mmu.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-01-30 lizhirui first version
  9. * 2022-12-13 WangXiaoyao Port to new mm
  10. * 2023-10-12 Shell Add permission control API
  11. */
  12. #include <rtthread.h>
  13. #include <stddef.h>
  14. #include <stdint.h>
  15. #define DBG_TAG "hw.mmu"
  16. #define DBG_LVL DBG_INFO
  17. #include <rtdbg.h>
  18. #include <board.h>
  19. #include <cache.h>
  20. #include <mm_aspace.h>
  21. #include <mm_page.h>
  22. #include <mmu.h>
  23. #include <riscv_mmu.h>
  24. #include <tlb.h>
  25. #ifdef RT_USING_SMART
  26. #include <board.h>
  27. #include <ioremap.h>
  28. #include <lwp_user_mm.h>
  29. #endif
  30. #ifndef RT_USING_SMART
  31. #define USER_VADDR_START 0
  32. #endif
  33. static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr, size_t size);
  34. static void *current_mmu_table = RT_NULL;
  35. volatile __attribute__((aligned(4 * 1024)))
  36. rt_ubase_t MMUTable[__SIZE(VPN2_BIT)];
  37. void rt_hw_aspace_switch(rt_aspace_t aspace)
  38. {
  39. uintptr_t page_table = (uintptr_t)rt_kmem_v2p(aspace->page_table);
  40. current_mmu_table = aspace->page_table;
  41. write_csr(satp, (((size_t)SATP_MODE) << SATP_MODE_OFFSET) |
  42. ((rt_ubase_t)page_table >> PAGE_OFFSET_BIT));
  43. rt_hw_tlb_invalidate_all_local();
  44. }
  45. void *rt_hw_mmu_tbl_get()
  46. {
  47. return current_mmu_table;
  48. }
  49. static int _map_one_page(struct rt_aspace *aspace, void *va, void *pa,
  50. size_t attr)
  51. {
  52. rt_ubase_t l1_off, l2_off, l3_off;
  53. rt_ubase_t *mmu_l1, *mmu_l2, *mmu_l3;
  54. l1_off = GET_L1((size_t)va);
  55. l2_off = GET_L2((size_t)va);
  56. l3_off = GET_L3((size_t)va);
  57. mmu_l1 = ((rt_ubase_t *)aspace->page_table) + l1_off;
  58. if (PTE_USED(*mmu_l1))
  59. {
  60. mmu_l2 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
  61. }
  62. else
  63. {
  64. mmu_l2 = (rt_ubase_t *)rt_pages_alloc(0);
  65. if (mmu_l2)
  66. {
  67. rt_memset(mmu_l2, 0, PAGE_SIZE);
  68. rt_hw_cpu_dcache_clean(mmu_l2, PAGE_SIZE);
  69. *mmu_l1 = COMBINEPTE((rt_ubase_t)VPN_TO_PPN(mmu_l2, PV_OFFSET),
  70. PAGE_DEFAULT_ATTR_NEXT);
  71. rt_hw_cpu_dcache_clean(mmu_l1, sizeof(*mmu_l1));
  72. }
  73. else
  74. {
  75. return -1;
  76. }
  77. }
  78. if (PTE_USED(*(mmu_l2 + l2_off)))
  79. {
  80. RT_ASSERT(!PAGE_IS_LEAF(*(mmu_l2 + l2_off)));
  81. mmu_l3 =
  82. (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)), PV_OFFSET);
  83. }
  84. else
  85. {
  86. mmu_l3 = (rt_ubase_t *)rt_pages_alloc(0);
  87. if (mmu_l3)
  88. {
  89. rt_memset(mmu_l3, 0, PAGE_SIZE);
  90. rt_hw_cpu_dcache_clean(mmu_l3, PAGE_SIZE);
  91. *(mmu_l2 + l2_off) =
  92. COMBINEPTE((rt_ubase_t)VPN_TO_PPN(mmu_l3, PV_OFFSET),
  93. PAGE_DEFAULT_ATTR_NEXT);
  94. rt_hw_cpu_dcache_clean(mmu_l2, sizeof(*mmu_l2));
  95. // declares a reference to parent page table
  96. rt_page_ref_inc((void *)mmu_l2, 0);
  97. }
  98. else
  99. {
  100. return -1;
  101. }
  102. }
  103. RT_ASSERT(!PTE_USED(*(mmu_l3 + l3_off)));
  104. // declares a reference to parent page table
  105. rt_page_ref_inc((void *)mmu_l3, 0);
  106. *(mmu_l3 + l3_off) = COMBINEPTE((rt_ubase_t)pa, attr);
  107. rt_hw_cpu_dcache_clean(mmu_l3 + l3_off, sizeof(*(mmu_l3 + l3_off)));
  108. return 0;
  109. }
  110. /** rt_hw_mmu_map will never override existed page table entry */
  111. void *rt_hw_mmu_map(struct rt_aspace *aspace, void *v_addr, void *p_addr,
  112. size_t size, size_t attr)
  113. {
  114. int ret = -1;
  115. void *unmap_va = v_addr;
  116. size_t npages = size >> ARCH_PAGE_SHIFT;
  117. // TODO trying with HUGEPAGE here
  118. while (npages--)
  119. {
  120. MM_PGTBL_LOCK(aspace);
  121. ret = _map_one_page(aspace, v_addr, p_addr, attr);
  122. MM_PGTBL_UNLOCK(aspace);
  123. if (ret != 0)
  124. {
  125. /* error, undo map */
  126. while (unmap_va != v_addr)
  127. {
  128. MM_PGTBL_LOCK(aspace);
  129. _unmap_area(aspace, unmap_va, ARCH_PAGE_SIZE);
  130. MM_PGTBL_UNLOCK(aspace);
  131. unmap_va += ARCH_PAGE_SIZE;
  132. }
  133. break;
  134. }
  135. v_addr += ARCH_PAGE_SIZE;
  136. p_addr += ARCH_PAGE_SIZE;
  137. }
  138. if (ret == 0)
  139. {
  140. return unmap_va;
  141. }
  142. return NULL;
  143. }
  144. static void _unmap_pte(rt_ubase_t *pentry, rt_ubase_t *lvl_entry[], int level)
  145. {
  146. int loop_flag = 1;
  147. while (loop_flag)
  148. {
  149. loop_flag = 0;
  150. *pentry = 0;
  151. rt_hw_cpu_dcache_clean(pentry, sizeof(*pentry));
  152. // we don't handle level 0, which is maintained by caller
  153. if (level > 0)
  154. {
  155. void *page = (void *)((rt_ubase_t)pentry & ~ARCH_PAGE_MASK);
  156. // decrease reference from child page to parent
  157. rt_pages_free(page, 0);
  158. int free = rt_page_ref_get(page, 0);
  159. if (free == 1)
  160. {
  161. rt_pages_free(page, 0);
  162. pentry = lvl_entry[--level];
  163. loop_flag = 1;
  164. }
  165. }
  166. }
  167. }
  168. static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr, size_t size)
  169. {
  170. rt_ubase_t loop_va = __UMASKVALUE((rt_ubase_t)v_addr, PAGE_OFFSET_MASK);
  171. size_t unmapped = 0;
  172. int i = 0;
  173. rt_ubase_t lvl_off[3];
  174. rt_ubase_t *lvl_entry[3];
  175. lvl_off[0] = (rt_ubase_t)GET_L1(loop_va);
  176. lvl_off[1] = (rt_ubase_t)GET_L2(loop_va);
  177. lvl_off[2] = (rt_ubase_t)GET_L3(loop_va);
  178. unmapped = 1 << (ARCH_PAGE_SHIFT + ARCH_INDEX_WIDTH * 2ul);
  179. rt_ubase_t *pentry;
  180. lvl_entry[i] = ((rt_ubase_t *)aspace->page_table + lvl_off[i]);
  181. pentry = lvl_entry[i];
  182. // find leaf page table entry
  183. while (PTE_USED(*pentry) && !PAGE_IS_LEAF(*pentry))
  184. {
  185. i += 1;
  186. lvl_entry[i] = ((rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*pentry), PV_OFFSET) +
  187. lvl_off[i]);
  188. pentry = lvl_entry[i];
  189. unmapped >>= ARCH_INDEX_WIDTH;
  190. }
  191. // clear PTE & setup its
  192. if (PTE_USED(*pentry))
  193. {
  194. _unmap_pte(pentry, lvl_entry, i);
  195. }
  196. return unmapped;
  197. }
  198. /** unmap is different from map that it can handle multiple pages */
  199. void rt_hw_mmu_unmap(struct rt_aspace *aspace, void *v_addr, size_t size)
  200. {
  201. // caller guarantee that v_addr & size are page aligned
  202. if (!aspace->page_table)
  203. {
  204. return;
  205. }
  206. size_t unmapped = 0;
  207. while (size > 0)
  208. {
  209. MM_PGTBL_LOCK(aspace);
  210. unmapped = _unmap_area(aspace, v_addr, size);
  211. MM_PGTBL_UNLOCK(aspace);
  212. // when unmapped == 0, region not exist in pgtbl
  213. if (!unmapped || unmapped > size)
  214. break;
  215. size -= unmapped;
  216. v_addr += unmapped;
  217. }
  218. }
  219. #ifdef RT_USING_SMART
  220. static inline void _init_region(void *vaddr, size_t size)
  221. {
  222. rt_ioremap_start = vaddr;
  223. rt_ioremap_size = size;
  224. rt_mpr_start = rt_ioremap_start - rt_mpr_size;
  225. LOG_D("rt_ioremap_start: %p, rt_mpr_start: %p", rt_ioremap_start, rt_mpr_start);
  226. }
  227. #else
  228. static inline void _init_region(void *vaddr, size_t size)
  229. {
  230. rt_mpr_start = vaddr - rt_mpr_size;
  231. }
  232. #endif
  233. #if defined(RT_USING_SMART) && defined(ARCH_REMAP_KERNEL)
  234. #define KERN_SPACE_START ((void *)KERNEL_VADDR_START)
  235. #define KERN_SPACE_SIZE (0xfffffffffffff000UL - KERNEL_VADDR_START + 0x1000)
  236. #else
  237. #define KERN_SPACE_START ((void *)0x1000)
  238. #define KERN_SPACE_SIZE ((size_t)USER_VADDR_START - 0x1000)
  239. #endif
  240. int rt_hw_mmu_map_init(rt_aspace_t aspace, void *v_address, rt_ubase_t size,
  241. rt_ubase_t *vtable, rt_ubase_t pv_off)
  242. {
  243. size_t l1_off, va_s, va_e;
  244. rt_base_t level;
  245. if ((!aspace) || (!vtable))
  246. {
  247. return -1;
  248. }
  249. va_s = (rt_ubase_t)v_address;
  250. va_e = ((rt_ubase_t)v_address) + size - 1;
  251. if (va_e < va_s)
  252. {
  253. return -1;
  254. }
  255. // convert address to PPN2 index
  256. va_s = GET_L1(va_s);
  257. va_e = GET_L1(va_e);
  258. if (va_s == 0)
  259. {
  260. return -1;
  261. }
  262. // vtable initialization check
  263. for (l1_off = va_s; l1_off <= va_e; l1_off++)
  264. {
  265. size_t v = vtable[l1_off];
  266. if (v)
  267. {
  268. return -1;
  269. }
  270. }
  271. rt_aspace_init(&rt_kernel_space, KERN_SPACE_START, KERN_SPACE_SIZE, vtable);
  272. _init_region(v_address, size);
  273. return 0;
  274. }
  275. const static int max_level =
  276. (ARCH_VADDR_WIDTH - ARCH_PAGE_SHIFT) / ARCH_INDEX_WIDTH;
  277. static inline uintptr_t _get_level_size(int level)
  278. {
  279. return 1ul << (ARCH_PAGE_SHIFT + (max_level - level) * ARCH_INDEX_WIDTH);
  280. }
  281. static rt_ubase_t *_query(struct rt_aspace *aspace, void *vaddr, int *level)
  282. {
  283. rt_ubase_t l1_off, l2_off, l3_off;
  284. rt_ubase_t *mmu_l1, *mmu_l2, *mmu_l3;
  285. rt_ubase_t pa;
  286. l1_off = GET_L1((rt_uintptr_t)vaddr);
  287. l2_off = GET_L2((rt_uintptr_t)vaddr);
  288. l3_off = GET_L3((rt_uintptr_t)vaddr);
  289. if (!aspace)
  290. {
  291. LOG_W("%s: no aspace", __func__);
  292. return RT_NULL;
  293. }
  294. mmu_l1 = ((rt_ubase_t *)aspace->page_table) + l1_off;
  295. if (PTE_USED(*mmu_l1))
  296. {
  297. if (*mmu_l1 & PTE_XWR_MASK)
  298. {
  299. *level = 1;
  300. return mmu_l1;
  301. }
  302. mmu_l2 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
  303. if (PTE_USED(*(mmu_l2 + l2_off)))
  304. {
  305. if (*(mmu_l2 + l2_off) & PTE_XWR_MASK)
  306. {
  307. *level = 2;
  308. return mmu_l2 + l2_off;
  309. }
  310. mmu_l3 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)),
  311. PV_OFFSET);
  312. if (PTE_USED(*(mmu_l3 + l3_off)))
  313. {
  314. *level = 3;
  315. return mmu_l3 + l3_off;
  316. }
  317. }
  318. }
  319. return RT_NULL;
  320. }
  321. void *rt_hw_mmu_v2p(struct rt_aspace *aspace, void *vaddr)
  322. {
  323. int level;
  324. rt_ubase_t *pte = _query(aspace, vaddr, &level);
  325. uintptr_t paddr;
  326. if (pte)
  327. {
  328. paddr = GET_PADDR(*pte);
  329. paddr |= ((intptr_t)vaddr & (_get_level_size(level) - 1));
  330. }
  331. else
  332. {
  333. paddr = (uintptr_t)ARCH_MAP_FAILED;
  334. }
  335. return (void *)paddr;
  336. }
  337. static int _noncache(rt_base_t *pte)
  338. {
  339. return 0;
  340. }
  341. static int _cache(rt_base_t *pte)
  342. {
  343. return 0;
  344. }
  345. static int (*control_handler[MMU_CNTL_DUMMY_END])(rt_base_t *pte) = {
  346. [MMU_CNTL_CACHE] = _cache,
  347. [MMU_CNTL_NONCACHE] = _noncache,
  348. };
  349. int rt_hw_mmu_control(struct rt_aspace *aspace, void *vaddr, size_t size,
  350. enum rt_mmu_cntl cmd)
  351. {
  352. int level;
  353. int err = -RT_EINVAL;
  354. void *vend = vaddr + size;
  355. int (*handler)(rt_base_t *pte);
  356. if (cmd >= 0 && cmd < MMU_CNTL_DUMMY_END)
  357. {
  358. handler = control_handler[cmd];
  359. while (vaddr < vend)
  360. {
  361. rt_base_t *pte = _query(aspace, vaddr, &level);
  362. void *range_end = vaddr + _get_level_size(level);
  363. RT_ASSERT(range_end <= vend);
  364. if (pte)
  365. {
  366. err = handler(pte);
  367. RT_ASSERT(err == RT_EOK);
  368. }
  369. vaddr = range_end;
  370. }
  371. }
  372. else
  373. {
  374. err = -RT_ENOSYS;
  375. }
  376. return err;
  377. }
  378. /**
  379. * @brief setup Page Table for kernel space. It's a fixed map
  380. * and all mappings cannot be changed after initialization.
  381. *
  382. * Memory region in struct mem_desc must be page aligned,
  383. * otherwise is a failure and no report will be
  384. * returned.
  385. *
  386. * @param aspace
  387. * @param mdesc
  388. * @param desc_nr
  389. */
  390. void rt_hw_mmu_setup(rt_aspace_t aspace, struct mem_desc *mdesc, int desc_nr)
  391. {
  392. void *err;
  393. for (size_t i = 0; i < desc_nr; i++)
  394. {
  395. size_t attr;
  396. switch (mdesc->attr)
  397. {
  398. case NORMAL_MEM:
  399. attr = MMU_MAP_K_RWCB;
  400. break;
  401. case NORMAL_NOCACHE_MEM:
  402. attr = MMU_MAP_K_RWCB;
  403. break;
  404. case DEVICE_MEM:
  405. attr = MMU_MAP_K_DEVICE;
  406. break;
  407. default:
  408. attr = MMU_MAP_K_DEVICE;
  409. }
  410. struct rt_mm_va_hint hint = {.flags = MMF_MAP_FIXED,
  411. .limit_start = aspace->start,
  412. .limit_range_size = aspace->size,
  413. .map_size = mdesc->vaddr_end -
  414. mdesc->vaddr_start + 1,
  415. .prefer = (void *)mdesc->vaddr_start};
  416. if (mdesc->paddr_start == (rt_uintptr_t)ARCH_MAP_FAILED)
  417. mdesc->paddr_start = mdesc->vaddr_start + PV_OFFSET;
  418. rt_aspace_map_phy_static(aspace, &mdesc->varea, &hint, attr,
  419. mdesc->paddr_start >> MM_PAGE_SHIFT, &err);
  420. mdesc++;
  421. }
  422. rt_hw_aspace_switch(&rt_kernel_space);
  423. rt_page_cleanup();
  424. }
  425. #define SATP_BASE ((rt_ubase_t)SATP_MODE << SATP_MODE_OFFSET)
  426. void rt_hw_mem_setup_early(void)
  427. {
  428. rt_ubase_t pv_off;
  429. rt_ubase_t ps = 0x0;
  430. rt_ubase_t vs = 0x0;
  431. rt_ubase_t *early_pgtbl = (rt_ubase_t *)(((size_t)&__bss_end + 4095) & ~0xfff);
  432. /* calculate pv_offset */
  433. void *symb_pc;
  434. void *symb_linker;
  435. __asm__ volatile("la %0, _start\n" : "=r"(symb_pc));
  436. __asm__ volatile("la %0, _start_link_addr\n" : "=r"(symb_linker));
  437. symb_linker = *(void **)symb_linker;
  438. pv_off = symb_pc - symb_linker;
  439. rt_kmem_pvoff_set(pv_off);
  440. if (pv_off)
  441. {
  442. if (pv_off & (1ul << (ARCH_INDEX_WIDTH * 2 + ARCH_PAGE_SHIFT)))
  443. {
  444. LOG_E("%s: not aligned virtual address. pv_offset %p", __func__, pv_off);
  445. RT_ASSERT(0);
  446. }
  447. /**
  448. * identical mapping,
  449. * PC are still at lower region before relocating to high memory
  450. */
  451. for (size_t i = 0; i < __SIZE(PPN0_BIT); i++)
  452. {
  453. early_pgtbl[i] = COMBINEPTE(ps, PAGE_ATTR_RWX | PTE_G | PTE_V);
  454. ps += L1_PAGE_SIZE;
  455. }
  456. /* relocate text region */
  457. __asm__ volatile("la %0, _start\n" : "=r"(ps));
  458. ps &= ~(L1_PAGE_SIZE - 1);
  459. vs = ps - pv_off;
  460. /* relocate region */
  461. rt_ubase_t vs_idx = GET_L1(vs);
  462. rt_ubase_t ve_idx = GET_L1(vs + 0x80000000);
  463. for (size_t i = vs_idx; i < ve_idx; i++)
  464. {
  465. early_pgtbl[i] = COMBINEPTE(ps, PAGE_ATTR_RWX | PTE_G | PTE_V);
  466. ps += L1_PAGE_SIZE;
  467. }
  468. /* apply new mapping */
  469. asm volatile("sfence.vma x0, x0");
  470. write_csr(satp, SATP_BASE | ((size_t)early_pgtbl >> PAGE_OFFSET_BIT));
  471. asm volatile("sfence.vma x0, x0");
  472. }
  473. /* return to lower text section */
  474. }
  475. void *rt_hw_mmu_pgtbl_create(void)
  476. {
  477. rt_ubase_t *mmu_table;
  478. mmu_table = (rt_ubase_t *)rt_pages_alloc_ext(0, PAGE_ANY_AVAILABLE);
  479. if (!mmu_table)
  480. {
  481. return RT_NULL;
  482. }
  483. rt_memcpy(mmu_table, rt_kernel_space.page_table, ARCH_PAGE_SIZE);
  484. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_table, ARCH_PAGE_SIZE);
  485. return mmu_table;
  486. }
  487. void rt_hw_mmu_pgtbl_delete(void *pgtbl)
  488. {
  489. rt_pages_free(pgtbl, 0);
  490. }