wmadeci.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592
  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file wmadec.c
  21. * WMA compatible decoder.
  22. */
  23. //#include <codecs.h>
  24. #include "codeclib.h"
  25. #include "asf.h"
  26. #include "wmadec.h"
  27. #include "wmafixed.h"
  28. #include "wmabitstream.h"
  29. #define VLCBITS 7 /*7 is the lowest without glitching*/
  30. #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
  31. #define EXPVLCBITS 7
  32. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  33. #define HGAINVLCBITS 9
  34. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  35. typedef struct CoefVLCTable
  36. {
  37. int n; /* total number of codes */
  38. const uint32_t *huffcodes; /* VLC bit values */
  39. const uint8_t *huffbits; /* VLC bit size */
  40. const uint16_t *levels; /* table to build run/level tables */
  41. } CoefVLCTable;
  42. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
  43. fixed32 coefsarray[MAX_CHANNELS][BLOCK_MAX_SIZE] ;
  44. /*decode and window into IRAM on targets with at least 80KB of codec IRAM*/
  45. fixed32 frame_out_buf[MAX_CHANNELS][BLOCK_MAX_SIZE * 2] ;
  46. //static variables that replace malloced stuff
  47. fixed32 stat0[2048], stat1[1024], stat2[512], stat3[256], stat4[128]; //these are the MDCT reconstruction windows
  48. uint16_t *runtabarray[2], *levtabarray[2]; //these are VLC lookup tables
  49. uint16_t runtab0[1336], runtab1[1336], levtab0[1336], levtab1[1336]; //these could be made smaller since only one can be 1336
  50. #define VLCBUF1SIZE 4598
  51. #define VLCBUF2SIZE 3574
  52. #define VLCBUF3SIZE 360
  53. #define VLCBUF4SIZE 540
  54. /*putting these in IRAM actually makes PP slower*/
  55. VLC_TYPE vlcbuf1[VLCBUF1SIZE][2];
  56. VLC_TYPE vlcbuf2[VLCBUF2SIZE][2];
  57. VLC_TYPE vlcbuf3[VLCBUF3SIZE][2];
  58. VLC_TYPE vlcbuf4[VLCBUF4SIZE][2];
  59. #include "wmadata.h"
  60. /*
  61. * Helper functions for wma_window.
  62. *
  63. *
  64. */
  65. #ifdef CPU_ARM
  66. static inline
  67. void vector_fmul_add_add(fixed32 *dst, const fixed32 *data,
  68. const fixed32 *window, int n)
  69. {
  70. /* Block sizes are always power of two */
  71. asm volatile (
  72. "0:"
  73. "ldmia %[d]!, {r0, r1};"
  74. "ldmia %[w]!, {r4, r5};"
  75. /* consume the first data and window value so we can use those
  76. * registers again */
  77. "smull r8, r9, r0, r4;"
  78. "ldmia %[dst], {r0, r4};"
  79. "add r0, r0, r9, lsl #1;" /* *dst=*dst+(r9<<1)*/
  80. "smull r8, r9, r1, r5;"
  81. "add r1, r4, r9, lsl #1;"
  82. "stmia %[dst]!, {r0, r1};"
  83. "subs %[n], %[n], #2;"
  84. "bne 0b;"
  85. : [d] "+r" (data), [w] "+r" (window), [dst] "+r" (dst), [n] "+r" (n)
  86. : : "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc");
  87. }
  88. static inline
  89. void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1,
  90. int len)
  91. {
  92. /* Block sizes are always power of two */
  93. asm volatile (
  94. "add %[s1], %[s1], %[n], lsl #2;"
  95. "0:"
  96. "ldmia %[s0]!, {r0, r1};"
  97. "ldmdb %[s1]!, {r4, r5};"
  98. "smull r8, r9, r0, r5;"
  99. "mov r0, r9, lsl #1;"
  100. "smull r8, r9, r1, r4;"
  101. "mov r1, r9, lsl #1;"
  102. "stmia %[dst]!, {r0, r1};"
  103. "subs %[n], %[n], #2;"
  104. "bne 0b;"
  105. : [s0] "+r" (src0), [s1] "+r" (src1), [dst] "+r" (dst), [n] "+r" (len)
  106. : : "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc");
  107. }
  108. #elif defined(CPU_COLDFIRE)
  109. static inline
  110. void vector_fmul_add_add(fixed32 *dst, const fixed32 *data,
  111. const fixed32 *window, int n)
  112. {
  113. /* Block sizes are always power of two. Smallest block is always way bigger
  114. * than four too.*/
  115. asm volatile (
  116. "0:"
  117. "movem.l (%[d]), %%d0-%%d3;"
  118. "movem.l (%[w]), %%d4-%%d5/%%a0-%%a1;"
  119. "mac.l %%d0, %%d4, %%acc0;"
  120. "mac.l %%d1, %%d5, %%acc1;"
  121. "mac.l %%d2, %%a0, %%acc2;"
  122. "mac.l %%d3, %%a1, %%acc3;"
  123. "lea.l (16, %[d]), %[d];"
  124. "lea.l (16, %[w]), %[w];"
  125. "movclr.l %%acc0, %%d0;"
  126. "movclr.l %%acc1, %%d1;"
  127. "movclr.l %%acc2, %%d2;"
  128. "movclr.l %%acc3, %%d3;"
  129. "movem.l (%[dst]), %%d4-%%d5/%%a0-%%a1;"
  130. "add.l %%d4, %%d0;"
  131. "add.l %%d5, %%d1;"
  132. "add.l %%a0, %%d2;"
  133. "add.l %%a1, %%d3;"
  134. "movem.l %%d0-%%d3, (%[dst]);"
  135. "lea.l (16, %[dst]), %[dst];"
  136. "subq.l #4, %[n];"
  137. "jne 0b;"
  138. : [d] "+a" (data), [w] "+a" (window), [dst] "+a" (dst), [n] "+d" (n)
  139. : : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc");
  140. }
  141. static inline
  142. void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1,
  143. int len)
  144. {
  145. /* Block sizes are always power of two. Smallest block is always way bigger
  146. * than four too.*/
  147. asm volatile (
  148. "lea.l (-16, %[s1], %[n]*4), %[s1];"
  149. "0:"
  150. "movem.l (%[s0]), %%d0-%%d3;"
  151. "movem.l (%[s1]), %%d4-%%d5/%%a0-%%a1;"
  152. "mac.l %%d0, %%a1, %%acc0;"
  153. "mac.l %%d1, %%a0, %%acc1;"
  154. "mac.l %%d2, %%d5, %%acc2;"
  155. "mac.l %%d3, %%d4, %%acc3;"
  156. "lea.l (16, %[s0]), %[s0];"
  157. "lea.l (-16, %[s1]), %[s1];"
  158. "movclr.l %%acc0, %%d0;"
  159. "movclr.l %%acc1, %%d1;"
  160. "movclr.l %%acc2, %%d2;"
  161. "movclr.l %%acc3, %%d3;"
  162. "movem.l %%d0-%%d3, (%[dst]);"
  163. "lea.l (16, %[dst]), %[dst];"
  164. "subq.l #4, %[n];"
  165. "jne 0b;"
  166. : [s0] "+a" (src0), [s1] "+a" (src1), [dst] "+a" (dst), [n] "+d" (len)
  167. : : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc");
  168. }
  169. #else
  170. static inline void vector_fmul_add_add(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
  171. int i;
  172. for(i=0; i<len; i++)
  173. dst[i] = fixmul32b(src0[i], src1[i]) + dst[i];
  174. }
  175. static inline void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
  176. int i;
  177. src1 += len-1;
  178. for(i=0; i<len; i++)
  179. dst[i] = fixmul32b(src0[i], src1[-i]);
  180. }
  181. #endif
  182. /**
  183. * Apply MDCT window and add into output.
  184. *
  185. * We ensure that when the windows overlap their squared sum
  186. * is always 1 (MDCT reconstruction rule).
  187. *
  188. * The Vorbis I spec has a great diagram explaining this process.
  189. * See section 1.3.2.3 of http://xiph.org/vorbis/doc/Vorbis_I_spec.html
  190. */
  191. static void wma_window(WMADecodeContext *s, fixed32 *in, fixed32 *out)
  192. {
  193. //float *in = s->output;
  194. int block_len, bsize, n;
  195. /* left part */
  196. /*previous block was larger, so we'll use the size of the current block to set the window size*/
  197. if (s->block_len_bits <= s->prev_block_len_bits) {
  198. block_len = s->block_len;
  199. bsize = s->frame_len_bits - s->block_len_bits;
  200. vector_fmul_add_add(out, in, s->windows[bsize], block_len);
  201. } else {
  202. /*previous block was smaller or the same size, so use it's size to set the window length*/
  203. block_len = 1 << s->prev_block_len_bits;
  204. /*find the middle of the two overlapped blocks, this will be the first overlapped sample*/
  205. n = (s->block_len - block_len) / 2;
  206. bsize = s->frame_len_bits - s->prev_block_len_bits;
  207. vector_fmul_add_add(out+n, in+n, s->windows[bsize], block_len);
  208. memcpy(out+n+block_len, in+n+block_len, n*sizeof(fixed32));
  209. }
  210. /* Advance to the end of the current block and prepare to window it for the next block.
  211. * Since the window function needs to be reversed, we do it backwards starting with the
  212. * last sample and moving towards the first
  213. */
  214. out += s->block_len;
  215. in += s->block_len;
  216. /* right part */
  217. if (s->block_len_bits <= s->next_block_len_bits) {
  218. block_len = s->block_len;
  219. bsize = s->frame_len_bits - s->block_len_bits;
  220. vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  221. } else {
  222. block_len = 1 << s->next_block_len_bits;
  223. n = (s->block_len - block_len) / 2;
  224. bsize = s->frame_len_bits - s->next_block_len_bits;
  225. memcpy(out, in, n*sizeof(fixed32));
  226. vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  227. memset(out+n+block_len, 0, n*sizeof(fixed32));
  228. }
  229. }
  230. /* XXX: use same run/length optimization as mpeg decoders */
  231. static void init_coef_vlc(VLC *vlc,
  232. uint16_t **prun_table, uint16_t **plevel_table,
  233. const CoefVLCTable *vlc_table, int tab)
  234. {
  235. int n = vlc_table->n;
  236. const uint8_t *table_bits = vlc_table->huffbits;
  237. const uint32_t *table_codes = vlc_table->huffcodes;
  238. const uint16_t *levels_table = vlc_table->levels;
  239. uint16_t *run_table, *level_table;
  240. const uint16_t *p;
  241. int i, l, j, level;
  242. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  243. run_table = runtabarray[tab];
  244. level_table= levtabarray[tab];
  245. p = levels_table;
  246. i = 2;
  247. level = 1;
  248. while (i < n)
  249. {
  250. l = *p++;
  251. for(j=0;j<l;++j)
  252. {
  253. run_table[i] = j;
  254. level_table[i] = level;
  255. ++i;
  256. }
  257. ++level;
  258. }
  259. *prun_table = run_table;
  260. *plevel_table = level_table;
  261. }
  262. int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx)
  263. {
  264. int i, flags1, flags2;
  265. fixed32 *window;
  266. uint8_t *extradata;
  267. fixed64 bps1;
  268. fixed32 high_freq;
  269. fixed64 bps;
  270. int sample_rate1;
  271. int coef_vlc_table;
  272. fixed32 *temp[5];
  273. #ifdef CPU_COLDFIRE
  274. coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
  275. #endif
  276. /*clear stereo setting to avoid glitches when switching stereo->mono*/
  277. s->channel_coded[0]=0;
  278. s->channel_coded[1]=0;
  279. s->ms_stereo=0;
  280. s->sample_rate = wfx->rate;
  281. s->nb_channels = wfx->channels;
  282. s->bit_rate = wfx->bitrate;
  283. s->block_align = wfx->blockalign;
  284. s->coefs = &coefsarray;
  285. s->frame_out = &frame_out_buf;
  286. if (wfx->codec_id == ASF_CODEC_ID_WMAV1) {
  287. s->version = 1;
  288. } else if (wfx->codec_id == ASF_CODEC_ID_WMAV2 ) {
  289. s->version = 2;
  290. } else {
  291. /*one of those other wma flavors that don't have GPLed decoders */
  292. return -1;
  293. }
  294. /* extract flag infos */
  295. flags1 = 0;
  296. flags2 = 0;
  297. extradata = wfx->data;
  298. if (s->version == 1 && wfx->datalen >= 4) {
  299. flags1 = extradata[0] | (extradata[1] << 8);
  300. flags2 = extradata[2] | (extradata[3] << 8);
  301. }else if (s->version == 2 && wfx->datalen >= 6){
  302. flags1 = extradata[0] | (extradata[1] << 8) |
  303. (extradata[2] << 16) | (extradata[3] << 24);
  304. flags2 = extradata[4] | (extradata[5] << 8);
  305. }
  306. s->use_exp_vlc = flags2 & 0x0001;
  307. s->use_bit_reservoir = flags2 & 0x0002;
  308. s->use_variable_block_len = flags2 & 0x0004;
  309. /* compute MDCT block size */
  310. if (s->sample_rate <= 16000){
  311. s->frame_len_bits = 9;
  312. }else if (s->sample_rate <= 22050 ||
  313. (s->sample_rate <= 32000 && s->version == 1)){
  314. s->frame_len_bits = 10;
  315. }else{
  316. s->frame_len_bits = 11;
  317. }
  318. s->frame_len = 1 << s->frame_len_bits;
  319. if (s-> use_variable_block_len)
  320. {
  321. int nb_max, nb;
  322. nb = ((flags2 >> 3) & 3) + 1;
  323. if ((s->bit_rate / s->nb_channels) >= 32000)
  324. {
  325. nb += 2;
  326. }
  327. nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7
  328. if (nb > nb_max)
  329. nb = nb_max;
  330. s->nb_block_sizes = nb + 1;
  331. }
  332. else
  333. {
  334. s->nb_block_sizes = 1;
  335. }
  336. /* init rate dependant parameters */
  337. s->use_noise_coding = 1;
  338. high_freq = itofix64(s->sample_rate) >> 1;
  339. /* if version 2, then the rates are normalized */
  340. sample_rate1 = s->sample_rate;
  341. if (s->version == 2)
  342. {
  343. if (sample_rate1 >= 44100)
  344. sample_rate1 = 44100;
  345. else if (sample_rate1 >= 22050)
  346. sample_rate1 = 22050;
  347. else if (sample_rate1 >= 16000)
  348. sample_rate1 = 16000;
  349. else if (sample_rate1 >= 11025)
  350. sample_rate1 = 11025;
  351. else if (sample_rate1 >= 8000)
  352. sample_rate1 = 8000;
  353. }
  354. {
  355. fixed64 tmp, tmp2;
  356. fixed64 tim, tmpi;
  357. tmp = itofix64(s->bit_rate);
  358. tmp2 = itofix64(s->nb_channels * s->sample_rate);
  359. bps = fixdiv64(tmp, tmp2);
  360. tim = bps * s->frame_len;
  361. tmpi = fixdiv64(tim,itofix64(8));
  362. s->byte_offset_bits = av_log2(fixtoi64(tmpi+0x8000)) + 2;
  363. }
  364. /* compute high frequency value and choose if noise coding should
  365. be activated */
  366. bps1 = bps;
  367. if (s->nb_channels == 2)
  368. bps1 = fixmul32(bps,0x1999a);
  369. if (sample_rate1 == 44100)
  370. {
  371. if (bps1 >= 0x9c29)
  372. s->use_noise_coding = 0;
  373. else
  374. high_freq = fixmul32(high_freq,0x6666);
  375. }
  376. else if (sample_rate1 == 22050)
  377. {
  378. if (bps1 >= 0x128f6)
  379. s->use_noise_coding = 0;
  380. else if (bps1 >= 0xb852)
  381. high_freq = fixmul32(high_freq,0xb333);
  382. else
  383. high_freq = fixmul32(high_freq,0x999a);
  384. }
  385. else if (sample_rate1 == 16000)
  386. {
  387. if (bps > 0x8000)
  388. high_freq = fixmul32(high_freq,0x8000);
  389. else
  390. high_freq = fixmul32(high_freq,0x4ccd);
  391. }
  392. else if (sample_rate1 == 11025)
  393. {
  394. high_freq = fixmul32(high_freq,0xb333);
  395. }
  396. else if (sample_rate1 == 8000)
  397. {
  398. if (bps <= 0xa000)
  399. {
  400. high_freq = fixmul32(high_freq,0x8000);
  401. }
  402. else if (bps > 0xc000)
  403. {
  404. s->use_noise_coding = 0;
  405. }
  406. else
  407. {
  408. high_freq = fixmul32(high_freq,0xa666);
  409. }
  410. }
  411. else
  412. {
  413. if (bps >= 0xcccd)
  414. {
  415. high_freq = fixmul32(high_freq,0xc000);
  416. }
  417. else if (bps >= 0x999a)
  418. {
  419. high_freq = fixmul32(high_freq,0x999a);
  420. }
  421. else
  422. {
  423. high_freq = fixmul32(high_freq,0x8000);
  424. }
  425. }
  426. /* compute the scale factor band sizes for each MDCT block size */
  427. {
  428. int a, b, pos, lpos, k, block_len, i, j, n;
  429. const uint8_t *table;
  430. fixed32 tmp1, tmp2;
  431. if (s->version == 1)
  432. {
  433. s->coefs_start = 3;
  434. }
  435. else
  436. {
  437. s->coefs_start = 0;
  438. }
  439. for(k = 0; k < s->nb_block_sizes; ++k)
  440. {
  441. block_len = s->frame_len >> k;
  442. if (s->version == 1)
  443. {
  444. lpos = 0;
  445. for(i=0;i<25;++i)
  446. {
  447. a = wma_critical_freqs[i];
  448. b = s->sample_rate;
  449. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  450. if (pos > block_len)
  451. pos = block_len;
  452. s->exponent_bands[0][i] = pos - lpos;
  453. if (pos >= block_len)
  454. {
  455. ++i;
  456. break;
  457. }
  458. lpos = pos;
  459. }
  460. s->exponent_sizes[0] = i;
  461. }
  462. else
  463. {
  464. /* hardcoded tables */
  465. table = NULL;
  466. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  467. if (a < 3)
  468. {
  469. if (s->sample_rate >= 44100)
  470. table = exponent_band_44100[a];
  471. else if (s->sample_rate >= 32000)
  472. table = exponent_band_32000[a];
  473. else if (s->sample_rate >= 22050)
  474. table = exponent_band_22050[a];
  475. }
  476. if (table)
  477. {
  478. n = *table++;
  479. for(i=0;i<n;++i)
  480. s->exponent_bands[k][i] = table[i];
  481. s->exponent_sizes[k] = n;
  482. }
  483. else
  484. {
  485. j = 0;
  486. lpos = 0;
  487. for(i=0;i<25;++i)
  488. {
  489. a = wma_critical_freqs[i];
  490. b = s->sample_rate;
  491. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  492. pos <<= 2;
  493. if (pos > block_len)
  494. pos = block_len;
  495. if (pos > lpos)
  496. s->exponent_bands[k][j++] = pos - lpos;
  497. if (pos >= block_len)
  498. break;
  499. lpos = pos;
  500. }
  501. s->exponent_sizes[k] = j;
  502. }
  503. }
  504. /* max number of coefs */
  505. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  506. /* high freq computation */
  507. tmp1 = high_freq*2; /* high_freq is a fixed32!*/
  508. tmp2 = itofix32(s->sample_rate>>1);
  509. s->high_band_start[k] = fixtoi32( fixdiv32(tmp1, tmp2) * (block_len>>1) +0x8000);
  510. /*
  511. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  512. s->sample_rate + 0.5);*/
  513. n = s->exponent_sizes[k];
  514. j = 0;
  515. pos = 0;
  516. for(i=0;i<n;++i)
  517. {
  518. int start, end;
  519. start = pos;
  520. pos += s->exponent_bands[k][i];
  521. end = pos;
  522. if (start < s->high_band_start[k])
  523. start = s->high_band_start[k];
  524. if (end > s->coefs_end[k])
  525. end = s->coefs_end[k];
  526. if (end > start)
  527. s->exponent_high_bands[k][j++] = end - start;
  528. }
  529. s->exponent_high_sizes[k] = j;
  530. }
  531. }
  532. /*Not using the ffmpeg IMDCT anymore*/
  533. /* mdct_init_global();
  534. for(i = 0; i < s->nb_block_sizes; ++i)
  535. {
  536. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
  537. }
  538. */
  539. /*ffmpeg uses malloc to only allocate as many window sizes as needed. However, we're really only interested in the worst case memory usage.
  540. * In the worst case you can have 5 window sizes, 128 doubling up 2048
  541. * Smaller windows are handled differently.
  542. * Since we don't have malloc, just statically allocate this
  543. */
  544. temp[0] = stat0;
  545. temp[1] = stat1;
  546. temp[2] = stat2;
  547. temp[3] = stat3;
  548. temp[4] = stat4;
  549. /* init MDCT windows : simple sinus window */
  550. for(i = 0; i < s->nb_block_sizes; i++)
  551. {
  552. int n, j;
  553. fixed32 alpha;
  554. n = 1 << (s->frame_len_bits - i);
  555. //window = av_malloc(sizeof(fixed32) * n);
  556. window = temp[i];
  557. //fixed32 n2 = itofix32(n<<1); //2x the window length
  558. //alpha = fixdiv32(M_PI_F, n2); //PI / (2x Window length) == PI<<(s->frame_len_bits - i+1)
  559. //alpha = M_PI_F>>(s->frame_len_bits - i+1);
  560. alpha = (1<<15)>>(s->frame_len_bits - i+1); /* this calculates 0.5/(2*n) */
  561. for(j=0;j<n;++j)
  562. {
  563. fixed32 j2 = itofix32(j) + 0x8000;
  564. window[j] = fsincos(fixmul32(j2,alpha)<<16, 0); //alpha between 0 and pi/2
  565. }
  566. s->windows[i] = window;
  567. }
  568. s->reset_block_lengths = 1;
  569. if (s->use_noise_coding)
  570. {
  571. /* init the noise generator */
  572. if (s->use_exp_vlc)
  573. {
  574. s->noise_mult = 0x51f;
  575. s->noise_table = noisetable_exp;
  576. }
  577. else
  578. {
  579. s->noise_mult = 0xa3d;
  580. /* LSP values are simply 2x the EXP values */
  581. for (i=0;i<NOISE_TAB_SIZE;++i)
  582. noisetable_exp[i] = noisetable_exp[i]<< 1;
  583. s->noise_table = noisetable_exp;
  584. }
  585. s->hgain_vlc.table = vlcbuf4;
  586. s->hgain_vlc.table_allocated = VLCBUF4SIZE;
  587. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
  588. hgain_huffbits, 1, 1,
  589. hgain_huffcodes, 2, 2, 0);
  590. }
  591. if (s->use_exp_vlc)
  592. {
  593. s->exp_vlc.table = vlcbuf3;
  594. s->exp_vlc.table_allocated = VLCBUF3SIZE;
  595. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
  596. scale_huffbits, 1, 1,
  597. scale_huffcodes, 4, 4, 0);
  598. }
  599. else
  600. {
  601. wma_lsp_to_curve_init(s, s->frame_len);
  602. }
  603. /* choose the VLC tables for the coefficients */
  604. coef_vlc_table = 2;
  605. if (s->sample_rate >= 32000)
  606. {
  607. if (bps1 < 0xb852)
  608. coef_vlc_table = 0;
  609. else if (bps1 < 0x128f6)
  610. coef_vlc_table = 1;
  611. }
  612. runtabarray[0] = runtab0; runtabarray[1] = runtab1;
  613. levtabarray[0] = levtab0; levtabarray[1] = levtab1;
  614. s->coef_vlc[0].table = vlcbuf1;
  615. s->coef_vlc[0].table_allocated = VLCBUF1SIZE;
  616. s->coef_vlc[1].table = vlcbuf2;
  617. s->coef_vlc[1].table_allocated = VLCBUF2SIZE;
  618. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  619. &coef_vlcs[coef_vlc_table * 2], 0);
  620. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  621. &coef_vlcs[coef_vlc_table * 2 + 1], 1);
  622. s->last_superframe_len = 0;
  623. s->last_bitoffset = 0;
  624. return 0;
  625. }
  626. /* compute x^-0.25 with an exponent and mantissa table. We use linear
  627. interpolation to reduce the mantissa table size at a small speed
  628. expense (linear interpolation approximately doubles the number of
  629. bits of precision). */
  630. static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x)
  631. {
  632. union {
  633. float f;
  634. unsigned int v;
  635. } u, t;
  636. unsigned int e, m;
  637. fixed32 a, b;
  638. u.f = fixtof64(x);
  639. e = u.v >> 23;
  640. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  641. /* build interpolation scale: 1 <= t < 2. */
  642. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  643. a = s->lsp_pow_m_table1[m];
  644. b = s->lsp_pow_m_table2[m];
  645. /* lsp_pow_e_table contains 32.32 format */
  646. /* TODO: Since we're unlikely have value that cover the whole
  647. * IEEE754 range, we probably don't need to have all possible exponents */
  648. return (lsp_pow_e_table[e] * (a + fixmul32(b, ftofix32(t.f))) >>32);
  649. }
  650. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
  651. {
  652. fixed32 a, b, temp, temp2;
  653. int i, ix = 0;
  654. // wdel = fixdiv32(M_PI_F, itofix32(frame_len));
  655. temp = fixdiv32(itofix32(1), itofix32(frame_len));
  656. for (i=0; i<frame_len; ++i)
  657. {
  658. /* TODO: can probably reuse the trig_init values here */
  659. fsincos((temp*i)<<15, &temp2);
  660. /* get 3 bits headroom + 1 bit from not doubleing the values */
  661. s->lsp_cos_table[i] = temp2>>3;
  662. }
  663. /* NOTE: these two tables are needed to avoid two operations in
  664. pow_m1_4 */
  665. b = itofix32(1);
  666. /*double check this later*/
  667. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--)
  668. {
  669. // m = (1 << LSP_POW_BITS) + i;
  670. a = pow_a_table[ix++]<<4;
  671. s->lsp_pow_m_table1[i] = 2 * a - b;
  672. s->lsp_pow_m_table2[i] = b - a;
  673. b = a;
  674. }
  675. }
  676. /* NOTE: We use the same code as Vorbis here */
  677. /* XXX: optimize it further with SSE/3Dnow */
  678. static void wma_lsp_to_curve(WMADecodeContext *s,
  679. fixed32 *out,
  680. fixed32 *val_max_ptr,
  681. int n,
  682. fixed32 *lsp)
  683. {
  684. int i, j;
  685. fixed32 p, q, w, v, val_max, temp, temp2;
  686. val_max = 0;
  687. for(i=0;i<n;++i)
  688. {
  689. /* shift by 2 now to reduce rounding error,
  690. * we can renormalize right before pow_m1_4
  691. */
  692. p = 0x8000<<5;
  693. q = 0x8000<<5;
  694. w = s->lsp_cos_table[i];
  695. for (j=1;j<NB_LSP_COEFS;j+=2)
  696. {
  697. /* w is 5.27 format, lsp is in 16.16, temp2 becomes 5.27 format */
  698. temp2 = ((w - (lsp[j - 1]<<11)));
  699. temp = q;
  700. /* q is 16.16 format, temp2 is 5.27, q becomes 16.16 */
  701. q = fixmul32b(q, temp2 )<<4;
  702. p = fixmul32b(p, (w - (lsp[j]<<11)))<<4;
  703. }
  704. /* 2 in 5.27 format is 0x10000000 */
  705. p = fixmul32(p, fixmul32b(p, (0x10000000 - w)))<<3;
  706. q = fixmul32(q, fixmul32b(q, (0x10000000 + w)))<<3;
  707. v = (p + q) >>9; /* p/q end up as 16.16 */
  708. v = pow_m1_4(s, v);
  709. if (v > val_max)
  710. val_max = v;
  711. out[i] = v;
  712. }
  713. *val_max_ptr = val_max;
  714. }
  715. /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
  716. static void decode_exp_lsp(WMADecodeContext *s, int ch)
  717. {
  718. fixed32 lsp_coefs[NB_LSP_COEFS];
  719. int val, i;
  720. for (i = 0; i < NB_LSP_COEFS; ++i)
  721. {
  722. if (i == 0 || i >= 8)
  723. val = get_bits(&s->gb, 3);
  724. else
  725. val = get_bits(&s->gb, 4);
  726. lsp_coefs[i] = lsp_codebook[i][val];
  727. }
  728. wma_lsp_to_curve(s,
  729. s->exponents[ch],
  730. &s->max_exponent[ch],
  731. s->block_len,
  732. lsp_coefs);
  733. }
  734. /* decode exponents coded with VLC codes */
  735. static int decode_exp_vlc(WMADecodeContext *s, int ch)
  736. {
  737. int last_exp, n, code;
  738. const uint16_t *ptr, *band_ptr;
  739. fixed32 v, max_scale;
  740. fixed32 *q,*q_end;
  741. /*accommodate the 60 negative indices */
  742. const fixed32 *pow_10_to_yover16_ptr = &pow_10_to_yover16[61];
  743. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  744. ptr = band_ptr;
  745. q = s->exponents[ch];
  746. q_end = q + s->block_len;
  747. max_scale = 0;
  748. if (s->version == 1) //wmav1 only
  749. {
  750. last_exp = get_bits(&s->gb, 5) + 10;
  751. /* XXX: use a table */
  752. v = pow_10_to_yover16_ptr[last_exp];
  753. max_scale = v;
  754. n = *ptr++;
  755. do
  756. {
  757. *q++ = v;
  758. }
  759. while (--n);
  760. } else {
  761. last_exp = 36;
  762. }
  763. while (q < q_end)
  764. {
  765. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  766. if (code < 0)
  767. {
  768. return -1;
  769. }
  770. /* NOTE: this offset is the same as MPEG4 AAC ! */
  771. last_exp += code - 60;
  772. /* XXX: use a table */
  773. v = pow_10_to_yover16_ptr[last_exp];
  774. if (v > max_scale)
  775. {
  776. max_scale = v;
  777. }
  778. n = *ptr++;
  779. do
  780. {
  781. *q++ = v;
  782. }
  783. while (--n);
  784. }
  785. s->max_exponent[ch] = max_scale;
  786. return 0;
  787. }
  788. /* return 0 if OK. return 1 if last block of frame. return -1 if
  789. unrecorrable error. */
  790. static int wma_decode_block(WMADecodeContext *s, int32_t *scratch_buffer)
  791. {
  792. int n, v, a, ch, code, bsize;
  793. int coef_nb_bits, total_gain;
  794. int nb_coefs[MAX_CHANNELS];
  795. fixed32 mdct_norm;
  796. /*DEBUGF("***decode_block: %d (%d samples of %d in frame)\n", s->block_num, s->block_len, s->frame_len);*/
  797. /* compute current block length */
  798. if (s->use_variable_block_len)
  799. {
  800. n = av_log2(s->nb_block_sizes - 1) + 1;
  801. if (s->reset_block_lengths)
  802. {
  803. s->reset_block_lengths = 0;
  804. v = get_bits(&s->gb, n);
  805. if (v >= s->nb_block_sizes)
  806. {
  807. return -2;
  808. }
  809. s->prev_block_len_bits = s->frame_len_bits - v;
  810. v = get_bits(&s->gb, n);
  811. if (v >= s->nb_block_sizes)
  812. {
  813. return -3;
  814. }
  815. s->block_len_bits = s->frame_len_bits - v;
  816. }
  817. else
  818. {
  819. /* update block lengths */
  820. s->prev_block_len_bits = s->block_len_bits;
  821. s->block_len_bits = s->next_block_len_bits;
  822. }
  823. v = get_bits(&s->gb, n);
  824. if (v >= s->nb_block_sizes)
  825. {
  826. // rb->splash(HZ*4, "v was %d", v); //5, 7
  827. return -4; //this is it
  828. }
  829. else{
  830. //rb->splash(HZ, "passed v block (%d)!", v);
  831. }
  832. s->next_block_len_bits = s->frame_len_bits - v;
  833. }
  834. else
  835. {
  836. /* fixed block len */
  837. s->next_block_len_bits = s->frame_len_bits;
  838. s->prev_block_len_bits = s->frame_len_bits;
  839. s->block_len_bits = s->frame_len_bits;
  840. }
  841. /* now check if the block length is coherent with the frame length */
  842. s->block_len = 1 << s->block_len_bits;
  843. if ((s->block_pos + s->block_len) > s->frame_len)
  844. {
  845. return -5; //oddly 32k sample from tracker fails here
  846. }
  847. if (s->nb_channels == 2)
  848. {
  849. s->ms_stereo = get_bits1(&s->gb);
  850. }
  851. v = 0;
  852. for (ch = 0; ch < s->nb_channels; ++ch)
  853. {
  854. a = get_bits1(&s->gb);
  855. s->channel_coded[ch] = a;
  856. v |= a;
  857. }
  858. /* if no channel coded, no need to go further */
  859. /* XXX: fix potential framing problems */
  860. if (!v)
  861. {
  862. goto next;
  863. }
  864. bsize = s->frame_len_bits - s->block_len_bits;
  865. /* read total gain and extract corresponding number of bits for
  866. coef escape coding */
  867. total_gain = 1;
  868. for(;;)
  869. {
  870. a = get_bits(&s->gb, 7);
  871. total_gain += a;
  872. if (a != 127)
  873. {
  874. break;
  875. }
  876. }
  877. if (total_gain < 15)
  878. coef_nb_bits = 13;
  879. else if (total_gain < 32)
  880. coef_nb_bits = 12;
  881. else if (total_gain < 40)
  882. coef_nb_bits = 11;
  883. else if (total_gain < 45)
  884. coef_nb_bits = 10;
  885. else
  886. coef_nb_bits = 9;
  887. /* compute number of coefficients */
  888. n = s->coefs_end[bsize] - s->coefs_start;
  889. for(ch = 0; ch < s->nb_channels; ++ch)
  890. {
  891. nb_coefs[ch] = n;
  892. }
  893. /* complex coding */
  894. if (s->use_noise_coding)
  895. {
  896. for(ch = 0; ch < s->nb_channels; ++ch)
  897. {
  898. if (s->channel_coded[ch])
  899. {
  900. int i, n, a;
  901. n = s->exponent_high_sizes[bsize];
  902. for(i=0;i<n;++i)
  903. {
  904. a = get_bits1(&s->gb);
  905. s->high_band_coded[ch][i] = a;
  906. /* if noise coding, the coefficients are not transmitted */
  907. if (a)
  908. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  909. }
  910. }
  911. }
  912. for(ch = 0; ch < s->nb_channels; ++ch)
  913. {
  914. if (s->channel_coded[ch])
  915. {
  916. int i, n, val, code;
  917. n = s->exponent_high_sizes[bsize];
  918. val = (int)0x80000000;
  919. for(i=0;i<n;++i)
  920. {
  921. if (s->high_band_coded[ch][i])
  922. {
  923. if (val == (int)0x80000000)
  924. {
  925. val = get_bits(&s->gb, 7) - 19;
  926. }
  927. else
  928. {
  929. //code = get_vlc(&s->gb, &s->hgain_vlc);
  930. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  931. if (code < 0)
  932. {
  933. return -6;
  934. }
  935. val += code - 18;
  936. }
  937. s->high_band_values[ch][i] = val;
  938. }
  939. }
  940. }
  941. }
  942. }
  943. /* exponents can be reused in short blocks. */
  944. if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb))
  945. {
  946. for(ch = 0; ch < s->nb_channels; ++ch)
  947. {
  948. if (s->channel_coded[ch])
  949. {
  950. if (s->use_exp_vlc)
  951. {
  952. if (decode_exp_vlc(s, ch) < 0)
  953. {
  954. return -7;
  955. }
  956. }
  957. else
  958. {
  959. decode_exp_lsp(s, ch);
  960. }
  961. s->exponents_bsize[ch] = bsize;
  962. }
  963. }
  964. }
  965. /* parse spectral coefficients : just RLE encoding */
  966. for(ch = 0; ch < s->nb_channels; ++ch)
  967. {
  968. if (s->channel_coded[ch])
  969. {
  970. VLC *coef_vlc;
  971. int level, run, sign, tindex;
  972. int16_t *ptr, *eptr;
  973. const int16_t *level_table, *run_table;
  974. /* special VLC tables are used for ms stereo because
  975. there is potentially less energy there */
  976. tindex = (ch == 1 && s->ms_stereo);
  977. coef_vlc = &s->coef_vlc[tindex];
  978. run_table = s->run_table[tindex];
  979. level_table = s->level_table[tindex];
  980. /* XXX: optimize */
  981. ptr = &s->coefs1[ch][0];
  982. eptr = ptr + nb_coefs[ch];
  983. memset(ptr, 0, s->block_len * sizeof(int16_t));
  984. for(;;)
  985. {
  986. code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
  987. //code = get_vlc(&s->gb, coef_vlc);
  988. if (code < 0)
  989. {
  990. return -8;
  991. }
  992. if (code == 1)
  993. {
  994. /* EOB */
  995. break;
  996. }
  997. else if (code == 0)
  998. {
  999. /* escape */
  1000. level = get_bits(&s->gb, coef_nb_bits);
  1001. /* NOTE: this is rather suboptimal. reading
  1002. block_len_bits would be better */
  1003. run = get_bits(&s->gb, s->frame_len_bits);
  1004. }
  1005. else
  1006. {
  1007. /* normal code */
  1008. run = run_table[code];
  1009. level = level_table[code];
  1010. }
  1011. sign = get_bits1(&s->gb);
  1012. if (!sign)
  1013. level = -level;
  1014. ptr += run;
  1015. if (ptr >= eptr)
  1016. {
  1017. break;
  1018. }
  1019. *ptr++ = level;
  1020. /* NOTE: EOB can be omitted */
  1021. if (ptr >= eptr)
  1022. break;
  1023. }
  1024. }
  1025. if (s->version == 1 && s->nb_channels >= 2)
  1026. {
  1027. align_get_bits(&s->gb);
  1028. }
  1029. }
  1030. {
  1031. int n4 = s->block_len >> 1;
  1032. mdct_norm = 0x10000>>(s->block_len_bits-1);
  1033. if (s->version == 1)
  1034. {
  1035. mdct_norm *= fixtoi32(fixsqrt32(itofix32(n4)));
  1036. }
  1037. }
  1038. /* finally compute the MDCT coefficients */
  1039. for(ch = 0; ch < s->nb_channels; ++ch)
  1040. {
  1041. if (s->channel_coded[ch])
  1042. {
  1043. int16_t *coefs1;
  1044. fixed32 *exponents;
  1045. fixed32 *coefs, atemp;
  1046. fixed64 mult;
  1047. fixed64 mult1;
  1048. fixed32 noise, temp1, temp2, mult2;
  1049. int i, j, n, n1, last_high_band, esize;
  1050. fixed32 exp_power[HIGH_BAND_MAX_SIZE];
  1051. //total_gain, coefs1, mdctnorm are lossless
  1052. coefs1 = s->coefs1[ch];
  1053. exponents = s->exponents[ch];
  1054. esize = s->exponents_bsize[ch];
  1055. coefs = (*(s->coefs))[ch];
  1056. n=0;
  1057. /*
  1058. * The calculation of coefs has a shift right by 2 built in. This
  1059. * prepares samples for the Tremor IMDCT which uses a slightly
  1060. * different fixed format then the ffmpeg one. If the old ffmpeg
  1061. * imdct is used, each shift storing into coefs should be reduced
  1062. * by 1.
  1063. * See SVN logs for details.
  1064. */
  1065. if (s->use_noise_coding)
  1066. {
  1067. /*TODO: mult should be converted to 32 bit to speed up noise coding*/
  1068. mult = fixdiv64(pow_table[total_gain+20],Fixed32To64(s->max_exponent[ch]));
  1069. mult = mult* mdct_norm;
  1070. mult1 = mult;
  1071. /* very low freqs : noise */
  1072. for(i = 0;i < s->coefs_start; ++i)
  1073. {
  1074. *coefs++ = fixmul32( (fixmul32(s->noise_table[s->noise_index],
  1075. exponents[i<<bsize>>esize])>>4),Fixed32From64(mult1)) >>2;
  1076. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  1077. }
  1078. n1 = s->exponent_high_sizes[bsize];
  1079. /* compute power of high bands */
  1080. exponents = s->exponents[ch] +(s->high_band_start[bsize]<<bsize);
  1081. last_high_band = 0; /* avoid warning */
  1082. for (j=0;j<n1;++j)
  1083. {
  1084. n = s->exponent_high_bands[s->frame_len_bits -
  1085. s->block_len_bits][j];
  1086. if (s->high_band_coded[ch][j])
  1087. {
  1088. fixed32 e2, v;
  1089. e2 = 0;
  1090. for(i = 0;i < n; ++i)
  1091. {
  1092. /*v is normalized later on so its fixed format is irrelevant*/
  1093. v = exponents[i<<bsize>>esize]>>4;
  1094. e2 += fixmul32(v, v)>>3;
  1095. }
  1096. exp_power[j] = e2/n; /*n is an int...*/
  1097. last_high_band = j;
  1098. }
  1099. exponents += n<<bsize;
  1100. }
  1101. /* main freqs and high freqs */
  1102. exponents = s->exponents[ch] + (s->coefs_start<<bsize);
  1103. for(j=-1;j<n1;++j)
  1104. {
  1105. if (j < 0)
  1106. {
  1107. n = s->high_band_start[bsize] -
  1108. s->coefs_start;
  1109. }
  1110. else
  1111. {
  1112. n = s->exponent_high_bands[s->frame_len_bits -
  1113. s->block_len_bits][j];
  1114. }
  1115. if (j >= 0 && s->high_band_coded[ch][j])
  1116. {
  1117. /* use noise with specified power */
  1118. fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]);
  1119. /*mult1 is 48.16, pow_table is 48.16*/
  1120. mult1 = fixmul32(fixsqrt32(tmp),
  1121. pow_table[s->high_band_values[ch][j]+20]) >> 16;
  1122. /*this step has a fairly high degree of error for some reason*/
  1123. mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult));
  1124. mult1 = mult1*mdct_norm>>PRECISION;
  1125. for(i = 0;i < n; ++i)
  1126. {
  1127. noise = s->noise_table[s->noise_index];
  1128. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  1129. *coefs++ = fixmul32((fixmul32(exponents[i<<bsize>>esize],noise)>>4),
  1130. Fixed32From64(mult1)) >>2;
  1131. }
  1132. exponents += n<<bsize;
  1133. }
  1134. else
  1135. {
  1136. /* coded values + small noise */
  1137. for(i = 0;i < n; ++i)
  1138. {
  1139. noise = s->noise_table[s->noise_index];
  1140. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  1141. /*don't forget to renormalize the noise*/
  1142. temp1 = (((int32_t)*coefs1++)<<16) + (noise>>4);
  1143. temp2 = fixmul32(exponents[i<<bsize>>esize], mult>>18);
  1144. *coefs++ = fixmul32(temp1, temp2);
  1145. }
  1146. exponents += n<<bsize;
  1147. }
  1148. }
  1149. /* very high freqs : noise */
  1150. n = s->block_len - s->coefs_end[bsize];
  1151. mult2 = fixmul32(mult>>16,exponents[((-1<<bsize))>>esize]) ;
  1152. for (i = 0; i < n; ++i)
  1153. {
  1154. /*renormalize the noise product and then reduce to 14.18 precison*/
  1155. *coefs++ = fixmul32(s->noise_table[s->noise_index],mult2) >>6;
  1156. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  1157. }
  1158. }
  1159. else
  1160. {
  1161. /*Noise coding not used, simply convert from exp to fixed representation*/
  1162. fixed32 mult3 = (fixed32)(fixdiv64(pow_table[total_gain+20],
  1163. Fixed32To64(s->max_exponent[ch])));
  1164. mult3 = fixmul32(mult3, mdct_norm);
  1165. /*zero the first 3 coefficients for WMA V1, does nothing otherwise*/
  1166. for(i=0; i<s->coefs_start; i++)
  1167. *coefs++=0;
  1168. n = nb_coefs[ch];
  1169. /* XXX: optimize more, unrolling this loop in asm
  1170. might be a good idea */
  1171. for(i = 0;i < n; ++i)
  1172. {
  1173. /*ffmpeg imdct needs 15.17, while tremor 14.18*/
  1174. atemp = (coefs1[i] * mult3)>>2;
  1175. *coefs++=fixmul32(atemp,exponents[i<<bsize>>esize]);
  1176. }
  1177. n = s->block_len - s->coefs_end[bsize];
  1178. memset(coefs, 0, n*sizeof(fixed32));
  1179. }
  1180. }
  1181. }
  1182. if (s->ms_stereo && s->channel_coded[1])
  1183. {
  1184. fixed32 a, b;
  1185. int i;
  1186. fixed32 (*coefs)[MAX_CHANNELS][BLOCK_MAX_SIZE] = (s->coefs);
  1187. /* nominal case for ms stereo: we do it before mdct */
  1188. /* no need to optimize this case because it should almost
  1189. never happen */
  1190. if (!s->channel_coded[0])
  1191. {
  1192. memset((*(s->coefs))[0], 0, sizeof(fixed32) * s->block_len);
  1193. s->channel_coded[0] = 1;
  1194. }
  1195. for(i = 0; i < s->block_len; ++i)
  1196. {
  1197. a = (*coefs)[0][i];
  1198. b = (*coefs)[1][i];
  1199. (*coefs)[0][i] = a + b;
  1200. (*coefs)[1][i] = a - b;
  1201. }
  1202. }
  1203. for(ch = 0; ch < s->nb_channels; ++ch)
  1204. {
  1205. if (s->channel_coded[ch])
  1206. {
  1207. int n4, index;
  1208. n4 = s->block_len >>1;
  1209. /*faster IMDCT from Vorbis*/
  1210. mdct_backward( (1 << (s->block_len_bits+1)), (int32_t*)(*(s->coefs))[ch], (int32_t*)scratch_buffer);
  1211. /*slower but more easily understood IMDCT from FFMPEG*/
  1212. //ff_imdct_calc(&s->mdct_ctx[bsize],
  1213. // output,
  1214. // (*(s->coefs))[ch]);
  1215. /* add in the frame */
  1216. index = (s->frame_len / 2) + s->block_pos - n4;
  1217. wma_window(s, scratch_buffer, &((*s->frame_out)[ch][index]));
  1218. /* specific fast case for ms-stereo : add to second
  1219. channel if it is not coded */
  1220. if (s->ms_stereo && !s->channel_coded[1])
  1221. {
  1222. wma_window(s, scratch_buffer, &((*s->frame_out)[1][index]));
  1223. }
  1224. }
  1225. }
  1226. next:
  1227. /* update block number */
  1228. ++s->block_num;
  1229. s->block_pos += s->block_len;
  1230. if (s->block_pos >= s->frame_len)
  1231. {
  1232. return 1;
  1233. }
  1234. else
  1235. {
  1236. return 0;
  1237. }
  1238. }
  1239. /* decode a frame of frame_len samples */
  1240. static int wma_decode_frame(WMADecodeContext *s, int32_t *samples)
  1241. {
  1242. int ret, i, n, ch, incr;
  1243. int32_t *ptr;
  1244. fixed32 *iptr;
  1245. /* read each block */
  1246. s->block_num = 0;
  1247. s->block_pos = 0;
  1248. for(;;)
  1249. {
  1250. ret = wma_decode_block(s, samples);
  1251. if (ret < 0)
  1252. {
  1253. DEBUGF("wma_decode_block failed with code %d\n", ret);
  1254. return -1;
  1255. }
  1256. if (ret)
  1257. {
  1258. break;
  1259. }
  1260. }
  1261. /* return frame with full 30-bit precision */
  1262. n = s->frame_len;
  1263. incr = s->nb_channels;
  1264. for(ch = 0; ch < s->nb_channels; ++ch)
  1265. {
  1266. ptr = samples + ch;
  1267. iptr = &((*s->frame_out)[ch][0]);
  1268. for (i=0;i<n;++i)
  1269. {
  1270. *ptr = (*iptr++);
  1271. ptr += incr;
  1272. }
  1273. memmove(&((*s->frame_out)[ch][0]), &((*s->frame_out)[ch][s->frame_len]),
  1274. s->frame_len * sizeof(fixed32));
  1275. }
  1276. return 0;
  1277. }
  1278. /* Initialise the superframe decoding */
  1279. int wma_decode_superframe_init(WMADecodeContext* s,
  1280. const uint8_t *buf, /*input*/
  1281. int buf_size)
  1282. {
  1283. if (buf_size==0)
  1284. {
  1285. s->last_superframe_len = 0;
  1286. return 0;
  1287. }
  1288. s->current_frame = 0;
  1289. init_get_bits(&s->gb, buf, buf_size*8);
  1290. if (s->use_bit_reservoir)
  1291. {
  1292. /* read super frame header */
  1293. skip_bits(&s->gb, 4); /* super frame index */
  1294. s->nb_frames = get_bits(&s->gb, 4);
  1295. if (s->last_superframe_len == 0)
  1296. s->nb_frames --;
  1297. else if (s->nb_frames == 0)
  1298. s->nb_frames++;
  1299. s->bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  1300. } else {
  1301. s->nb_frames = 1;
  1302. }
  1303. return 1;
  1304. }
  1305. /* Decode a single frame in the current superframe - return -1 if
  1306. there was a decoding error, or the number of samples decoded.
  1307. */
  1308. int wma_decode_superframe_frame(WMADecodeContext* s,
  1309. int32_t* samples, /*output*/
  1310. const uint8_t *buf, /*input*/
  1311. int buf_size)
  1312. {
  1313. int pos, len;
  1314. uint8_t *q;
  1315. int done = 0;
  1316. if ((s->use_bit_reservoir) && (s->current_frame == 0))
  1317. {
  1318. if (s->last_superframe_len > 0)
  1319. {
  1320. /* add s->bit_offset bits to last frame */
  1321. if ((s->last_superframe_len + ((s->bit_offset + 7) >> 3)) >
  1322. MAX_CODED_SUPERFRAME_SIZE)
  1323. {
  1324. DEBUGF("superframe size too large error\n");
  1325. goto fail;
  1326. }
  1327. q = s->last_superframe + s->last_superframe_len;
  1328. len = s->bit_offset;
  1329. while (len > 7)
  1330. {
  1331. *q++ = (get_bits)(&s->gb, 8);
  1332. len -= 8;
  1333. }
  1334. if (len > 0)
  1335. {
  1336. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  1337. }
  1338. /* XXX: s->bit_offset bits into last frame */
  1339. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  1340. /* skip unused bits */
  1341. if (s->last_bitoffset > 0)
  1342. skip_bits(&s->gb, s->last_bitoffset);
  1343. /* this frame is stored in the last superframe and in the
  1344. current one */
  1345. if (wma_decode_frame(s, samples) < 0)
  1346. {
  1347. goto fail;
  1348. }
  1349. done = 1;
  1350. }
  1351. /* read each frame starting from s->bit_offset */
  1352. pos = s->bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  1353. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  1354. len = pos & 7;
  1355. if (len > 0)
  1356. skip_bits(&s->gb, len);
  1357. s->reset_block_lengths = 1;
  1358. }
  1359. /* If we haven't decoded a frame yet, do it now */
  1360. if (!done)
  1361. {
  1362. if (wma_decode_frame(s, samples) < 0)
  1363. {
  1364. goto fail;
  1365. }
  1366. }
  1367. s->current_frame++;
  1368. if ((s->use_bit_reservoir) && (s->current_frame == s->nb_frames))
  1369. {
  1370. /* we copy the end of the frame in the last frame buffer */
  1371. pos = get_bits_count(&s->gb) + ((s->bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  1372. s->last_bitoffset = pos & 7;
  1373. pos >>= 3;
  1374. len = buf_size - pos;
  1375. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
  1376. {
  1377. DEBUGF("superframe size too large error after decoding\n");
  1378. goto fail;
  1379. }
  1380. s->last_superframe_len = len;
  1381. memcpy(s->last_superframe, buf + pos, len);
  1382. }
  1383. return s->frame_len;
  1384. fail:
  1385. /* when error, we reset the bit reservoir */
  1386. s->last_superframe_len = 0;
  1387. return -1;
  1388. }