  878. else if (ptr == HPM_GPTMR2) {
  879. clock_add_to_group(clock_gptmr2, 0);
  880. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  881. freq = clock_get_frequency(clock_gptmr2);
  882. }
  883. else if (ptr == HPM_GPTMR3) {
  884. clock_add_to_group(clock_gptmr3, 0);
  885. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  886. freq = clock_get_frequency(clock_gptmr3);
  887. }
  888. else if (ptr == HPM_GPTMR4) {
  889. clock_add_to_group(clock_gptmr4, 0);
  890. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
  891. freq = clock_get_frequency(clock_gptmr4);
  892. }
  893. else if (ptr == HPM_GPTMR5) {
  894. clock_add_to_group(clock_gptmr5, 0);
  895. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
  896. freq = clock_get_frequency(clock_gptmr5);
  897. }
  898. else if (ptr == HPM_GPTMR6) {
  899. clock_add_to_group(clock_gptmr6, 0);
  900. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
  901. freq = clock_get_frequency(clock_gptmr6);
  902. }
  903. else if (ptr == HPM_GPTMR7) {
  904. clock_add_to_group(clock_gptmr7, 0);
  905. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
  906. freq = clock_get_frequency(clock_gptmr7);
  907. }
  908. else {
  909. /* Invalid instance */
  910. }
  911. return freq;
  912. }
  913. /*
  914. * this function will be called during startup to initialize external memory for data use
  915. */
  916. void _init_ext_ram(void)
  917. {
  918. uint32_t femc_clk_in_hz;
  919. clock_add_to_group(clock_femc, 0);
  920. board_init_sdram_pins();
  921. femc_clk_in_hz = board_init_femc_clock();
  922. femc_config_t config = {0};
  923. femc_sdram_config_t sdram_config = {0};
  924. femc_default_config(HPM_FEMC, &config);
  925. femc_init(HPM_FEMC, &config);
  926. femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
  927. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  928. sdram_config.prescaler = 0x3;
  929. sdram_config.burst_len_in_byte = 8;
  930. sdram_config.auto_refresh_count_in_one_burst = 1;
  931. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  932. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  933. sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
  934. sdram_config.refresh_recover_in_ns = 60; /* Trc */
  935. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  936. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  937. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  938. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  939. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  940. sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
  941. sdram_config.cs = BOARD_SDRAM_CS;
  942. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  943. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  944. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  945. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  946. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  947. sdram_config.delay_cell_disable = true;
  948. sdram_config.delay_cell_value = 0;
  949. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  950. }
  951. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  952. {
  953. /* This feature is not supported on current board */
  954. }
  955. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  956. {
  957. uint32_t actual_freq = 0;
  958. do {
  959. if (ptr != HPM_SDXC1) {
  960. break;
  961. }
  962. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  963. sdxc_enable_inverse_clock(ptr, false);
  964. sdxc_enable_sd_clock(ptr, false);
  965. /* Configure the clock below 400KHz for the identification state */
  966. if (freq <= 400000UL) {
  967. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  968. }
  969. /* configure the clock to 24MHz for the SDR12/Default speed */
  970. else if (freq <= 26000000UL) {
  971. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  972. }
  973. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  974. else if (freq <= 52000000UL) {
  975. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  976. }
  977. /* Configure the clock to 100MHz for the SDR50 */
  978. else if (freq <= 100000000UL) {
  979. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  980. }
  981. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  982. else if (freq <= 208000000UL) {
  983. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  984. }
  985. /* For other unsupported clock ranges, configure the clock to 24MHz */
  986. else {
  987. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  988. }
  989. if (need_inverse) {
  990. sdxc_enable_inverse_clock(ptr, true);
  991. }
  992. sdxc_enable_sd_clock(ptr, true);
  993. actual_freq = clock_get_frequency(sdxc_clk);
  994. } while (false);
  995. return actual_freq;
  996. }
  997. static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
  998. {
  999. pwm_cmp_config_t cmp_config = {0};
  1000. pwm_output_channel_t ch_config = {0};
  1001. pwm_stop_counter(ptr);
  1002. pwm_get_default_cmp_config(ptr, &cmp_config);
  1003. pwm_get_default_output_channel_config(ptr, &ch_config);
  1004. pwm_set_reload(ptr, 0, 0xF);
  1005. pwm_set_start_count(ptr, 0, 0);
  1006. cmp_config.mode = pwm_cmp_mode_output_compare;
  1007. cmp_config.cmp = 0x10;
  1008. cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
  1009. pwm_config_cmp(ptr, cmp_index, &cmp_config);
  1010. ch_config.cmp_start_index = cmp_index;
  1011. ch_config.cmp_end_index = cmp_index;
  1012. ch_config.invert_output = false;
  1013. pwm_config_output_channel(ptr, pin, &ch_config);
  1014. }
  1015. void board_init_rgb_pwm_pins(void)
  1016. {
  1017. trgm_output_t config = {0};
  1018. board_turnoff_rgb_led();
  1019. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
  1020. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
  1021. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
  1022. init_rgb_pwm_pins();
  1023. config.type = 0;
  1024. config.invert = false;
  1025. /* Red: TRGM1 P1 */
  1026. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
  1027. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
  1028. /* Green: TRGM0 P6 */
  1029. config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
  1030. trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
  1031. /* Blue: TRGM1 P3 */
  1032. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
  1033. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
  1034. }
  1035. void board_disable_output_rgb_led(uint8_t color)
  1036. {
  1037. switch (color) {
  1038. case BOARD_RGB_RED:
  1039. trgm_disable_io_output(HPM_TRGM1, 1 << 1);
  1040. break;
  1041. case BOARD_RGB_GREEN:
  1042. trgm_disable_io_output(HPM_TRGM0, 1 << 6);
  1043. break;
  1044. case BOARD_RGB_BLUE:
  1045. trgm_disable_io_output(HPM_TRGM1, 1 << 3);
  1046. break;
  1047. default:
  1048. while (1) {
  1049. ;
  1050. }
  1051. }
  1052. }
  1053. void board_enable_output_rgb_led(uint8_t color)
  1054. {
  1055. switch (color) {
  1056. case BOARD_RGB_RED:
  1057. trgm_enable_io_output(HPM_TRGM1, 1 << 1);
  1058. break;
  1059. case BOARD_RGB_GREEN:
  1060. trgm_enable_io_output(HPM_TRGM0, 1 << 6);
  1061. break;
  1062. case BOARD_RGB_BLUE:
  1063. trgm_enable_io_output(HPM_TRGM1, 1 << 3);
  1064. break;
  1065. default:
  1066. while (1) {
  1067. ;
  1068. }
  1069. }
  1070. }
  1071. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  1072. {
  1073. /* set clock source */
  1074. if (ptr == HPM_ENET0) {
  1075. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  1076. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  1077. } else if (ptr == HPM_ENET1) {
  1078. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
  1079. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  1080. } else {
  1081. return status_invalid_argument;
  1082. }
  1083. return status_success;
  1084. }
  1085. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  1086. {
  1087. /* Configure Enet clock to output reference clock */
  1088. if (ptr == HPM_ENET1) {
  1089. if (internal) {
  1090. /* set pll output frequency at 1GHz */
  1091. if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
  1092. /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 */
  1093. pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
  1094. /* set eth clock frequency at 50MHz for enet0 */
  1095. clock_set_source_divider(ptr == HPM_ENET0 ? clock_eth0 : clock_eth1, clk_src_pll2_clk1, 5);
  1096. } else {
  1097. return status_fail;
  1098. }
  1099. }
  1100. } else {
  1101. return status_invalid_argument;
  1102. }
  1103. enet_rmii_enable_clock(ptr, internal);
  1104. return status_success;
  1105. }
  1106. hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
  1107. {
  1108. if (ptr == HPM_ENET0) {
  1109. return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
  1110. }
  1111. return status_invalid_argument;
  1112. }
  1113. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  1114. {
  1115. init_enet_pins(ptr);
  1116. if (ptr == HPM_ENET0) {
  1117. gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  1118. } else if (ptr == HPM_ENET1) {
  1119. gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  1120. } else {
  1121. return status_invalid_argument;
  1122. }
  1123. return status_success;
  1124. }
  1125. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  1126. {
  1127. if (ptr == HPM_ENET0) {
  1128. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  1129. board_delay_ms(1);
  1130. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
  1131. } else if (ptr == HPM_ENET1) {
  1132. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  1133. board_delay_ms(1);
  1134. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
  1135. } else {
  1136. return status_invalid_argument;
  1137. }
  1138. return status_success;
  1139. }
  1140. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  1141. {
  1142. (void) ptr;
  1143. return enet_pbl_32;
  1144. }
  1145. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  1146. {
  1147. if (ptr == HPM_ENET0) {
  1148. intc_m_enable_irq(IRQn_ENET0);
  1149. } else if (ptr == HPM_ENET1) {
  1150. intc_m_enable_irq(IRQn_ENET1);
  1151. } else {
  1152. return status_invalid_argument;
  1153. }
  1154. return status_success;
  1155. }
  1156. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  1157. {
  1158. if (ptr == HPM_ENET0) {
  1159. intc_m_disable_irq(IRQn_ENET0);
  1160. } else if (ptr == HPM_ENET1) {
  1161. intc_m_disable_irq(IRQn_ENET1);
  1162. } else {
  1163. return status_invalid_argument;
  1164. }
  1165. return status_success;
  1166. }
  1167. void board_init_enet_pps_pins(ENET_Type *ptr)
  1168. {
  1169. (void) ptr;
  1170. init_enet_pps_pins();
  1171. }
  1172. #if defined(ENET_MULTIPLE_PORT) && ENET_MULTIPLE_PORT
  1173. hpm_stat_t board_init_multiple_enet_pins(void)
  1174. {
  1175. board_init_enet_pins(HPM_ENET0);
  1176. board_init_enet_pins(HPM_ENET1);
  1177. return status_success;
  1178. }
  1179. hpm_stat_t board_init_multiple_enet_clock(void)
  1180. {
  1181. /* Set RGMII clock delay */
  1182. board_init_enet_rgmii_clock_delay(HPM_ENET0);
  1183. /* Set RMII reference clock */
  1184. board_init_enet_rmii_reference_clock(HPM_ENET1, BOARD_ENET_RMII_INT_REF_CLK);
  1185. printf("Enet1 Reference Clock: %s\n", BOARD_ENET_RMII_INT_REF_CLK ? "Internal Clock" : "External Clock");
  1186. return status_success;
  1187. }
  1188. hpm_stat_t board_reset_multiple_enet_phy(void)
  1189. {
  1190. board_reset_enet_phy(HPM_ENET0);
  1191. board_reset_enet_phy(HPM_ENET1);
  1192. return status_success;
  1193. }
  1194. hpm_stat_t board_init_enet_phy(ENET_Type *ptr)
  1195. {
  1196. dp83867_config_t phy_config0;
  1197. dp83848_config_t phy_config1;
  1198. if (ptr == HPM_ENET0) {
  1199. dp83867_reset(HPM_ENET0);
  1200. #if defined(__DISABLE_AUTO_NEGO) && __DISABLE_AUTO_NEGO
  1201. dp83867_set_mdi_crossover_mode(HPM_ENET0, enet_phy_mdi_crossover_manual_mdix);
  1202. #endif
  1203. dp83867_basic_mode_default_config(HPM_ENET0, &phy_config0);
  1204. if (dp83867_basic_mode_init(HPM_ENET0, &phy_config0) == true) {
  1205. return status_success;
  1206. } else {
  1207. printf("Enet0 phy init failed!\n");
  1208. return status_fail;
  1209. }
  1210. } else if (ptr == HPM_ENET1) {
  1211. dp83848_reset(HPM_ENET1);
  1212. dp83848_basic_mode_default_config(HPM_ENET1, &phy_config1);
  1213. if (dp83848_basic_mode_init(HPM_ENET1, &phy_config1) == true) {
  1214. return status_success;
  1215. } else {
  1216. printf("Enet1 phy init failed!\n");
  1217. return status_fail;
  1218. }
  1219. } else {
  1220. return status_invalid_argument;
  1221. }
  1222. }
  1223. ENET_Type *board_get_enet_base(uint8_t idx)
  1224. {
  1225. if (idx == 0) {
  1226. return HPM_ENET0;
  1227. } else {
  1228. return HPM_ENET1;
  1229. }
  1230. }
  1231. uint8_t board_get_enet_phy_itf(uint8_t idx)
  1232. {
  1233. if (idx == 0) {
  1234. return BOARD_ENET_RGMII_PHY_ITF;
  1235. } else {
  1236. return BOARD_ENET_RMII_PHY_ITF;
  1237. }
  1238. }
  1239. void board_get_enet_phy_status(uint8_t idx, void *status)
  1240. {
  1241. if (idx == 0) {
  1242. dp83867_get_phy_status(HPM_ENET0, status);
  1243. } else {
  1244. dp83848_get_phy_status(HPM_ENET1, status);
  1245. }
  1246. }
  1247. #endif
  1248. void board_init_dao_pins(void)
  1249. {
  1250. init_dao_pins();
  1251. }