mmu.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-01-30 lizhirui first version
  9. * 2022-12-13 WangXiaoyao Port to new mm
  10. * 2023-10-12 Shell Add permission control API
  11. */
  12. #include <rtthread.h>
  13. #include <stddef.h>
  14. #include <stdint.h>
  15. #define DBG_TAG "hw.mmu"
  16. #define DBG_LVL DBG_WARNING
  17. #include <rtdbg.h>
  18. #include <board.h>
  19. #include <cache.h>
  20. #include <mm_aspace.h>
  21. #include <mm_page.h>
  22. #include <mmu.h>
  23. #include <riscv_mmu.h>
  24. #include <tlb.h>
  25. #ifdef RT_USING_SMART
  26. #include <board.h>
  27. #include <ioremap.h>
  28. #include <lwp_user_mm.h>
  29. #endif
  30. #ifndef RT_USING_SMART
  31. #define USER_VADDR_START 0
  32. #endif
  33. static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr, size_t size);
  34. static void *current_mmu_table = RT_NULL;
  35. volatile __attribute__((aligned(4 * 1024)))
  36. rt_ubase_t MMUTable[__SIZE(VPN2_BIT)];
  37. #ifdef ARCH_USING_ASID
  38. static rt_uint8_t ASID_BITS = 0;
  39. static rt_uint32_t next_asid;
  40. static rt_uint64_t global_asid_generation;
  41. #define ASID_MASK ((1 << ASID_BITS) - 1)
  42. #define ASID_FIRST_GENERATION (1 << ASID_BITS)
  43. #define MAX_ASID ASID_FIRST_GENERATION
  44. static void _asid_init()
  45. {
  46. unsigned int satp_reg = read_csr(satp);
  47. satp_reg |= (((rt_uint64_t)0xffff) << PPN_BITS);
  48. write_csr(satp, satp_reg);
  49. unsigned short valid_asid_bit = ((read_csr(satp) >> PPN_BITS) & 0xffff);
  50. // The maximal value of ASIDLEN, is 9 for Sv32 or 16 for Sv39, Sv48, and Sv57
  51. for (unsigned i = 0; i < 16; i++)
  52. {
  53. if (!(valid_asid_bit & 0x1))
  54. {
  55. break;
  56. }
  57. valid_asid_bit >>= 1;
  58. ASID_BITS++;
  59. }
  60. global_asid_generation = ASID_FIRST_GENERATION;
  61. next_asid = 1;
  62. }
  63. static rt_uint64_t _asid_check_switch(rt_aspace_t aspace)
  64. {
  65. if ((aspace->asid ^ global_asid_generation) >> ASID_BITS) // not same generation
  66. {
  67. if (next_asid != MAX_ASID)
  68. {
  69. aspace->asid = global_asid_generation | next_asid;
  70. next_asid++;
  71. }
  72. else
  73. {
  74. // scroll to next generation
  75. global_asid_generation += ASID_FIRST_GENERATION;
  76. next_asid = 1;
  77. rt_hw_tlb_invalidate_all_local();
  78. aspace->asid = global_asid_generation | next_asid;
  79. next_asid++;
  80. }
  81. }
  82. return aspace->asid & ASID_MASK;
  83. }
  84. void rt_hw_aspace_switch(rt_aspace_t aspace)
  85. {
  86. uintptr_t page_table = (uintptr_t)rt_kmem_v2p(aspace->page_table);
  87. current_mmu_table = aspace->page_table;
  88. rt_uint64_t asid = _asid_check_switch(aspace);
  89. write_csr(satp, (((size_t)SATP_MODE) << SATP_MODE_OFFSET) |
  90. (asid << PPN_BITS) |
  91. ((rt_ubase_t)page_table >> PAGE_OFFSET_BIT));
  92. asm volatile("sfence.vma x0,%0"::"r"(asid):"memory");
  93. }
  94. #define ASID_INIT() _asid_init()
  95. #else /* ARCH_USING_ASID */
  96. #define ASID_INIT()
  97. void rt_hw_aspace_switch(rt_aspace_t aspace)
  98. {
  99. uintptr_t page_table = (uintptr_t)rt_kmem_v2p(aspace->page_table);
  100. current_mmu_table = aspace->page_table;
  101. write_csr(satp, (((size_t)SATP_MODE) << SATP_MODE_OFFSET) |
  102. ((rt_ubase_t)page_table >> PAGE_OFFSET_BIT));
  103. rt_hw_tlb_invalidate_all_local();
  104. }
  105. #endif /* ARCH_USING_ASID */
  106. void *rt_hw_mmu_tbl_get()
  107. {
  108. return current_mmu_table;
  109. }
  110. static int _map_one_page(struct rt_aspace *aspace, void *va, void *pa,
  111. size_t attr)
  112. {
  113. rt_size_t l1_off, l2_off, l3_off;
  114. rt_size_t *mmu_l1, *mmu_l2, *mmu_l3;
  115. l1_off = GET_L1((size_t)va);
  116. l2_off = GET_L2((size_t)va);
  117. l3_off = GET_L3((size_t)va);
  118. mmu_l1 = ((rt_size_t *)aspace->page_table) + l1_off;
  119. if (PTE_USED(*mmu_l1))
  120. {
  121. mmu_l2 = (rt_size_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
  122. }
  123. else
  124. {
  125. mmu_l2 = (rt_size_t *)rt_pages_alloc(0);
  126. if (mmu_l2)
  127. {
  128. rt_memset(mmu_l2, 0, PAGE_SIZE);
  129. rt_hw_cpu_dcache_clean(mmu_l2, PAGE_SIZE);
  130. *mmu_l1 = COMBINEPTE((rt_size_t)VPN_TO_PPN(mmu_l2, PV_OFFSET),
  131. PAGE_DEFAULT_ATTR_NEXT);
  132. rt_hw_cpu_dcache_clean(mmu_l1, sizeof(*mmu_l1));
  133. }
  134. else
  135. {
  136. return -1;
  137. }
  138. }
  139. if (PTE_USED(*(mmu_l2 + l2_off)))
  140. {
  141. RT_ASSERT(!PAGE_IS_LEAF(*(mmu_l2 + l2_off)));
  142. mmu_l3 =
  143. (rt_size_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)), PV_OFFSET);
  144. }
  145. else
  146. {
  147. mmu_l3 = (rt_size_t *)rt_pages_alloc(0);
  148. if (mmu_l3)
  149. {
  150. rt_memset(mmu_l3, 0, PAGE_SIZE);
  151. rt_hw_cpu_dcache_clean(mmu_l3, PAGE_SIZE);
  152. *(mmu_l2 + l2_off) =
  153. COMBINEPTE((rt_size_t)VPN_TO_PPN(mmu_l3, PV_OFFSET),
  154. PAGE_DEFAULT_ATTR_NEXT);
  155. rt_hw_cpu_dcache_clean(mmu_l2, sizeof(*mmu_l2));
  156. // declares a reference to parent page table
  157. rt_page_ref_inc((void *)mmu_l2, 0);
  158. }
  159. else
  160. {
  161. return -1;
  162. }
  163. }
  164. RT_ASSERT(!PTE_USED(*(mmu_l3 + l3_off)));
  165. // declares a reference to parent page table
  166. rt_page_ref_inc((void *)mmu_l3, 0);
  167. *(mmu_l3 + l3_off) = COMBINEPTE((rt_size_t)pa, attr);
  168. rt_hw_cpu_dcache_clean(mmu_l3 + l3_off, sizeof(*(mmu_l3 + l3_off)));
  169. return 0;
  170. }
  171. /** rt_hw_mmu_map will never override existed page table entry */
  172. void *rt_hw_mmu_map(struct rt_aspace *aspace, void *v_addr, void *p_addr,
  173. size_t size, size_t attr)
  174. {
  175. int ret = -1;
  176. void *unmap_va = v_addr;
  177. size_t npages = size >> ARCH_PAGE_SHIFT;
  178. // TODO trying with HUGEPAGE here
  179. while (npages--)
  180. {
  181. MM_PGTBL_LOCK(aspace);
  182. ret = _map_one_page(aspace, v_addr, p_addr, attr);
  183. MM_PGTBL_UNLOCK(aspace);
  184. if (ret != 0)
  185. {
  186. /* error, undo map */
  187. while (unmap_va != v_addr)
  188. {
  189. MM_PGTBL_LOCK(aspace);
  190. _unmap_area(aspace, unmap_va, ARCH_PAGE_SIZE);
  191. MM_PGTBL_UNLOCK(aspace);
  192. unmap_va += ARCH_PAGE_SIZE;
  193. }
  194. break;
  195. }
  196. v_addr += ARCH_PAGE_SIZE;
  197. p_addr += ARCH_PAGE_SIZE;
  198. }
  199. if (ret == 0)
  200. {
  201. return unmap_va;
  202. }
  203. return NULL;
  204. }
  205. static void _unmap_pte(rt_size_t *pentry, rt_size_t *lvl_entry[], int level)
  206. {
  207. int loop_flag = 1;
  208. while (loop_flag)
  209. {
  210. loop_flag = 0;
  211. *pentry = 0;
  212. rt_hw_cpu_dcache_clean(pentry, sizeof(*pentry));
  213. // we don't handle level 0, which is maintained by caller
  214. if (level > 0)
  215. {
  216. void *page = (void *)((rt_ubase_t)pentry & ~ARCH_PAGE_MASK);
  217. // decrease reference from child page to parent
  218. rt_pages_free(page, 0);
  219. int free = rt_page_ref_get(page, 0);
  220. if (free == 1)
  221. {
  222. rt_pages_free(page, 0);
  223. pentry = lvl_entry[--level];
  224. loop_flag = 1;
  225. }
  226. }
  227. }
  228. }
  229. static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr, size_t size)
  230. {
  231. rt_size_t loop_va = __UMASKVALUE((rt_size_t)v_addr, PAGE_OFFSET_MASK);
  232. size_t unmapped = 0;
  233. int i = 0;
  234. rt_size_t lvl_off[3];
  235. rt_size_t *lvl_entry[3];
  236. lvl_off[0] = (rt_size_t)GET_L1(loop_va);
  237. lvl_off[1] = (rt_size_t)GET_L2(loop_va);
  238. lvl_off[2] = (rt_size_t)GET_L3(loop_va);
  239. unmapped = 1 << (ARCH_PAGE_SHIFT + ARCH_INDEX_WIDTH * 2ul);
  240. rt_size_t *pentry;
  241. lvl_entry[i] = ((rt_size_t *)aspace->page_table + lvl_off[i]);
  242. pentry = lvl_entry[i];
  243. // find leaf page table entry
  244. while (PTE_USED(*pentry) && !PAGE_IS_LEAF(*pentry))
  245. {
  246. i += 1;
  247. lvl_entry[i] = ((rt_size_t *)PPN_TO_VPN(GET_PADDR(*pentry), PV_OFFSET) +
  248. lvl_off[i]);
  249. pentry = lvl_entry[i];
  250. unmapped >>= ARCH_INDEX_WIDTH;
  251. }
  252. // clear PTE & setup its
  253. if (PTE_USED(*pentry))
  254. {
  255. _unmap_pte(pentry, lvl_entry, i);
  256. }
  257. return unmapped;
  258. }
  259. /** unmap is different from map that it can handle multiple pages */
  260. void rt_hw_mmu_unmap(struct rt_aspace *aspace, void *v_addr, size_t size)
  261. {
  262. // caller guarantee that v_addr & size are page aligned
  263. if (!aspace->page_table)
  264. {
  265. return;
  266. }
  267. size_t unmapped = 0;
  268. while (size > 0)
  269. {
  270. MM_PGTBL_LOCK(aspace);
  271. unmapped = _unmap_area(aspace, v_addr, size);
  272. MM_PGTBL_UNLOCK(aspace);
  273. // when unmapped == 0, region not exist in pgtbl
  274. if (!unmapped || unmapped > size)
  275. break;
  276. size -= unmapped;
  277. v_addr += unmapped;
  278. }
  279. }
  280. #ifdef RT_USING_SMART
  281. static inline void _init_region(void *vaddr, size_t size)
  282. {
  283. rt_ioremap_start = vaddr;
  284. rt_ioremap_size = size;
  285. rt_mpr_start = rt_ioremap_start - rt_mpr_size;
  286. LOG_D("rt_ioremap_start: %p, rt_mpr_start: %p", rt_ioremap_start, rt_mpr_start);
  287. }
  288. #else
  289. static inline void _init_region(void *vaddr, size_t size)
  290. {
  291. rt_mpr_start = vaddr - rt_mpr_size;
  292. }
  293. #endif
  294. #if defined(RT_USING_SMART) && defined(ARCH_REMAP_KERNEL)
  295. #define KERN_SPACE_START ((void *)KERNEL_VADDR_START)
  296. #define KERN_SPACE_SIZE (0xfffffffffffff000UL - KERNEL_VADDR_START + 0x1000)
  297. #else
  298. #define KERN_SPACE_START ((void *)0x1000)
  299. #define KERN_SPACE_SIZE ((size_t)USER_VADDR_START - 0x1000)
  300. #endif
  301. int rt_hw_mmu_map_init(rt_aspace_t aspace, void *v_address, rt_size_t size,
  302. rt_size_t *vtable, rt_size_t pv_off)
  303. {
  304. size_t l1_off, va_s, va_e;
  305. rt_base_t level;
  306. if ((!aspace) || (!vtable))
  307. {
  308. return -1;
  309. }
  310. va_s = (rt_size_t)v_address;
  311. va_e = ((rt_size_t)v_address) + size - 1;
  312. if (va_e < va_s)
  313. {
  314. return -1;
  315. }
  316. // convert address to PPN2 index
  317. va_s = GET_L1(va_s);
  318. va_e = GET_L1(va_e);
  319. if (va_s == 0)
  320. {
  321. return -1;
  322. }
  323. // vtable initialization check
  324. for (l1_off = va_s; l1_off <= va_e; l1_off++)
  325. {
  326. size_t v = vtable[l1_off];
  327. if (v)
  328. {
  329. return -1;
  330. }
  331. }
  332. rt_aspace_init(&rt_kernel_space, KERN_SPACE_START, KERN_SPACE_SIZE, vtable);
  333. _init_region(v_address, size);
  334. return 0;
  335. }
  336. const static int max_level =
  337. (ARCH_VADDR_WIDTH - ARCH_PAGE_SHIFT) / ARCH_INDEX_WIDTH;
  338. static inline uintptr_t _get_level_size(int level)
  339. {
  340. return 1ul << (ARCH_PAGE_SHIFT + (max_level - level) * ARCH_INDEX_WIDTH);
  341. }
  342. static rt_size_t *_query(struct rt_aspace *aspace, void *vaddr, int *level)
  343. {
  344. rt_size_t l1_off, l2_off, l3_off;
  345. rt_size_t *mmu_l1, *mmu_l2, *mmu_l3;
  346. rt_size_t pa;
  347. l1_off = GET_L1((rt_size_t)vaddr);
  348. l2_off = GET_L2((rt_size_t)vaddr);
  349. l3_off = GET_L3((rt_size_t)vaddr);
  350. if (!aspace)
  351. {
  352. LOG_W("%s: no aspace", __func__);
  353. return RT_NULL;
  354. }
  355. mmu_l1 = ((rt_size_t *)aspace->page_table) + l1_off;
  356. if (PTE_USED(*mmu_l1))
  357. {
  358. if (*mmu_l1 & PTE_XWR_MASK)
  359. {
  360. *level = 1;
  361. return mmu_l1;
  362. }
  363. mmu_l2 = (rt_size_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
  364. if (PTE_USED(*(mmu_l2 + l2_off)))
  365. {
  366. if (*(mmu_l2 + l2_off) & PTE_XWR_MASK)
  367. {
  368. *level = 2;
  369. return mmu_l2 + l2_off;
  370. }
  371. mmu_l3 = (rt_size_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)),
  372. PV_OFFSET);
  373. if (PTE_USED(*(mmu_l3 + l3_off)))
  374. {
  375. *level = 3;
  376. return mmu_l3 + l3_off;
  377. }
  378. }
  379. }
  380. return RT_NULL;
  381. }
  382. void *rt_hw_mmu_v2p(struct rt_aspace *aspace, void *vaddr)
  383. {
  384. int level;
  385. uintptr_t *pte = _query(aspace, vaddr, &level);
  386. uintptr_t paddr;
  387. if (pte)
  388. {
  389. paddr = GET_PADDR(*pte);
  390. paddr |= ((intptr_t)vaddr & (_get_level_size(level) - 1));
  391. }
  392. else
  393. {
  394. LOG_I("%s: failed at %p", __func__, vaddr);
  395. paddr = (uintptr_t)ARCH_MAP_FAILED;
  396. }
  397. return (void *)paddr;
  398. }
  399. static int _noncache(uintptr_t *pte)
  400. {
  401. return 0;
  402. }
  403. static int _cache(uintptr_t *pte)
  404. {
  405. return 0;
  406. }
  407. static int (*control_handler[MMU_CNTL_DUMMY_END])(uintptr_t *pte) = {
  408. [MMU_CNTL_CACHE] = _cache,
  409. [MMU_CNTL_NONCACHE] = _noncache,
  410. };
  411. int rt_hw_mmu_control(struct rt_aspace *aspace, void *vaddr, size_t size,
  412. enum rt_mmu_cntl cmd)
  413. {
  414. int level;
  415. int err = -RT_EINVAL;
  416. void *vend = vaddr + size;
  417. int (*handler)(uintptr_t * pte);
  418. if (cmd >= 0 && cmd < MMU_CNTL_DUMMY_END)
  419. {
  420. handler = control_handler[cmd];
  421. while (vaddr < vend)
  422. {
  423. uintptr_t *pte = _query(aspace, vaddr, &level);
  424. void *range_end = vaddr + _get_level_size(level);
  425. RT_ASSERT(range_end <= vend);
  426. if (pte)
  427. {
  428. err = handler(pte);
  429. RT_ASSERT(err == RT_EOK);
  430. }
  431. vaddr = range_end;
  432. }
  433. }
  434. else
  435. {
  436. err = -RT_ENOSYS;
  437. }
  438. return err;
  439. }
  440. /**
  441. * @brief setup Page Table for kernel space. It's a fixed map
  442. * and all mappings cannot be changed after initialization.
  443. *
  444. * Memory region in struct mem_desc must be page aligned,
  445. * otherwise is a failure and no report will be
  446. * returned.
  447. *
  448. * @param aspace
  449. * @param mdesc
  450. * @param desc_nr
  451. */
  452. void rt_hw_mmu_setup(rt_aspace_t aspace, struct mem_desc *mdesc, int desc_nr)
  453. {
  454. void *err;
  455. for (size_t i = 0; i < desc_nr; i++)
  456. {
  457. size_t attr;
  458. switch (mdesc->attr)
  459. {
  460. case NORMAL_MEM:
  461. attr = MMU_MAP_K_RWCB;
  462. break;
  463. case NORMAL_NOCACHE_MEM:
  464. attr = MMU_MAP_K_RWCB;
  465. break;
  466. case DEVICE_MEM:
  467. attr = MMU_MAP_K_DEVICE;
  468. break;
  469. default:
  470. attr = MMU_MAP_K_DEVICE;
  471. }
  472. struct rt_mm_va_hint hint = {.flags = MMF_MAP_FIXED,
  473. .limit_start = aspace->start,
  474. .limit_range_size = aspace->size,
  475. .map_size = mdesc->vaddr_end -
  476. mdesc->vaddr_start + 1,
  477. .prefer = (void *)mdesc->vaddr_start};
  478. if (mdesc->paddr_start == (rt_size_t)ARCH_MAP_FAILED)
  479. mdesc->paddr_start = mdesc->vaddr_start + PV_OFFSET;
  480. rt_aspace_map_phy_static(aspace, &mdesc->varea, &hint, attr,
  481. mdesc->paddr_start >> MM_PAGE_SHIFT, &err);
  482. mdesc++;
  483. }
  484. ASID_INIT();
  485. rt_hw_aspace_switch(&rt_kernel_space);
  486. rt_page_cleanup();
  487. }
  488. void rt_hw_mmu_kernel_map_init(rt_aspace_t aspace, rt_size_t vaddr_start, rt_size_t size)
  489. {
  490. rt_size_t paddr_start =
  491. __UMASKVALUE(VPN_TO_PPN(vaddr_start, PV_OFFSET), PAGE_OFFSET_MASK);
  492. rt_size_t va_s = GET_L1(vaddr_start);
  493. rt_size_t va_e = GET_L1(vaddr_start + size - 1);
  494. rt_size_t i;
  495. for (i = va_s; i <= va_e; i++)
  496. {
  497. MMUTable[i] =
  498. COMBINEPTE(paddr_start, PAGE_ATTR_RWX | PTE_G | PTE_V | PTE_CACHE |
  499. PTE_SHARE | PTE_BUF | PTE_A | PTE_D);
  500. paddr_start += L1_PAGE_SIZE;
  501. }
  502. rt_hw_tlb_invalidate_all_local();
  503. }
  504. #define SATP_BASE ((size_t)SATP_MODE << SATP_MODE_OFFSET)
  505. void rt_hw_mem_setup_early(void)
  506. {
  507. rt_size_t pv_off;
  508. rt_size_t ps = 0x0;
  509. rt_size_t vs = 0x0;
  510. rt_size_t *early_pgtbl = (size_t *)(((size_t)&__bss_end + 4095) & ~0xfff);
  511. /* calculate pv_offset */
  512. void *symb_pc;
  513. void *symb_linker;
  514. __asm__ volatile("la %0, _start\n" : "=r"(symb_pc));
  515. __asm__ volatile("la %0, _start_link_addr\n" : "=r"(symb_linker));
  516. symb_linker = *(void **)symb_linker;
  517. pv_off = symb_pc - symb_linker;
  518. rt_kmem_pvoff_set(pv_off);
  519. if (pv_off)
  520. {
  521. if (pv_off & (1ul << (ARCH_INDEX_WIDTH * 2 + ARCH_PAGE_SHIFT)))
  522. {
  523. LOG_E("%s: not aligned virtual address. pv_offset %p", __func__, pv_off);
  524. RT_ASSERT(0);
  525. }
  526. /**
  527. * identical mapping,
  528. * PC are still at lower region before relocating to high memory
  529. */
  530. for (size_t i = 0; i < __SIZE(PPN0_BIT); i++)
  531. {
  532. early_pgtbl[i] = COMBINEPTE(ps, PAGE_ATTR_RWX | PTE_G | PTE_V | PTE_CACHE |
  533. PTE_SHARE | PTE_BUF | PTE_A | PTE_D);
  534. ps += L1_PAGE_SIZE;
  535. }
  536. /* relocate text region */
  537. __asm__ volatile("la %0, _start\n" : "=r"(ps));
  538. ps &= ~(L1_PAGE_SIZE - 1);
  539. vs = ps - pv_off;
  540. /* relocate region */
  541. rt_size_t vs_idx = GET_L1(vs);
  542. rt_size_t ve_idx = GET_L1(vs + 0x80000000);
  543. for (size_t i = vs_idx; i < ve_idx; i++)
  544. {
  545. early_pgtbl[i] = COMBINEPTE(ps, PAGE_ATTR_RWX | PTE_G | PTE_V | PTE_CACHE |
  546. PTE_SHARE | PTE_BUF | PTE_A | PTE_D);
  547. ps += L1_PAGE_SIZE;
  548. }
  549. /* apply new mapping */
  550. asm volatile("sfence.vma x0, x0");
  551. write_csr(satp, SATP_BASE | ((size_t)early_pgtbl >> PAGE_OFFSET_BIT));
  552. asm volatile("sfence.vma x0, x0");
  553. }
  554. /* return to lower text section */
  555. }
  556. void *rt_hw_mmu_pgtbl_create(void)
  557. {
  558. size_t *mmu_table;
  559. mmu_table = (rt_ubase_t *)rt_pages_alloc_ext(0, PAGE_ANY_AVAILABLE);
  560. if (!mmu_table)
  561. {
  562. return RT_NULL;
  563. }
  564. rt_memcpy(mmu_table, rt_kernel_space.page_table, ARCH_PAGE_SIZE);
  565. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_table, ARCH_PAGE_SIZE);
  566. return mmu_table;
  567. }
  568. void rt_hw_mmu_pgtbl_delete(void *pgtbl)
  569. {
  570. rt_pages_free(pgtbl, 0);
  571. }