drv_spi.c 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-01-13 Lyons first version
  9. * 2021-06-23 RiceChen refactor
  10. */
  11. #include <rthw.h>
  12. #include <rtdevice.h>
  13. #ifdef BSP_USING_SPI
  14. #define LOG_TAG "drv.spi"
  15. #include <drv_log.h>
  16. #include "fsl_iomuxc.h"
  17. #include "drv_spi.h"
  18. static struct imx6ull_spi_config spi_config[] =
  19. {
  20. #ifdef BSP_USING_SPI1
  21. SPI1_BUS_CONFIG,
  22. #endif
  23. #ifdef BSP_USING_SPI2
  24. SPI2_BUS_CONFIG,
  25. #endif
  26. #ifdef BSP_USING_SPI3
  27. SPI3_BUS_CONFIG,
  28. #endif
  29. #ifdef BSP_USING_SPI4
  30. SPI4_BUS_CONFIG,
  31. #endif
  32. };
  33. static struct imx6ull_spi_bus spi_obj[sizeof(spi_config) / sizeof(spi_config[0])];
  34. static rt_err_t imx6ull_ecspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
  35. {
  36. struct imx6ull_spi_bus *spi_dev = RT_NULL;
  37. ecspi_master_config_t config;
  38. rt_uint32_t scr_clock = 0;
  39. spi_dev = (struct imx6ull_spi_bus *)(device->bus->parent.user_data);
  40. ECSPI_MasterGetDefaultConfig(&config);
  41. config.samplePeriod = 10;
  42. config.txFifoThreshold = 0;
  43. config.channelConfig.dataLineInactiveState = kECSPI_DataLineInactiveStateHigh;
  44. if (cfg->data_width == 8)
  45. {
  46. config.burstLength = 8;
  47. }
  48. else
  49. {
  50. return -RT_EINVAL;
  51. }
  52. if (cfg->mode & RT_SPI_SLAVE)
  53. {
  54. config.channelConfig.channelMode = kECSPI_Slave;
  55. }
  56. else
  57. {
  58. config.channelConfig.channelMode = kECSPI_Master;
  59. }
  60. if(cfg->mode & RT_SPI_CPHA)
  61. {
  62. config.channelConfig.phase = kECSPI_ClockPhaseSecondEdge;
  63. }
  64. else
  65. {
  66. config.channelConfig.phase = kECSPI_ClockPhaseFirstEdge;
  67. }
  68. if(cfg->mode & RT_SPI_CPOL)
  69. {
  70. config.channelConfig.polarity = kECSPI_PolarityActiveLow;
  71. }
  72. else
  73. {
  74. config.channelConfig.polarity = kECSPI_PolarityActiveHigh;
  75. }
  76. config.baudRate_Bps = cfg->max_hz;
  77. scr_clock = (CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 8U);
  78. ECSPI_MasterInit(spi_dev->config->ECSPI, &config, scr_clock);
  79. return RT_EOK;
  80. }
  81. static rt_ssize_t imx6ull_ecspi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
  82. {
  83. struct imx6ull_spi_bus *spi_dev = RT_NULL;
  84. struct imx6ull_spi_cs *cs = RT_NULL;
  85. const rt_uint8_t *send_ptr = RT_NULL;
  86. rt_uint8_t *recv_ptr = RT_NULL;
  87. rt_uint16_t size = 0;
  88. rt_uint8_t temp_data;
  89. spi_dev = (struct imx6ull_spi_bus *)(device->bus->parent.user_data);
  90. cs = (struct imx6ull_spi_cs *)device->parent.user_data;
  91. recv_ptr = (rt_uint8_t *)message->recv_buf;
  92. send_ptr = (rt_uint8_t *)message->send_buf;
  93. size = message->length;
  94. if(message->cs_take && cs)
  95. {
  96. rt_pin_write(cs->pin, PIN_LOW);
  97. }
  98. ECSPI_SetChannelSelect(spi_dev->config->ECSPI, kECSPI_Channel0);
  99. while (size--)
  100. {
  101. temp_data = (send_ptr != RT_NULL) ? (*send_ptr++) : 0xff;
  102. while (!(spi_dev->config->ECSPI->STATREG & ECSPI_STATREG_TE_MASK));
  103. ECSPI_WriteData(spi_dev->config->ECSPI, temp_data);
  104. while (!(spi_dev->config->ECSPI->STATREG & ECSPI_STATREG_RR_MASK));
  105. temp_data = ECSPI_ReadData(spi_dev->config->ECSPI);
  106. if (recv_ptr != RT_NULL)
  107. {
  108. *recv_ptr++ = temp_data;
  109. }
  110. }
  111. if(message->cs_release && cs)
  112. {
  113. rt_pin_write(cs->pin, PIN_HIGH);
  114. }
  115. return message->length;
  116. }
  117. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_uint32_t pin)
  118. {
  119. rt_err_t ret = RT_EOK;
  120. struct rt_spi_device *spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  121. RT_ASSERT(spi_device != RT_NULL);
  122. struct imx6ull_spi_cs *cs_pin = (struct imx6ull_spi_cs *)rt_malloc(sizeof(struct imx6ull_spi_cs));
  123. RT_ASSERT(cs_pin != RT_NULL);
  124. cs_pin->pin = pin;
  125. rt_pin_mode(pin, PIN_MODE_OUTPUT);
  126. rt_pin_write(pin, PIN_HIGH);
  127. ret = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  128. return ret;
  129. }
  130. static rt_err_t imx6ull_spi_gpio_init(struct imx6ull_spi_bus *bus)
  131. {
  132. struct imx6ull_spi_bus *spi_bus = RT_NULL;
  133. spi_bus = (struct imx6ull_spi_bus *)bus;
  134. imx6ull_gpio_init(&spi_bus->config->clk_gpio);
  135. imx6ull_gpio_init(&spi_bus->config->miso_gpio);
  136. imx6ull_gpio_init(&spi_bus->config->mosi_gpio);
  137. return RT_EOK;
  138. }
  139. #ifdef RT_USING_DEVICE_OPS
  140. static const struct rt_spi_ops imxrt_spi_ops =
  141. {
  142. .configure = imx6ull_ecspi_configure,
  143. .xfer = imx6ull_ecspi_xfer,
  144. };
  145. #endif
  146. int rt_hw_spi_init(void)
  147. {
  148. rt_uint16_t obj_num = 0;
  149. obj_num = sizeof(spi_config) / sizeof(spi_config[0]);
  150. for(int i = 0; i < obj_num; i++)
  151. {
  152. spi_obj[i].config = &spi_config[i];
  153. spi_obj[i].config->ECSPI = (ECSPI_Type *)imx6ull_get_periph_vaddr((rt_uint32_t)(spi_obj[i].config->ECSPI));
  154. imx6ull_spi_gpio_init(&spi_obj[i]);
  155. CLOCK_EnableClock(spi_obj[i].config->clk_ip_name);
  156. spi_obj[i].parent.parent.user_data = &spi_obj[i];
  157. rt_spi_bus_register(&spi_obj[i].parent, spi_obj[i].config->name, &imxrt_spi_ops);
  158. }
  159. return RT_EOK;
  160. }
  161. INIT_DEVICE_EXPORT(rt_hw_spi_init);
  162. #endif