sensor.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. */
  10. #include "sensor.h"
  11. #define DBG_TAG "sensor"
  12. #define DBG_LVL DBG_INFO
  13. #include <rtdbg.h>
  14. #include <string.h>
  15. static char *const sensor_name_str[] =
  16. {
  17. "none",
  18. "acce_", /* Accelerometer */
  19. "gyro_", /* Gyroscope */
  20. "mag_", /* Magnetometer */
  21. "temp_", /* Temperature */
  22. "humi_", /* Relative Humidity */
  23. "baro_", /* Barometer */
  24. "li_", /* Ambient light */
  25. "pr_", /* Proximity */
  26. "hr_", /* Heart Rate */
  27. "tvoc_", /* TVOC Level */
  28. "noi_", /* Noise Loudness */
  29. "step_" /* Step sensor */
  30. };
  31. /* Sensor interrupt correlation function */
  32. /*
  33. * Sensor interrupt handler function
  34. */
  35. void rt_sensor_cb(rt_sensor_t sen)
  36. {
  37. if (sen->parent.rx_indicate == RT_NULL)
  38. {
  39. return;
  40. }
  41. if (sen->irq_handle != RT_NULL)
  42. {
  43. sen->irq_handle(sen);
  44. }
  45. /* The buffer is not empty. Read the data in the buffer first */
  46. if (sen->data_len > 0)
  47. {
  48. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  49. }
  50. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  51. {
  52. /* The interrupt mode only produces one data at a time */
  53. sen->parent.rx_indicate(&sen->parent, 1);
  54. }
  55. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  56. {
  57. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  58. }
  59. }
  60. /* ISR for sensor interrupt */
  61. static void irq_callback(void *args)
  62. {
  63. rt_sensor_t sensor = args;
  64. rt_uint8_t i;
  65. if (sensor->module)
  66. {
  67. /* Invoke a callback for all sensors in the module */
  68. for (i = 0; i < sensor->module->sen_num; i++)
  69. {
  70. rt_sensor_cb(sensor->module->sen[i]);
  71. }
  72. }
  73. else
  74. {
  75. rt_sensor_cb(sensor);
  76. }
  77. }
  78. /* Sensor interrupt initialization function */
  79. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  80. {
  81. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  82. {
  83. return -RT_EINVAL;
  84. }
  85. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  86. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  87. {
  88. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  89. }
  90. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  91. {
  92. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  93. }
  94. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  95. {
  96. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  97. }
  98. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  99. LOG_I("interrupt init success");
  100. return 0;
  101. }
  102. /* Sensor interrupt enable */
  103. static void rt_sensor_irq_enable(rt_sensor_t sensor)
  104. {
  105. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  106. {
  107. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  108. }
  109. }
  110. /* Sensor interrupt disable */
  111. static void rt_sensor_irq_disable(rt_sensor_t sensor)
  112. {
  113. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  114. {
  115. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  116. }
  117. }
  118. /* RT-Thread Device Interface */
  119. static rt_err_t rt_sensor_init(rt_device_t dev)
  120. {
  121. rt_sensor_t sensor = (rt_sensor_t)dev;
  122. RT_ASSERT(dev != RT_NULL);
  123. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  124. {
  125. /* Allocate memory for the sensor buffer */
  126. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  127. if (sensor->data_buf == RT_NULL)
  128. {
  129. return -RT_ENOMEM;
  130. }
  131. }
  132. return RT_EOK;
  133. }
  134. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  135. {
  136. rt_sensor_t sensor = (rt_sensor_t)dev;
  137. RT_ASSERT(dev != RT_NULL);
  138. if (sensor->module)
  139. {
  140. /* take the module mutex */
  141. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  142. }
  143. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  144. {
  145. /* If polling mode is supported, configure it to polling mode */
  146. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING) == RT_EOK)
  147. {
  148. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  149. }
  150. }
  151. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  152. {
  153. /* If interrupt mode is supported, configure it to interrupt mode */
  154. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
  155. {
  156. sensor->config.mode = RT_SENSOR_MODE_INT;
  157. /* Initialization sensor interrupt */
  158. rt_sensor_irq_init(sensor);
  159. }
  160. }
  161. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  162. {
  163. /* If fifo mode is supported, configure it to fifo mode */
  164. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
  165. {
  166. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  167. /* Initialization sensor interrupt */
  168. rt_sensor_irq_init(sensor);
  169. }
  170. }
  171. else
  172. {
  173. return -RT_EINVAL;
  174. }
  175. /* Configure power mode to normal mode */
  176. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  177. {
  178. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  179. }
  180. if (sensor->module)
  181. {
  182. /* release the module mutex */
  183. rt_mutex_release(sensor->module->lock);
  184. }
  185. return RT_EOK;
  186. }
  187. static rt_err_t rt_sensor_close(rt_device_t dev)
  188. {
  189. rt_sensor_t sensor = (rt_sensor_t)dev;
  190. RT_ASSERT(dev != RT_NULL);
  191. if (sensor->module)
  192. {
  193. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  194. }
  195. /* Configure power mode to power down mode */
  196. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  197. {
  198. sensor->config.power = RT_SENSOR_POWER_DOWN;
  199. }
  200. /* Sensor disable interrupt */
  201. rt_sensor_irq_disable(sensor);
  202. if (sensor->module)
  203. {
  204. rt_mutex_release(sensor->module->lock);
  205. }
  206. return RT_EOK;
  207. }
  208. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  209. {
  210. rt_sensor_t sensor = (rt_sensor_t)dev;
  211. rt_size_t result = 0;
  212. RT_ASSERT(dev != RT_NULL);
  213. if (buf == NULL || len == 0)
  214. {
  215. return 0;
  216. }
  217. if (sensor->module)
  218. {
  219. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  220. }
  221. /* The buffer is not empty. Read the data in the buffer first */
  222. if (sensor->data_len > 0)
  223. {
  224. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  225. {
  226. len = sensor->data_len / sizeof(struct rt_sensor_data);
  227. }
  228. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  229. /* Clear the buffer */
  230. sensor->data_len = 0;
  231. result = len;
  232. }
  233. else
  234. {
  235. /* If the buffer is empty read the data */
  236. result = sensor->ops->fetch_data(sensor, buf, len);
  237. }
  238. if (sensor->module)
  239. {
  240. rt_mutex_release(sensor->module->lock);
  241. }
  242. return result;
  243. }
  244. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  245. {
  246. rt_sensor_t sensor = (rt_sensor_t)dev;
  247. rt_err_t result = RT_EOK;
  248. RT_ASSERT(dev != RT_NULL);
  249. if (sensor->module)
  250. {
  251. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  252. }
  253. switch (cmd)
  254. {
  255. case RT_SENSOR_CTRL_GET_ID:
  256. if (args)
  257. {
  258. sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args);
  259. }
  260. break;
  261. case RT_SENSOR_CTRL_GET_INFO:
  262. if (args)
  263. {
  264. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  265. }
  266. break;
  267. case RT_SENSOR_CTRL_SET_RANGE:
  268. /* Configuration measurement range */
  269. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  270. if (result == RT_EOK)
  271. {
  272. sensor->config.range = (rt_int32_t)args;
  273. LOG_D("set range %d", sensor->config.range);
  274. }
  275. break;
  276. case RT_SENSOR_CTRL_SET_ODR:
  277. /* Configuration data output rate */
  278. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  279. if (result == RT_EOK)
  280. {
  281. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  282. LOG_D("set odr %d", sensor->config.odr);
  283. }
  284. break;
  285. case RT_SENSOR_CTRL_SET_MODE:
  286. /* Configuration sensor work mode */
  287. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, args);
  288. if (result == RT_EOK)
  289. {
  290. sensor->config.mode = (rt_uint32_t)args & 0xFF;
  291. LOG_D("set work mode code:", sensor->config.mode);
  292. if (sensor->config.mode == RT_SENSOR_MODE_POLLING)
  293. {
  294. rt_sensor_irq_disable(sensor);
  295. }
  296. else if (sensor->config.mode == RT_SENSOR_MODE_INT || sensor->config.mode == RT_SENSOR_MODE_FIFO)
  297. {
  298. rt_sensor_irq_enable(sensor);
  299. }
  300. }
  301. break;
  302. case RT_SENSOR_CTRL_SET_POWER:
  303. /* Configuration sensor power mode */
  304. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  305. if (result == RT_EOK)
  306. {
  307. sensor->config.power = (rt_uint32_t)args & 0xFF;
  308. LOG_D("set power mode code:", sensor->config.power);
  309. }
  310. break;
  311. case RT_SENSOR_CTRL_SELF_TEST:
  312. /* Device self-test */
  313. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  314. break;
  315. default:
  316. return -RT_ERROR;
  317. }
  318. if (sensor->module)
  319. {
  320. rt_mutex_release(sensor->module->lock);
  321. }
  322. return result;
  323. }
  324. #ifdef RT_USING_DEVICE_OPS
  325. const static struct rt_device_ops rt_sensor_ops =
  326. {
  327. rt_sensor_init,
  328. rt_sensor_open,
  329. rt_sensor_close,
  330. rt_sensor_read,
  331. RT_NULL,
  332. rt_sensor_control
  333. };
  334. #endif
  335. /*
  336. * sensor register
  337. */
  338. int rt_hw_sensor_register(rt_sensor_t sensor,
  339. const char *name,
  340. rt_uint32_t flag,
  341. void *data)
  342. {
  343. rt_int8_t result;
  344. rt_device_t device;
  345. RT_ASSERT(sensor != RT_NULL);
  346. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  347. /* Add a type name for the sensor device */
  348. sensor_name = sensor_name_str[sensor->info.type];
  349. device_name = rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  350. if (device_name == RT_NULL)
  351. {
  352. LOG_E("device_name calloc failed!");
  353. return -RT_ERROR;
  354. }
  355. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  356. strcat(device_name, name);
  357. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  358. {
  359. /* Create a mutex lock for the module */
  360. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
  361. if (sensor->module->lock == RT_NULL)
  362. {
  363. rt_free(device_name);
  364. return -RT_ERROR;
  365. }
  366. }
  367. device = &sensor->parent;
  368. #ifdef RT_USING_DEVICE_OPS
  369. device->ops = &rt_sensor_ops;
  370. #else
  371. device->init = rt_sensor_init;
  372. device->open = rt_sensor_open;
  373. device->close = rt_sensor_close;
  374. device->read = rt_sensor_read;
  375. device->write = RT_NULL;
  376. device->control = rt_sensor_control;
  377. #endif
  378. device->type = RT_Device_Class_Sensor;
  379. device->rx_indicate = RT_NULL;
  380. device->tx_complete = RT_NULL;
  381. device->user_data = data;
  382. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  383. if (result != RT_EOK)
  384. {
  385. LOG_E("rt_sensor register err code: %d", result);
  386. return result;
  387. }
  388. LOG_I("rt_sensor init success");
  389. return RT_EOK;
  390. }