alarm.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-10-27 heyuanjie87 first version.
  9. * 2013-05-17 aozima initial alarm event & mutex in system init.
  10. * 2020-10-15 zhangsz add alarm flags hour minute second.
  11. * 2020-11-09 zhangsz fix alarm set when modify rtc time.
  12. */
  13. #include <rtthread.h>
  14. #include <rtdevice.h>
  15. #include <sys/time.h>
  16. #define RT_RTC_YEARS_MAX 137
  17. #ifdef RT_USING_SOFT_RTC
  18. #define RT_ALARM_DELAY 0
  19. #else
  20. #define RT_ALARM_DELAY 2
  21. #endif
  22. #define RT_ALARM_STATE_INITED 0x02
  23. #define RT_ALARM_STATE_START 0x01
  24. #define RT_ALARM_STATE_STOP 0x00
  25. #if (defined(RT_USING_RTC) && defined(RT_USING_ALARM))
  26. static struct rt_alarm_container _container;
  27. rt_inline rt_uint32_t alarm_mkdaysec(struct tm *time)
  28. {
  29. rt_uint32_t sec;
  30. sec = time->tm_sec;
  31. sec += time->tm_min * 60;
  32. sec += time->tm_hour * 3600;
  33. return (sec);
  34. }
  35. static rt_err_t alarm_set(struct rt_alarm *alarm)
  36. {
  37. rt_device_t device;
  38. struct rt_rtc_wkalarm wkalarm;
  39. rt_err_t ret;
  40. device = rt_device_find("rtc");
  41. if (device == RT_NULL)
  42. {
  43. return (RT_ERROR);
  44. }
  45. if (alarm->flag & RT_ALARM_STATE_START)
  46. wkalarm.enable = RT_TRUE;
  47. else
  48. wkalarm.enable = RT_FALSE;
  49. wkalarm.tm_sec = alarm->wktime.tm_sec;
  50. wkalarm.tm_min = alarm->wktime.tm_min;
  51. wkalarm.tm_hour = alarm->wktime.tm_hour;
  52. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_ALARM, &wkalarm);
  53. if ((ret == RT_EOK) && wkalarm.enable)
  54. {
  55. ret = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_ALARM, &wkalarm);
  56. if (ret == RT_EOK)
  57. {
  58. /*
  59. some RTC device like RX8025,it's alarms precision is 1 minute.
  60. in this case,low level RTC driver should set wkalarm->tm_sec to 0.
  61. */
  62. alarm->wktime.tm_sec = wkalarm.tm_sec;
  63. alarm->wktime.tm_min = wkalarm.tm_min;
  64. alarm->wktime.tm_hour = wkalarm.tm_hour;
  65. }
  66. }
  67. return (ret);
  68. }
  69. static void alarm_wakeup(struct rt_alarm *alarm, struct tm *now)
  70. {
  71. rt_uint32_t sec_alarm, sec_now;
  72. rt_bool_t wakeup = RT_FALSE;
  73. time_t timestamp;
  74. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  75. sec_now = alarm_mkdaysec(now);
  76. if (alarm->flag & RT_ALARM_STATE_START)
  77. {
  78. switch (alarm->flag & 0xFF00)
  79. {
  80. case RT_ALARM_ONESHOT:
  81. {
  82. sec_alarm = timegm(&alarm->wktime);
  83. sec_now = timegm(now);
  84. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  85. {
  86. /* stop alarm */
  87. alarm->flag &= ~RT_ALARM_STATE_START;
  88. alarm_set(alarm);
  89. wakeup = RT_TRUE;
  90. }
  91. }
  92. break;
  93. case RT_ALARM_SECOND:
  94. {
  95. alarm->wktime.tm_hour = now->tm_hour;
  96. alarm->wktime.tm_min = now->tm_min;
  97. alarm->wktime.tm_sec = now->tm_sec + 1;
  98. if (alarm->wktime.tm_sec > 59)
  99. {
  100. alarm->wktime.tm_sec = 0;
  101. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  102. if (alarm->wktime.tm_min > 59)
  103. {
  104. alarm->wktime.tm_min = 0;
  105. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  106. if (alarm->wktime.tm_hour > 23)
  107. {
  108. alarm->wktime.tm_hour = 0;
  109. }
  110. }
  111. }
  112. wakeup = RT_TRUE;
  113. }
  114. break;
  115. case RT_ALARM_MINUTE:
  116. {
  117. alarm->wktime.tm_hour = now->tm_hour;
  118. if (alarm->wktime.tm_sec == now->tm_sec)
  119. {
  120. alarm->wktime.tm_min = now->tm_min + 1;
  121. if (alarm->wktime.tm_min > 59)
  122. {
  123. alarm->wktime.tm_min = 0;
  124. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  125. if (alarm->wktime.tm_hour > 23)
  126. {
  127. alarm->wktime.tm_hour = 0;
  128. }
  129. }
  130. wakeup = RT_TRUE;
  131. }
  132. }
  133. break;
  134. case RT_ALARM_HOUR:
  135. {
  136. if ((alarm->wktime.tm_min == now->tm_min) &&
  137. (alarm->wktime.tm_sec == now->tm_sec))
  138. {
  139. alarm->wktime.tm_hour = now->tm_hour + 1;
  140. if (alarm->wktime.tm_hour > 23)
  141. {
  142. alarm->wktime.tm_hour = 0;
  143. }
  144. wakeup = RT_TRUE;
  145. }
  146. }
  147. break;
  148. case RT_ALARM_DAILY:
  149. {
  150. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  151. wakeup = RT_TRUE;
  152. }
  153. break;
  154. case RT_ALARM_WEEKLY:
  155. {
  156. /* alarm at wday */
  157. sec_alarm += alarm->wktime.tm_wday * 24 * 3600;
  158. sec_now += now->tm_wday * 24 * 3600;
  159. if (((sec_now - sec_alarm) <= RT_ALARM_DELAY) && (sec_now >= sec_alarm))
  160. wakeup = RT_TRUE;
  161. }
  162. break;
  163. case RT_ALARM_MONTHLY:
  164. {
  165. /* monthly someday generate alarm signals */
  166. if (alarm->wktime.tm_mday == now->tm_mday)
  167. {
  168. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  169. wakeup = RT_TRUE;
  170. }
  171. }
  172. break;
  173. case RT_ALARM_YAERLY:
  174. {
  175. if ((alarm->wktime.tm_mday == now->tm_mday) && \
  176. (alarm->wktime.tm_mon == now->tm_mon))
  177. {
  178. if ((sec_now - sec_alarm) <= RT_ALARM_DELAY)
  179. wakeup = RT_TRUE;
  180. }
  181. }
  182. break;
  183. }
  184. if ((wakeup == RT_TRUE) && (alarm->callback != RT_NULL))
  185. {
  186. timestamp = time(RT_NULL);
  187. alarm->callback(alarm, timestamp);
  188. }
  189. }
  190. }
  191. static void alarm_update(rt_uint32_t event)
  192. {
  193. struct rt_alarm *alm_prev = RT_NULL, *alm_next = RT_NULL;
  194. struct rt_alarm *alarm;
  195. rt_int32_t sec_now, sec_alarm, sec_tmp;
  196. rt_int32_t sec_next = 24 * 3600, sec_prev = 0;
  197. time_t timestamp;
  198. struct tm now;
  199. rt_list_t *next;
  200. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  201. if (!rt_list_isempty(&_container.head))
  202. {
  203. /* get time of now */
  204. timestamp = time(RT_NULL);
  205. #ifdef _WIN32
  206. _gmtime32_s(&now, &timestamp);
  207. #else
  208. gmtime_r(&timestamp, &now);
  209. #endif
  210. for (next = _container.head.next; next != &_container.head; next = next->next)
  211. {
  212. alarm = rt_list_entry(next, struct rt_alarm, list);
  213. /* check the overtime alarm */
  214. alarm_wakeup(alarm, &now);
  215. }
  216. timestamp = time(RT_NULL);
  217. #ifdef _WIN32
  218. _gmtime32_s(&now, &timestamp);
  219. #else
  220. gmtime_r(&timestamp, &now);
  221. #endif
  222. sec_now = alarm_mkdaysec(&now);
  223. for (next = _container.head.next; next != &_container.head; next = next->next)
  224. {
  225. alarm = rt_list_entry(next, struct rt_alarm, list);
  226. /* calculate seconds from 00:00:00 */
  227. sec_alarm = alarm_mkdaysec(&alarm->wktime);
  228. if (alarm->flag & RT_ALARM_STATE_START)
  229. {
  230. sec_tmp = sec_alarm - sec_now;
  231. if (sec_tmp > 0)
  232. {
  233. /* find alarm after now(now to 23:59:59) and the most recent */
  234. if (sec_tmp < sec_next)
  235. {
  236. sec_next = sec_tmp;
  237. alm_next = alarm;
  238. }
  239. }
  240. else
  241. {
  242. /* find alarm before now(00:00:00 to now) and furthest from now */
  243. if (sec_tmp < sec_prev)
  244. {
  245. sec_prev = sec_tmp;
  246. alm_prev = alarm;
  247. }
  248. }
  249. }
  250. }
  251. /* enable the alarm after now first */
  252. if (sec_next < 24 * 3600)
  253. {
  254. if (alarm_set(alm_next) == RT_EOK)
  255. _container.current = alm_next;
  256. }
  257. else if (sec_prev < 0)
  258. {
  259. /* enable the alarm before now */
  260. if (alarm_set(alm_prev) == RT_EOK)
  261. _container.current = alm_prev;
  262. }
  263. else
  264. {
  265. if (_container.current != RT_NULL)
  266. alarm_set(_container.current);
  267. }
  268. }
  269. rt_mutex_release(&_container.mutex);
  270. }
  271. static rt_uint32_t days_of_year_month(int tm_year, int tm_mon)
  272. {
  273. rt_uint32_t ret, year;
  274. year = tm_year + 1900;
  275. if (tm_mon == 1)
  276. {
  277. ret = 28 + ((!(year % 4) && (year % 100)) || !(year % 400));
  278. }
  279. else if (((tm_mon <= 6) && (tm_mon % 2 == 0)) || ((tm_mon > 6) && (tm_mon % 2 == 1)))
  280. {
  281. ret = 31;
  282. }
  283. else
  284. {
  285. ret = 30;
  286. }
  287. return (ret);
  288. }
  289. static rt_bool_t is_valid_date(struct tm *date)
  290. {
  291. if ((date->tm_year < 0) || (date->tm_year > RT_RTC_YEARS_MAX))
  292. {
  293. return (RT_FALSE);
  294. }
  295. if ((date->tm_mon < 0) || (date->tm_mon > 11))
  296. {
  297. return (RT_FALSE);
  298. }
  299. if ((date->tm_mday < 1) || \
  300. (date->tm_mday > days_of_year_month(date->tm_year, date->tm_mon)))
  301. {
  302. return (RT_FALSE);
  303. }
  304. return (RT_TRUE);
  305. }
  306. static rt_err_t alarm_setup(rt_alarm_t alarm, struct tm *wktime)
  307. {
  308. rt_err_t ret = RT_ERROR;
  309. time_t timestamp;
  310. struct tm *setup, now;
  311. setup = &alarm->wktime;
  312. *setup = *wktime;
  313. timestamp = time(RT_NULL);
  314. #ifdef _WIN32
  315. _gmtime32_s(&now, &timestamp);
  316. #else
  317. gmtime_r(&timestamp, &now);
  318. #endif
  319. /* if these are a "don't care" value,we set them to now*/
  320. if ((setup->tm_sec > 59) || (setup->tm_sec < 0))
  321. setup->tm_sec = now.tm_sec;
  322. if ((setup->tm_min > 59) || (setup->tm_min < 0))
  323. setup->tm_min = now.tm_min;
  324. if ((setup->tm_hour > 23) || (setup->tm_hour < 0))
  325. setup->tm_hour = now.tm_hour;
  326. switch (alarm->flag & 0xFF00)
  327. {
  328. case RT_ALARM_SECOND:
  329. {
  330. alarm->wktime.tm_hour = now.tm_hour;
  331. alarm->wktime.tm_min = now.tm_min;
  332. alarm->wktime.tm_sec = now.tm_sec + 1;
  333. if (alarm->wktime.tm_sec > 59)
  334. {
  335. alarm->wktime.tm_sec = 0;
  336. alarm->wktime.tm_min = alarm->wktime.tm_min + 1;
  337. if (alarm->wktime.tm_min > 59)
  338. {
  339. alarm->wktime.tm_min = 0;
  340. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  341. if (alarm->wktime.tm_hour > 23)
  342. {
  343. alarm->wktime.tm_hour = 0;
  344. }
  345. }
  346. }
  347. }
  348. break;
  349. case RT_ALARM_MINUTE:
  350. {
  351. alarm->wktime.tm_hour = now.tm_hour;
  352. alarm->wktime.tm_min = now.tm_min + 1;
  353. if (alarm->wktime.tm_min > 59)
  354. {
  355. alarm->wktime.tm_min = 0;
  356. alarm->wktime.tm_hour = alarm->wktime.tm_hour + 1;
  357. if (alarm->wktime.tm_hour > 23)
  358. {
  359. alarm->wktime.tm_hour = 0;
  360. }
  361. }
  362. }
  363. break;
  364. case RT_ALARM_HOUR:
  365. {
  366. alarm->wktime.tm_hour = now.tm_hour + 1;
  367. if (alarm->wktime.tm_hour > 23)
  368. {
  369. alarm->wktime.tm_hour = 0;
  370. }
  371. }
  372. break;
  373. case RT_ALARM_DAILY:
  374. {
  375. /* do nothing but needed */
  376. }
  377. break;
  378. case RT_ALARM_ONESHOT:
  379. {
  380. /* if these are "don't care" value we set them to now */
  381. if (setup->tm_year == RT_ALARM_TM_NOW)
  382. setup->tm_year = now.tm_year;
  383. if (setup->tm_mon == RT_ALARM_TM_NOW)
  384. setup->tm_mon = now.tm_mon;
  385. if (setup->tm_mday == RT_ALARM_TM_NOW)
  386. setup->tm_mday = now.tm_mday;
  387. /* make sure the setup is valid */
  388. if (!is_valid_date(setup))
  389. goto _exit;
  390. }
  391. break;
  392. case RT_ALARM_WEEKLY:
  393. {
  394. /* if tm_wday is a "don't care" value we set it to now */
  395. if ((setup->tm_wday < 0) || (setup->tm_wday > 6))
  396. setup->tm_wday = now.tm_wday;
  397. }
  398. break;
  399. case RT_ALARM_MONTHLY:
  400. {
  401. /* if tm_mday is a "don't care" value we set it to now */
  402. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  403. setup->tm_mday = now.tm_mday;
  404. }
  405. break;
  406. case RT_ALARM_YAERLY:
  407. {
  408. /* if tm_mon is a "don't care" value we set it to now */
  409. if ((setup->tm_mon < 0) || (setup->tm_mon > 11))
  410. setup->tm_mon = now.tm_mon;
  411. if (setup->tm_mon == 1)
  412. {
  413. /* tm_mon is February */
  414. /* tm_mday should be 1~29.otherwise,it's a "don't care" value */
  415. if ((setup->tm_mday < 1) || (setup->tm_mday > 29))
  416. setup->tm_mday = now.tm_mday;
  417. }
  418. else if (((setup->tm_mon <= 6) && (setup->tm_mon % 2 == 0)) || \
  419. ((setup->tm_mon > 6) && (setup->tm_mon % 2 == 1)))
  420. {
  421. /* Jan,Mar,May,Jul,Aug,Oct,Dec */
  422. /* tm_mday should be 1~31.otherwise,it's a "don't care" value */
  423. if ((setup->tm_mday < 1) || (setup->tm_mday > 31))
  424. setup->tm_mday = now.tm_mday;
  425. }
  426. else
  427. {
  428. /* tm_mday should be 1~30.otherwise,it's a "don't care" value */
  429. if ((setup->tm_mday < 1) || (setup->tm_mday > 30))
  430. setup->tm_mday = now.tm_mday;
  431. }
  432. }
  433. break;
  434. default:
  435. {
  436. goto _exit;
  437. }
  438. }
  439. if ((setup->tm_hour == 23) && (setup->tm_min == 59) && (setup->tm_sec == 59))
  440. {
  441. /*
  442. for insurance purposes, we will generate an alarm
  443. signal two seconds ahead of.
  444. */
  445. setup->tm_sec = 60 - RT_ALARM_DELAY;
  446. }
  447. /* set initialized state */
  448. alarm->flag |= RT_ALARM_STATE_INITED;
  449. ret = RT_EOK;
  450. _exit:
  451. return (ret);
  452. }
  453. /** \brief send a rtc alarm event
  454. *
  455. * \param dev pointer to RTC device(currently unused,you can ignore it)
  456. * \param event RTC event(currently unused)
  457. * \return none
  458. */
  459. void rt_alarm_update(rt_device_t dev, rt_uint32_t event)
  460. {
  461. rt_event_send(&_container.event, 1);
  462. }
  463. /** \brief modify the alarm setup
  464. *
  465. * \param alarm pointer to alarm
  466. * \param cmd control command
  467. * \param arg argument
  468. */
  469. rt_err_t rt_alarm_control(rt_alarm_t alarm, int cmd, void *arg)
  470. {
  471. rt_err_t ret = RT_ERROR;
  472. RT_ASSERT(alarm != RT_NULL);
  473. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  474. switch (cmd)
  475. {
  476. case RT_ALARM_CTRL_MODIFY:
  477. {
  478. struct rt_alarm_setup *setup;
  479. RT_ASSERT(arg != RT_NULL);
  480. setup = arg;
  481. rt_alarm_stop(alarm);
  482. alarm->flag = setup->flag & 0xFF00;
  483. alarm->wktime = setup->wktime;
  484. ret = alarm_setup(alarm, &alarm->wktime);
  485. }
  486. break;
  487. }
  488. rt_mutex_release(&_container.mutex);
  489. return (ret);
  490. }
  491. /** \brief start an alarm
  492. *
  493. * \param alarm pointer to alarm
  494. * \return RT_EOK
  495. */
  496. rt_err_t rt_alarm_start(rt_alarm_t alarm)
  497. {
  498. rt_int32_t sec_now, sec_old, sec_new;
  499. rt_err_t ret = RT_EOK;
  500. time_t timestamp;
  501. struct tm now;
  502. if (alarm == RT_NULL)
  503. return (RT_ERROR);
  504. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  505. if (!(alarm->flag & RT_ALARM_STATE_START))
  506. {
  507. if (alarm_setup(alarm, &alarm->wktime) != RT_EOK)
  508. {
  509. ret = RT_ERROR;
  510. goto _exit;
  511. }
  512. timestamp = time(RT_NULL);
  513. #ifdef _WIN32
  514. _gmtime32_s(&now, &timestamp);
  515. #else
  516. gmtime_r(&timestamp, &now);
  517. #endif
  518. alarm->flag |= RT_ALARM_STATE_START;
  519. /* set alarm */
  520. if (_container.current == RT_NULL)
  521. {
  522. ret = alarm_set(alarm);
  523. }
  524. else
  525. {
  526. sec_now = alarm_mkdaysec(&now);
  527. sec_old = alarm_mkdaysec(&_container.current->wktime);
  528. sec_new = alarm_mkdaysec(&alarm->wktime);
  529. if ((sec_new < sec_old) && (sec_new > sec_now))
  530. {
  531. ret = alarm_set(alarm);
  532. }
  533. else if ((sec_new > sec_now) && (sec_old < sec_now))
  534. {
  535. ret = alarm_set(alarm);
  536. }
  537. else if ((sec_new < sec_old) && (sec_old < sec_now))
  538. {
  539. ret = alarm_set(alarm);
  540. }
  541. else
  542. {
  543. ret = RT_EOK;
  544. goto _exit;
  545. }
  546. }
  547. if (ret == RT_EOK)
  548. {
  549. _container.current = alarm;
  550. }
  551. }
  552. _exit:
  553. rt_mutex_release(&_container.mutex);
  554. return (ret);
  555. }
  556. /** \brief stop an alarm
  557. *
  558. * \param alarm pointer to alarm
  559. * \return RT_EOK
  560. */
  561. rt_err_t rt_alarm_stop(rt_alarm_t alarm)
  562. {
  563. rt_err_t ret = RT_EOK;
  564. if (alarm == RT_NULL)
  565. return (RT_ERROR);
  566. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  567. if (!(alarm->flag & RT_ALARM_STATE_START))
  568. goto _exit;
  569. /* stop alarm */
  570. alarm->flag &= ~RT_ALARM_STATE_START;
  571. if (_container.current == alarm)
  572. {
  573. ret = alarm_set(alarm);
  574. _container.current = RT_NULL;
  575. }
  576. if (ret == RT_EOK)
  577. alarm_update(0);
  578. _exit:
  579. rt_mutex_release(&_container.mutex);
  580. return (ret);
  581. }
  582. /** \brief delete an alarm
  583. *
  584. * \param alarm pointer to alarm
  585. * \return RT_EOK
  586. */
  587. rt_err_t rt_alarm_delete(rt_alarm_t alarm)
  588. {
  589. rt_err_t ret = RT_EOK;
  590. if (alarm == RT_NULL)
  591. return RT_ERROR;
  592. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  593. /* stop the alarm */
  594. alarm->flag &= ~RT_ALARM_STATE_START;
  595. if (_container.current == alarm)
  596. {
  597. ret = alarm_set(alarm);
  598. _container.current = RT_NULL;
  599. /* set new alarm if necessary */
  600. alarm_update(0);
  601. }
  602. rt_list_remove(&alarm->list);
  603. rt_free(alarm);
  604. rt_mutex_release(&_container.mutex);
  605. return (ret);
  606. }
  607. /** \brief create an alarm
  608. *
  609. * \param flag set alarm mode e.g: RT_ALARM_DAILY
  610. * \param setup pointer to setup infomation
  611. */
  612. rt_alarm_t rt_alarm_create(rt_alarm_callback_t callback, struct rt_alarm_setup *setup)
  613. {
  614. struct rt_alarm *alarm;
  615. if (setup == RT_NULL)
  616. return (RT_NULL);
  617. alarm = rt_malloc(sizeof(struct rt_alarm));
  618. if (alarm == RT_NULL)
  619. return (RT_NULL);
  620. rt_list_init(&alarm->list);
  621. alarm->wktime = setup->wktime;
  622. alarm->flag = setup->flag & 0xFF00;
  623. alarm->callback = callback;
  624. rt_mutex_take(&_container.mutex, RT_WAITING_FOREVER);
  625. rt_list_insert_after(&_container.head, &alarm->list);
  626. rt_mutex_release(&_container.mutex);
  627. return (alarm);
  628. }
  629. /** \brief rtc alarm service thread entry
  630. *
  631. */
  632. static void rt_alarmsvc_thread_init(void *param)
  633. {
  634. rt_uint32_t recv;
  635. _container.current = RT_NULL;
  636. while (1)
  637. {
  638. if (rt_event_recv(&_container.event, 0xFFFF,
  639. RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
  640. RT_WAITING_FOREVER, &recv) == RT_EOK)
  641. {
  642. alarm_update(recv);
  643. }
  644. }
  645. }
  646. struct _alarm_flag
  647. {
  648. const char* name;
  649. rt_uint32_t flag;
  650. };
  651. static const struct _alarm_flag _alarm_flag_tbl[] =
  652. {
  653. {"N", 0xffff}, /* none */
  654. {"O", RT_ALARM_ONESHOT}, /* only alarm onece */
  655. {"D", RT_ALARM_DAILY}, /* alarm everyday */
  656. {"W", RT_ALARM_WEEKLY}, /* alarm weekly at Monday or Friday etc. */
  657. {"Mo", RT_ALARM_MONTHLY}, /* alarm monthly at someday */
  658. {"Y", RT_ALARM_YAERLY}, /* alarm yearly at a certain date */
  659. {"H", RT_ALARM_HOUR}, /* alarm each hour at a certain min:second */
  660. {"M", RT_ALARM_MINUTE}, /* alarm each minute at a certain second */
  661. {"S", RT_ALARM_SECOND}, /* alarm each second */
  662. };
  663. static rt_uint8_t _alarm_flag_tbl_size = sizeof(_alarm_flag_tbl) / sizeof(_alarm_flag_tbl[0]);
  664. static rt_uint8_t get_alarm_flag_index(rt_uint32_t alarm_flag)
  665. {
  666. for (rt_uint8_t index = 0; index < _alarm_flag_tbl_size; index++)
  667. {
  668. alarm_flag &= 0xff00;
  669. if (alarm_flag == _alarm_flag_tbl[index].flag)
  670. {
  671. return index;
  672. }
  673. }
  674. return 0;
  675. }
  676. void rt_alarm_dump(void)
  677. {
  678. rt_list_t *next;
  679. rt_alarm_t alarm;
  680. rt_uint8_t index = 0;
  681. rt_kprintf("| id | YYYY-MM-DD hh:mm:ss | week | flag | en |\n");
  682. rt_kprintf("+----+---------------------+------+------+----+\n");
  683. for (next = _container.head.next; next != &_container.head; next = next->next)
  684. {
  685. alarm = rt_list_entry(next, struct rt_alarm, list);
  686. rt_uint8_t flag_index = get_alarm_flag_index(alarm->flag);
  687. rt_kprintf("| %2d | %04d-%02d-%02d %02d:%02d:%02d | %2d | %2s | %2d |\n",
  688. index++, alarm->wktime.tm_year + 1900, alarm->wktime.tm_mon + 1, alarm->wktime.tm_mday,
  689. alarm->wktime.tm_hour, alarm->wktime.tm_min, alarm->wktime.tm_sec,
  690. alarm->wktime.tm_wday, _alarm_flag_tbl[flag_index].name, alarm->flag & RT_ALARM_STATE_START);
  691. }
  692. rt_kprintf("+----+---------------------+------+------+----+\n");
  693. }
  694. MSH_CMD_EXPORT_ALIAS(rt_alarm_dump, rt_alarm_dump, dump alarm info);
  695. /** \brief initialize alarm service system
  696. *
  697. * \param none
  698. * \return none
  699. */
  700. int rt_alarm_system_init(void)
  701. {
  702. rt_thread_t tid;
  703. rt_list_init(&_container.head);
  704. rt_event_init(&_container.event, "alarmsvc", RT_IPC_FLAG_FIFO);
  705. rt_mutex_init(&_container.mutex, "alarmsvc", RT_IPC_FLAG_PRIO);
  706. tid = rt_thread_create("alarmsvc",
  707. rt_alarmsvc_thread_init, RT_NULL,
  708. 2048, 10, 5);
  709. if (tid != RT_NULL)
  710. rt_thread_startup(tid);
  711. return 0;
  712. }
  713. INIT_PREV_EXPORT(rt_alarm_system_init);
  714. #endif