board.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321
  1. /*
  2. * Copyright (c) 2021-2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_femc_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_sdxc_soc_drv.h"
  21. #include "hpm_pllctl_drv.h"
  22. #include "hpm_pwm_drv.h"
  23. #include "hpm_pcfg_drv.h"
  24. #include "hpm_enet_drv.h"
  25. static board_timer_cb timer_cb;
  26. static bool invert_led_level;
  27. /**
  28. * @brief FLASH configuration option definitions:
  29. * option[0]:
  30. * [31:16] 0xfcf9 - FLASH configuration option tag
  31. * [15:4] 0 - Reserved
  32. * [3:0] option words (exclude option[0])
  33. * option[1]:
  34. * [31:28] Flash probe type
  35. * 0 - SFDP SDR / 1 - SFDP DDR
  36. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  37. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  38. * 6 - OctaBus DDR (SPI -> OPI DDR)
  39. * 8 - Xccela DDR (SPI -> OPI DDR)
  40. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  41. * [27:24] Command Pads after Power-on Reset
  42. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  43. * [23:20] Command Pads after Configuring FLASH
  44. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  45. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  46. * 0 - Not needed
  47. * 1 - QE bit is at bit 6 in Status Register 1
  48. * 2 - QE bit is at bit1 in Status Register 2
  49. * 3 - QE bit is at bit7 in Status Register 2
  50. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  51. * [15:8] Dummy cycles
  52. * 0 - Auto-probed / detected / default value
  53. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  54. * [7:4] Misc.
  55. * 0 - Not used
  56. * 1 - SPI mode
  57. * 2 - Internal loopback
  58. * 3 - External DQS
  59. * [3:0] Frequency option
  60. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  61. *
  62. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  63. * [31:20] Reserved
  64. * [19:16] IO voltage
  65. * 0 - 3V / 1 - 1.8V
  66. * [15:12] Pin group
  67. * 0 - 1st group / 1 - 2nd group
  68. * [11:8] Connection selection
  69. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  70. * [7:0] Drive Strength
  71. * 0 - Default value
  72. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  73. * JESD216)
  74. * [31:16] reserved
  75. * [15:12] Sector Erase Command Option, not required here
  76. * [11:8] Sector Size Option, not required here
  77. * [7:0] Flash Size Option
  78. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  79. */
  80. #if defined(FLASH_XIP) && FLASH_XIP
  81. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  82. #endif
  83. #if defined(FLASH_UF2) && FLASH_UF2
  84. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  85. #endif
  86. void board_init_console(void)
  87. {
  88. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  89. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  90. console_config_t cfg;
  91. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  92. uart rx pin when configuring pin function will cause a wrong data to be received.
  93. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  94. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  95. /* Configure the UART clock to 24MHz */
  96. clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
  97. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  98. cfg.type = BOARD_CONSOLE_TYPE;
  99. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  100. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  101. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  102. if (status_success != console_init(&cfg)) {
  103. /* failed to initialize debug console */
  104. while (1) {
  105. }
  106. }
  107. #else
  108. while (1) {
  109. }
  110. #endif
  111. #endif
  112. }
  113. void board_print_clock_freq(void)
  114. {
  115. printf("==============================\n");
  116. printf(" %s clock summary\n", BOARD_NAME);
  117. printf("==============================\n");
  118. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  119. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  120. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  121. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  122. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  123. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  124. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  125. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  126. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  127. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  128. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  129. printf("display:\t %luHz\n", clock_get_frequency(clock_display));
  130. printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
  131. printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
  132. printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
  133. printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
  134. printf("==============================\n");
  135. }
  136. void board_init_uart(UART_Type *ptr)
  137. {
  138. init_uart_pins(ptr);
  139. board_init_uart_clock(ptr);
  140. }
  141. void board_init_ahb(void)
  142. {
  143. clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
  144. }
  145. void board_print_banner(void)
  146. {
  147. const uint8_t banner[] = {"\n\
  148. ----------------------------------------------------------------------\n\
  149. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  150. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  151. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  152. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  153. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  154. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  155. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  156. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  157. ----------------------------------------------------------------------\n"};
  158. #ifdef SDK_VERSION_STRING
  159. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  160. #endif
  161. printf("%s", banner);
  162. }
  163. static void board_turnoff_rgb_led(void)
  164. {
  165. uint8_t port_pin18_status;
  166. uint8_t port_pin19_status;
  167. uint8_t port_pin20_status;
  168. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  169. HPM_IOC->PAD[IOC_PAD_PB18].FUNC_CTL = IOC_PB18_FUNC_CTL_GPIO_B_18;
  170. HPM_IOC->PAD[IOC_PAD_PB19].FUNC_CTL = IOC_PB19_FUNC_CTL_GPIO_B_19;
  171. HPM_IOC->PAD[IOC_PAD_PB20].FUNC_CTL = IOC_PB20_FUNC_CTL_GPIO_B_20;
  172. HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
  173. HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
  174. HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
  175. port_pin18_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 18);
  176. port_pin19_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 19);
  177. port_pin20_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 20);
  178. invert_led_level = false;
  179. /**
  180. * hpm board evkmini Rev. B led light modification, resulting in two versions of rgb led processing different
  181. *
  182. */
  183. if ((port_pin18_status & port_pin19_status & port_pin20_status) == 0) {
  184. /* Mini Rev B */
  185. invert_led_level = true;
  186. pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(0);
  187. HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
  188. HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
  189. HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
  190. }
  191. }
  192. uint8_t board_get_led_pwm_off_level(void)
  193. {
  194. if (invert_led_level) {
  195. return BOARD_LED_ON_LEVEL;
  196. } else {
  197. return BOARD_LED_OFF_LEVEL;
  198. }
  199. }
  200. uint8_t board_get_led_gpio_off_level(void)
  201. {
  202. if (invert_led_level) {
  203. return BOARD_LED_ON_LEVEL;
  204. } else {
  205. return BOARD_LED_OFF_LEVEL;
  206. }
  207. }
  208. void board_ungate_mchtmr_at_lp_mode(void)
  209. {
  210. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  211. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  212. }
  213. void board_init(void)
  214. {
  215. board_turnoff_rgb_led();
  216. board_init_clock();
  217. board_init_console();
  218. board_init_pmp();
  219. board_init_ahb();
  220. #if BOARD_SHOW_CLOCK
  221. board_print_clock_freq();
  222. #endif
  223. #if BOARD_SHOW_BANNER
  224. board_print_banner();
  225. #endif
  226. }
  227. void board_init_core1(void)
  228. {
  229. board_init_console();
  230. board_init_pmp();
  231. }
  232. void board_init_sdram_pins(void)
  233. {
  234. init_sdram_pins();
  235. }
  236. uint32_t board_init_femc_clock(void)
  237. {
  238. clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
  239. return clock_get_frequency(clock_femc);
  240. }
  241. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
  242. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  243. static void set_reset_pin_level_tm070rdh13(uint8_t level)
  244. {
  245. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, level);
  246. }
  247. static void set_backlight_tm070rdh13(uint16_t percent)
  248. {
  249. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
  250. }
  251. void board_init_lcd_rgb_tm070rdh13(void)
  252. {
  253. init_lcd_pins(BOARD_LCD_BASE);
  254. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  255. gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
  256. hpm_panel_hw_interface_t hw_if = {0};
  257. hpm_panel_t *panel = hpm_panel_find_device_default();
  258. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  259. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
  260. hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
  261. hw_if.set_backlight = set_backlight_tm070rdh13;
  262. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  263. hpm_panel_register_interface(panel, &hw_if);
  264. printf("name: %s, lcdc_clk: %ukhz\n",
  265. hpm_panel_get_name(panel),
  266. lcdc_pixel_clk_khz);
  267. hpm_panel_reset(panel);
  268. hpm_panel_init(panel);
  269. hpm_panel_power_on(panel);
  270. }
  271. #endif
  272. #ifdef CONFIG_HPM_PANEL
  273. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
  274. {
  275. clock_add_to_group(clock_name, 0);
  276. uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
  277. uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
  278. clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
  279. return clock_get_frequency(clock_name) / 1000;
  280. }
  281. void board_lcd_backlight(bool is_on)
  282. {
  283. hpm_panel_t *panel = hpm_panel_find_device_default();
  284. hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
  285. }
  286. void board_init_lcd(void)
  287. {
  288. #ifdef CONFIG_PANEL_RGB_TM070RDH13
  289. board_init_lcd_rgb_tm070rdh13();
  290. #endif
  291. }
  292. void board_panel_para_to_lcdc(lcdc_config_t *config)
  293. {
  294. const hpm_panel_timing_t *timing;
  295. hpm_panel_t *panel = hpm_panel_find_device_default();
  296. timing = hpm_panel_get_timing(panel);
  297. config->resolution_x = timing->hactive;
  298. config->resolution_y = timing->vactive;
  299. config->hsync.pulse_width = timing->hsync_len;
  300. config->hsync.back_porch_pulse = timing->hback_porch;
  301. config->hsync.front_porch_pulse = timing->hfront_porch;
  302. config->vsync.pulse_width = timing->vsync_len;
  303. config->vsync.back_porch_pulse = timing->vback_porch;
  304. config->vsync.front_porch_pulse = timing->vfront_porch;
  305. config->control.invert_hsync = timing->hsync_pol;
  306. config->control.invert_vsync = timing->vsync_pol;
  307. config->control.invert_href = timing->de_pol;
  308. config->control.invert_pixel_data = timing->pixel_data_pol;
  309. config->control.invert_pixel_clock = timing->pixel_clk_pol;
  310. }
  311. #endif
  312. void board_delay_ms(uint32_t ms)
  313. {
  314. clock_cpu_delay_ms(ms);
  315. }
  316. void board_delay_us(uint32_t us)
  317. {
  318. clock_cpu_delay_us(us);
  319. }
  320. void board_timer_isr(void)
  321. {
  322. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  323. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  324. timer_cb();
  325. }
  326. }
  327. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  328. void board_timer_create(uint32_t ms, board_timer_cb cb)
  329. {
  330. uint32_t gptmr_freq;
  331. gptmr_channel_config_t config;
  332. timer_cb = cb;
  333. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  334. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  335. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  336. config.reload = gptmr_freq / 1000 * ms;
  337. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  338. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  339. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  340. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  341. }
  342. void board_i2c_bus_clear(I2C_Type *ptr)
  343. {
  344. init_i2c_pins_as_gpio(ptr);
  345. if (ptr == BOARD_CAP_I2C_BASE) {
  346. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  347. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  348. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  349. printf("CLK is low, please power cycle the board\n");
  350. while (1) {
  351. }
  352. }
  353. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  354. printf("SDA is low, try to issue I2C bus clear\n");
  355. } else {
  356. printf("I2C bus is ready\n");
  357. return;
  358. }
  359. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  360. for (uint8_t i = 0; i < 3; i++) {
  361. for (uint32_t j = 0; j < 9; j++) {
  362. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  363. board_delay_ms(10);
  364. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  365. board_delay_ms(10);
  366. }
  367. board_delay_ms(100);
  368. }
  369. printf("I2C bus is cleared\n");
  370. }
  371. }
  372. void board_init_i2c(I2C_Type *ptr)
  373. {
  374. hpm_stat_t stat;
  375. uint32_t freq;
  376. i2c_config_t config;
  377. board_i2c_bus_clear(ptr);
  378. init_i2c_pins(ptr);
  379. clock_add_to_group(clock_i2c0, 0);
  380. clock_add_to_group(clock_i2c1, 0);
  381. clock_add_to_group(clock_i2c2, 0);
  382. clock_add_to_group(clock_i2c3, 0);
  383. /* Configure the I2C clock to 24MHz */
  384. clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  385. config.i2c_mode = i2c_mode_normal;
  386. config.is_10bit_addressing = false;
  387. freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
  388. stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
  389. if (stat != status_success) {
  390. printf("failed to initialize i2c 0x%x\n", (uint32_t) BOARD_CAP_I2C_BASE);
  391. while (1) {
  392. }
  393. }
  394. }
  395. uint32_t board_init_uart_clock(UART_Type *ptr)
  396. {
  397. uint32_t freq = 0;
  398. clock_name_t clock_name = clock_uart0;
  399. bool need_init_clock = true;
  400. if (ptr == HPM_UART0) {
  401. clock_name = clock_uart0;
  402. } else if (ptr == HPM_UART1) {
  403. clock_name = clock_uart1;
  404. } else if (ptr == HPM_UART2) {
  405. clock_name = clock_uart2;
  406. } else if (ptr == HPM_UART3) {
  407. clock_name = clock_uart3;
  408. } else if (ptr == HPM_UART4) {
  409. clock_name = clock_uart4;
  410. } else if (ptr == HPM_UART5) {
  411. clock_name = clock_uart5;
  412. } else if (ptr == HPM_UART6) {
  413. clock_name = clock_uart6;
  414. } else if (ptr == HPM_UART7) {
  415. clock_name = clock_uart7;
  416. } else if (ptr == HPM_UART8) {
  417. clock_name = clock_uart8;
  418. } else if (ptr == HPM_UART9) {
  419. clock_name = clock_uart9;
  420. } else if (ptr == HPM_UART10) {
  421. clock_name = clock_uart10;
  422. } else if (ptr == HPM_UART11) {
  423. clock_name = clock_uart11;
  424. } else if (ptr == HPM_UART12) {
  425. clock_name = clock_uart12;
  426. } else if (ptr == HPM_UART13) {
  427. clock_name = clock_uart13;
  428. } else if (ptr == HPM_UART14) {
  429. clock_name = clock_uart14;
  430. } else if (ptr == HPM_UART15) {
  431. clock_name = clock_uart15;
  432. } else {
  433. /* Unsupported instance */
  434. need_init_clock = false;
  435. }
  436. if (need_init_clock) {
  437. clock_set_source_divider(clock_name, clk_src_osc24m, 1);
  438. clock_add_to_group(clock_name, 0);
  439. freq = clock_get_frequency(clock_name);
  440. }
  441. return freq;
  442. }
  443. uint32_t board_init_spi_clock(SPI_Type *ptr)
  444. {
  445. uint32_t freq = 0;
  446. if (ptr == HPM_SPI0) {
  447. /* SPI0 clock configure */
  448. clock_add_to_group(clock_spi0, 0);
  449. clock_set_source_divider(clock_spi0, clk_src_pll1_clk1, 5U);
  450. freq = clock_get_frequency(clock_spi0);
  451. }
  452. else if (ptr == HPM_SPI1) {
  453. /* SPI1 clock configure */
  454. clock_add_to_group(clock_spi1, 0);
  455. clock_set_source_divider(clock_spi1, clk_src_pll1_clk1, 5U);
  456. freq = clock_get_frequency(clock_spi1);
  457. }
  458. else if (ptr == HPM_SPI2) {
  459. /* SPI2 clock configure */
  460. clock_add_to_group(clock_spi2, 0);
  461. clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U);
  462. freq = clock_get_frequency(clock_spi2);
  463. }
  464. else if (ptr == HPM_SPI3) {
  465. /* SPI3 clock configure */
  466. clock_add_to_group(clock_spi3, 0);
  467. clock_set_source_divider(clock_spi3, clk_src_pll1_clk1, 5U);
  468. freq = clock_get_frequency(clock_spi3);
  469. }
  470. else {
  471. /* Invalid instance */
  472. }
  473. return freq;
  474. }
  475. void board_init_cap_touch(void)
  476. {
  477. init_cap_pins();
  478. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  479. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  480. board_delay_ms(1);
  481. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
  482. board_delay_ms(10);
  483. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  484. gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  485. board_init_i2c(BOARD_CAP_I2C_BASE);
  486. }
  487. void board_init_gpio_pins(void)
  488. {
  489. init_gpio_pins();
  490. }
  491. void board_init_spi_pins(SPI_Type *ptr)
  492. {
  493. init_spi_pins(ptr);
  494. }
  495. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  496. {
  497. init_spi_pins_with_gpio_as_cs(ptr);
  498. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  499. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  500. }
  501. void board_write_spi_cs(uint32_t pin, uint8_t state)
  502. {
  503. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  504. }
  505. void board_init_led_pins(void)
  506. {
  507. board_turnoff_rgb_led();
  508. init_led_pins_as_gpio();
  509. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  510. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  511. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  512. }
  513. void board_led_toggle(void)
  514. {
  515. static uint8_t i;
  516. if (!invert_led_level) {
  517. /* hpm6750 Mini Rev A led configure*/
  518. gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_G_GPIO_PIN);
  519. } else {
  520. /* hpm6750 Mini Rev B led configure*/
  521. gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, ((1 << i)) << BOARD_G_GPIO_PIN);
  522. }
  523. i++;
  524. i = i % 3;
  525. }
  526. void board_led_write(uint8_t state)
  527. {
  528. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  529. }
  530. void board_init_cam_pins(void)
  531. {
  532. init_cam_pins(HPM_CAM0);
  533. }
  534. void board_init_usb_pins(void)
  535. {
  536. /* set pull-up for USBx OC pin and ID pin */
  537. init_usb_pins(HPM_USB0);
  538. /* configure USBx ID pin as input function */
  539. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  540. /* configure USBx OC Flag pin as input function */
  541. gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
  542. }
  543. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  544. {
  545. (void) usb_index;
  546. (void) level;
  547. }
  548. void board_init_pmp(void)
  549. {
  550. uint32_t start_addr;
  551. uint32_t end_addr;
  552. uint32_t length;
  553. pmp_entry_t pmp_entry[16];
  554. uint8_t index = 0;
  555. /* Init noncachable memory */
  556. extern uint32_t __noncacheable_start__[];
  557. extern uint32_t __noncacheable_end__[];
  558. start_addr = (uint32_t) __noncacheable_start__;
  559. end_addr = (uint32_t) __noncacheable_end__;
  560. length = end_addr - start_addr;
  561. if (length > 0) {
  562. /* Ensure the address and the length are power of 2 aligned */
  563. assert((length & (length - 1U)) == 0U);
  564. assert((start_addr & (length - 1U)) == 0U);
  565. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  566. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  567. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  568. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  569. index++;
  570. }
  571. pmp_config(&pmp_entry[0], index);
  572. }
  573. void board_init_clock(void)
  574. {
  575. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  576. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  577. /* Configure the External OSC ramp-up time: ~9ms */
  578. pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
  579. /* Select clock setting preset1 */
  580. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  581. }
  582. /* Add most Clocks to group 0 */
  583. /* not open uart clock in this API, uart should configure pin function before opening clock */
  584. clock_add_to_group(clock_cpu0, 0);
  585. clock_add_to_group(clock_mchtmr0, 0);
  586. clock_add_to_group(clock_axi0, 0);
  587. clock_add_to_group(clock_axi1, 0);
  588. clock_add_to_group(clock_axi2, 0);
  589. clock_add_to_group(clock_ahb, 0);
  590. clock_add_to_group(clock_femc, 0);
  591. clock_add_to_group(clock_xpi0, 0);
  592. clock_add_to_group(clock_xpi1, 0);
  593. clock_add_to_group(clock_gptmr0, 0);
  594. clock_add_to_group(clock_gptmr1, 0);
  595. clock_add_to_group(clock_gptmr2, 0);
  596. clock_add_to_group(clock_gptmr3, 0);
  597. clock_add_to_group(clock_gptmr4, 0);
  598. clock_add_to_group(clock_gptmr5, 0);
  599. clock_add_to_group(clock_gptmr6, 0);
  600. clock_add_to_group(clock_gptmr7, 0);
  601. clock_add_to_group(clock_i2c0, 0);
  602. clock_add_to_group(clock_i2c1, 0);
  603. clock_add_to_group(clock_i2c2, 0);
  604. clock_add_to_group(clock_i2c3, 0);
  605. clock_add_to_group(clock_spi0, 0);
  606. clock_add_to_group(clock_spi1, 0);
  607. clock_add_to_group(clock_spi2, 0);
  608. clock_add_to_group(clock_spi3, 0);
  609. clock_add_to_group(clock_can0, 0);
  610. clock_add_to_group(clock_can1, 0);
  611. clock_add_to_group(clock_can2, 0);
  612. clock_add_to_group(clock_can3, 0);
  613. clock_add_to_group(clock_display, 0);
  614. clock_add_to_group(clock_sdxc0, 0);
  615. clock_add_to_group(clock_sdxc1, 0);
  616. clock_add_to_group(clock_camera0, 0);
  617. clock_add_to_group(clock_camera1, 0);
  618. clock_add_to_group(clock_ptpc, 0);
  619. clock_add_to_group(clock_ref0, 0);
  620. clock_add_to_group(clock_ref1, 0);
  621. clock_add_to_group(clock_watchdog0, 0);
  622. clock_add_to_group(clock_eth0, 0);
  623. clock_add_to_group(clock_eth1, 0);
  624. clock_add_to_group(clock_sdp, 0);
  625. clock_add_to_group(clock_xdma, 0);
  626. clock_add_to_group(clock_ram0, 0);
  627. clock_add_to_group(clock_ram1, 0);
  628. clock_add_to_group(clock_usb0, 0);
  629. clock_add_to_group(clock_usb1, 0);
  630. clock_add_to_group(clock_jpeg, 0);
  631. clock_add_to_group(clock_pdma, 0);
  632. clock_add_to_group(clock_kman, 0);
  633. clock_add_to_group(clock_gpio, 0);
  634. clock_add_to_group(clock_mbx0, 0);
  635. clock_add_to_group(clock_hdma, 0);
  636. clock_add_to_group(clock_rng, 0);
  637. clock_add_to_group(clock_mot0, 0);
  638. clock_add_to_group(clock_mot1, 0);
  639. clock_add_to_group(clock_mot2, 0);
  640. clock_add_to_group(clock_mot3, 0);
  641. clock_add_to_group(clock_acmp, 0);
  642. clock_add_to_group(clock_dao, 0);
  643. clock_add_to_group(clock_synt, 0);
  644. clock_add_to_group(clock_lmm0, 0);
  645. clock_add_to_group(clock_lmm1, 0);
  646. clock_add_to_group(clock_pdm, 0);
  647. clock_add_to_group(clock_adc0, 0);
  648. clock_add_to_group(clock_adc1, 0);
  649. clock_add_to_group(clock_adc2, 0);
  650. clock_add_to_group(clock_adc3, 0);
  651. clock_add_to_group(clock_i2s0, 0);
  652. clock_add_to_group(clock_i2s1, 0);
  653. clock_add_to_group(clock_i2s2, 0);
  654. clock_add_to_group(clock_i2s3, 0);
  655. /* Connect Group0 to CPU0 */
  656. clock_connect_group_to_cpu(0, 0);
  657. /* Add the CPU1 clock to Group1 */
  658. clock_add_to_group(clock_mchtmr1, 1);
  659. clock_add_to_group(clock_mbx1, 1);
  660. /* Connect Group1 to CPU1 */
  661. clock_connect_group_to_cpu(1, 1);
  662. /* Bump up DCDC voltage to 1200mv */
  663. pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
  664. pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
  665. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  666. printf("Failed to set pll0_clk0 to %luHz\n", BOARD_CPU_FREQ);
  667. while (1) {
  668. }
  669. }
  670. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  671. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  672. clock_update_core_clock();
  673. clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
  674. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  675. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  676. }
  677. uint32_t board_init_cam_clock(CAM_Type *ptr)
  678. {
  679. uint32_t freq = 0;
  680. if (ptr == HPM_CAM0) {
  681. /* Configure camera clock to 24MHz */
  682. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  683. freq = clock_get_frequency(clock_camera0);
  684. } else if (ptr == HPM_CAM1) {
  685. /* Configure camera clock to 24MHz */
  686. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  687. freq = clock_get_frequency(clock_camera1);
  688. } else {
  689. /* Invalid camera instance */
  690. }
  691. return freq;
  692. }
  693. uint32_t board_init_lcd_clock(void)
  694. {
  695. uint32_t freq;
  696. clock_add_to_group(clock_display, 0);
  697. /* Configure LCDC clock to 29.7MHz */
  698. clock_set_source_divider(clock_display, clk_src_pll4_clk0, 20U);
  699. freq = clock_get_frequency(clock_display);
  700. return freq;
  701. }
  702. uint32_t board_init_dao_clock(void)
  703. {
  704. clock_add_to_group(clock_dao, 0);
  705. sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
  706. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
  707. return clock_get_frequency(clock_dao);
  708. }
  709. uint32_t board_init_pdm_clock(void)
  710. {
  711. clock_add_to_group(clock_pdm, 0);
  712. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  713. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  714. return clock_get_frequency(clock_pdm);
  715. }
  716. hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
  717. {
  718. return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq); /* pll3clk */
  719. }
  720. void board_init_i2s_pins(I2S_Type *ptr)
  721. {
  722. init_i2s_pins(ptr);
  723. }
  724. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  725. {
  726. uint32_t freq = 0;
  727. if (ptr == HPM_I2S0) {
  728. clock_add_to_group(clock_i2s0, 0);
  729. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  730. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  731. freq = clock_get_frequency(clock_i2s0);
  732. } else if (ptr == HPM_I2S1) {
  733. clock_add_to_group(clock_i2s1, 0);
  734. sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
  735. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
  736. freq = clock_get_frequency(clock_i2s1);
  737. } else {
  738. ;
  739. }
  740. return freq;
  741. }
  742. /* adjust I2S source clock base on sample rate */
  743. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  744. {
  745. uint32_t freq = 0;
  746. if (ptr == HPM_I2S0) {
  747. clock_add_to_group(clock_i2s0, 0);
  748. if ((sample_rate % 22050) == 0) {
  749. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  750. } else {
  751. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  752. }
  753. clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
  754. freq = clock_get_frequency(clock_i2s0);
  755. } else if (ptr == HPM_I2S1) {
  756. clock_add_to_group(clock_i2s1, 0);
  757. if ((sample_rate % 22050) == 0) {
  758. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  759. } else {
  760. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  761. }
  762. clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
  763. freq = clock_get_frequency(clock_i2s1);
  764. } else {
  765. ;
  766. }
  767. return freq;
  768. }
  769. void board_init_adc12_pins(void)
  770. {
  771. init_adc12_pins();
  772. }
  773. void board_init_adc16_pins(void)
  774. {
  775. init_adc16_pins();
  776. }
  777. uint32_t board_init_adc12_clock(ADC12_Type *ptr, bool clk_src_ahb)
  778. {
  779. uint32_t freq = 0;
  780. if (ptr == HPM_ADC0) {
  781. if (clk_src_ahb) {
  782. /* Configure the ADC clock from AHB (@200MHz by default)*/
  783. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  784. } else {
  785. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  786. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  787. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  788. }
  789. freq = clock_get_frequency(clock_adc0);
  790. } else if (ptr == HPM_ADC1) {
  791. if (clk_src_ahb) {
  792. /* Configure the ADC clock from AHB (@200MHz by default)*/
  793. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  794. } else {
  795. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  796. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  797. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  798. }
  799. freq = clock_get_frequency(clock_adc1);
  800. } else if (ptr == HPM_ADC2) {
  801. if (clk_src_ahb) {
  802. /* Configure the ADC clock from AHB (@200MHz by default)*/
  803. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  804. } else {
  805. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  806. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  807. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  808. }
  809. freq = clock_get_frequency(clock_adc2);
  810. }
  811. return freq;
  812. }
  813. uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
  814. {
  815. uint32_t freq = 0;
  816. if (ptr == HPM_ADC3) {
  817. if (clk_src_ahb) {
  818. /* Configure the ADC clock from AHB (@200MHz by default)*/
  819. clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
  820. } else {
  821. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  822. clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
  823. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  824. }
  825. freq = clock_get_frequency(clock_adc3);
  826. }
  827. return freq;
  828. }
  829. void board_init_can(CAN_Type *ptr)
  830. {
  831. init_can_pins(ptr);
  832. }
  833. uint32_t board_init_can_clock(CAN_Type *ptr)
  834. {
  835. uint32_t freq = 0;
  836. if (ptr == HPM_CAN0) {
  837. /* Set the CAN0 peripheral clock to 80MHz */
  838. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  839. freq = clock_get_frequency(clock_can0);
  840. } else if (ptr == HPM_CAN1) {
  841. /* Set the CAN1 peripheral clock to 80MHz */
  842. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  843. freq = clock_get_frequency(clock_can1);
  844. } else if (ptr == HPM_CAN2) {
  845. /* Set the CAN2 peripheral clock to 80MHz */
  846. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  847. freq = clock_get_frequency(clock_can2);
  848. } else if (ptr == HPM_CAN3) {
  849. /* Set the CAN3 peripheral clock to 80MHz */
  850. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  851. freq = clock_get_frequency(clock_can3);
  852. } else {
  853. /* Invalid CAN instance */
  854. }
  855. return freq;
  856. }
  857. uint32_t board_init_pwm_clock(PWM_Type *ptr)
  858. {
  859. uint32_t freq = 0;
  860. if (ptr == HPM_PWM0) {
  861. clock_add_to_group(clock_mot0, 0);
  862. freq = clock_get_frequency(clock_mot0);
  863. } else if (ptr == HPM_PWM1) {
  864. clock_add_to_group(clock_mot1, 0);
  865. freq = clock_get_frequency(clock_mot1);
  866. } else if (ptr == HPM_PWM2) {
  867. clock_add_to_group(clock_mot2, 0);
  868. freq = clock_get_frequency(clock_mot2);
  869. } else if (ptr == HPM_PWM3) {
  870. clock_add_to_group(clock_mot3, 0);
  871. freq = clock_get_frequency(clock_mot3);
  872. } else {
  873. }
  874. return freq;
  875. }
  876. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  877. {
  878. uint32_t freq = 0;
  879. if (ptr == HPM_GPTMR0) {
  880. clock_add_to_group(clock_gptmr0, 0);
  881. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  882. freq = clock_get_frequency(clock_gptmr0);
  883. }
  884. else if (ptr == HPM_GPTMR1) {
  885. clock_add_to_group(clock_gptmr1, 0);
  886. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  887. freq = clock_get_frequency(clock_gptmr1);
  888. }
  889. else if (ptr == HPM_GPTMR2) {
  890. clock_add_to_group(clock_gptmr2, 0);
  891. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  892. freq = clock_get_frequency(clock_gptmr2);
  893. }
  894. else if (ptr == HPM_GPTMR3) {
  895. clock_add_to_group(clock_gptmr3, 0);
  896. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  897. freq = clock_get_frequency(clock_gptmr3);
  898. }
  899. else if (ptr == HPM_GPTMR4) {
  900. clock_add_to_group(clock_gptmr4, 0);
  901. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
  902. freq = clock_get_frequency(clock_gptmr4);
  903. }
  904. else if (ptr == HPM_GPTMR5) {
  905. clock_add_to_group(clock_gptmr5, 0);
  906. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
  907. freq = clock_get_frequency(clock_gptmr5);
  908. }
  909. else if (ptr == HPM_GPTMR6) {
  910. clock_add_to_group(clock_gptmr6, 0);
  911. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
  912. freq = clock_get_frequency(clock_gptmr6);
  913. }
  914. else if (ptr == HPM_GPTMR7) {
  915. clock_add_to_group(clock_gptmr7, 0);
  916. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
  917. freq = clock_get_frequency(clock_gptmr7);
  918. }
  919. else {
  920. /* Invalid instance */
  921. }
  922. return freq;
  923. }
  924. /*
  925. * this function will be called during startup to initialize external memory for data use
  926. */
  927. void _init_ext_ram(void)
  928. {
  929. uint32_t femc_clk_in_hz;
  930. clock_add_to_group(clock_femc, 0);
  931. board_init_sdram_pins();
  932. femc_clk_in_hz = board_init_femc_clock();
  933. femc_config_t config = {0};
  934. femc_sdram_config_t sdram_config = {0};
  935. femc_default_config(HPM_FEMC, &config);
  936. femc_init(HPM_FEMC, &config);
  937. femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
  938. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  939. sdram_config.prescaler = 0x3;
  940. sdram_config.burst_len_in_byte = 8;
  941. sdram_config.auto_refresh_count_in_one_burst = 1;
  942. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  943. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  944. sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
  945. sdram_config.refresh_recover_in_ns = 60; /* Trc */
  946. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  947. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  948. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  949. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  950. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  951. sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
  952. sdram_config.cs = BOARD_SDRAM_CS;
  953. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  954. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  955. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  956. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  957. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  958. sdram_config.delay_cell_disable = true;
  959. sdram_config.delay_cell_value = 0;
  960. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  961. }
  962. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  963. {
  964. /* This feature is not supported by current board*/
  965. }
  966. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  967. {
  968. uint32_t actual_freq = 0;
  969. do {
  970. if (ptr != HPM_SDXC1) {
  971. break;
  972. }
  973. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  974. sdxc_enable_inverse_clock(ptr, false);
  975. sdxc_enable_sd_clock(ptr, false);
  976. /* Configure the clock below 400KHz for the identification state */
  977. if (freq <= 400000UL) {
  978. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  979. }
  980. /* configure the clock to 24MHz for the SDR12/Default speed */
  981. else if (freq <= 26000000UL) {
  982. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  983. }
  984. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  985. else if (freq <= 52000000UL) {
  986. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  987. }
  988. /* Configure the clock to 100MHz for the SDR50 */
  989. else if (freq <= 100000000UL) {
  990. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  991. }
  992. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  993. else if (freq <= 208000000UL) {
  994. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  995. }
  996. /* For other unsupported clock ranges, configure the clock to 24MHz */
  997. else {
  998. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  999. }
  1000. if (need_inverse) {
  1001. sdxc_enable_inverse_clock(ptr, true);
  1002. }
  1003. sdxc_enable_sd_clock(ptr, true);
  1004. actual_freq = clock_get_frequency(sdxc_clk);
  1005. } while (false);
  1006. return actual_freq;
  1007. }
  1008. static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
  1009. {
  1010. pwm_cmp_config_t cmp_config = {0};
  1011. pwm_output_channel_t ch_config = {0};
  1012. pwm_stop_counter(ptr);
  1013. pwm_get_default_cmp_config(ptr, &cmp_config);
  1014. pwm_get_default_output_channel_config(ptr, &ch_config);
  1015. pwm_set_reload(ptr, 0, 0xF);
  1016. pwm_set_start_count(ptr, 0, 0);
  1017. cmp_config.mode = pwm_cmp_mode_output_compare;
  1018. cmp_config.cmp = 0x10;
  1019. cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
  1020. pwm_config_cmp(ptr, cmp_index, &cmp_config);
  1021. ch_config.cmp_start_index = cmp_index;
  1022. ch_config.cmp_end_index = cmp_index;
  1023. ch_config.invert_output = !board_get_led_pwm_off_level();
  1024. pwm_config_output_channel(ptr, pin, &ch_config);
  1025. }
  1026. void board_init_rgb_pwm_pins(void)
  1027. {
  1028. board_turnoff_rgb_led();
  1029. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
  1030. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
  1031. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
  1032. init_led_pins_as_pwm();
  1033. }
  1034. void board_disable_output_rgb_led(uint8_t color)
  1035. {
  1036. switch (color) {
  1037. case BOARD_RGB_RED:
  1038. pwm_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  1039. break;
  1040. case BOARD_RGB_GREEN:
  1041. pwm_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  1042. break;
  1043. case BOARD_RGB_BLUE:
  1044. pwm_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  1045. break;
  1046. default:
  1047. while (1) {
  1048. ;
  1049. }
  1050. }
  1051. }
  1052. void board_enable_output_rgb_led(uint8_t color)
  1053. {
  1054. switch (color) {
  1055. case BOARD_RGB_RED:
  1056. pwm_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  1057. break;
  1058. case BOARD_RGB_GREEN:
  1059. pwm_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  1060. break;
  1061. case BOARD_RGB_BLUE:
  1062. pwm_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  1063. break;
  1064. default:
  1065. while (1) {
  1066. ;
  1067. }
  1068. }
  1069. }
  1070. void board_init_beep_pwm_pins(void)
  1071. {
  1072. init_beep_pwm_pins();
  1073. }
  1074. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  1075. {
  1076. if (ptr == HPM_ENET0) {
  1077. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  1078. } else if (ptr == HPM_ENET1) {
  1079. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  1080. } else {
  1081. return status_invalid_argument;
  1082. }
  1083. return status_success;
  1084. }
  1085. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  1086. {
  1087. /* Configure Enet clock to output reference clock */
  1088. if (ptr == HPM_ENET0 || ptr == HPM_ENET1) {
  1089. if (internal) {
  1090. /* set pll output frequency at 1GHz */
  1091. if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
  1092. /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 */
  1093. pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
  1094. /* set eth clock frequency at 50MHz for enet0 */
  1095. clock_set_source_divider(ptr == HPM_ENET0 ? clock_eth0 : clock_eth1, clk_src_pll2_clk1, 5);
  1096. } else {
  1097. return status_fail;
  1098. }
  1099. }
  1100. } else {
  1101. return status_invalid_argument;
  1102. }
  1103. enet_rmii_enable_clock(ptr, internal);
  1104. return status_success;
  1105. }
  1106. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  1107. {
  1108. init_enet_pins(ptr);
  1109. if (ptr == HPM_ENET1) {
  1110. gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  1111. } else {
  1112. return status_invalid_argument;
  1113. }
  1114. return status_success;
  1115. }
  1116. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  1117. {
  1118. if (ptr == HPM_ENET1) {
  1119. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  1120. board_delay_ms(1);
  1121. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
  1122. } else {
  1123. return status_invalid_argument;
  1124. }
  1125. return status_success;
  1126. }
  1127. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  1128. {
  1129. (void) ptr;
  1130. return enet_pbl_32;
  1131. }
  1132. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  1133. {
  1134. (void) ptr;
  1135. return status_success;
  1136. }
  1137. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  1138. {
  1139. (void) ptr;
  1140. return status_success;
  1141. }
  1142. void board_init_enet_pps_pins(ENET_Type *ptr)
  1143. {
  1144. (void) ptr;
  1145. init_enet_pps_pins();
  1146. }
  1147. void board_init_dao_pins(void)
  1148. {
  1149. init_dao_pins();
  1150. }