sensor.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. */
  10. #include "sensor.h"
  11. #define DBG_ENABLE
  12. #define DBG_LEVEL DBG_INFO
  13. #define DBG_SECTION_NAME "sensor"
  14. #define DBG_COLOR
  15. #include <rtdbg.h>
  16. #include <string.h>
  17. static char *const sensor_name_str[] =
  18. {
  19. "none",
  20. "acce_", /* Accelerometer */
  21. "gyro_", /* Gyroscope */
  22. "mag_", /* Magnetometer */
  23. "temp_", /* Temperature */
  24. "humi_", /* Relative Humidity */
  25. "baro_", /* Barometer */
  26. "li_", /* Ambient light */
  27. "pr_", /* Proximity */
  28. "hr_", /* Heart Rate */
  29. "tvoc_", /* TVOC Level */
  30. "noi_", /* Noise Loudness */
  31. "step_" /* Step sensor */
  32. };
  33. /* Sensor interrupt correlation function */
  34. /*
  35. * Sensor interrupt handler function
  36. */
  37. void rt_sensor_cb(rt_sensor_t sen)
  38. {
  39. if (sen->parent.rx_indicate == RT_NULL)
  40. {
  41. return;
  42. }
  43. /* The buffer is not empty. Read the data in the buffer first */
  44. if (sen->data_len > 0)
  45. {
  46. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  47. }
  48. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  49. {
  50. /* The interrupt mode only produces one data at a time */
  51. sen->parent.rx_indicate(&sen->parent, 1);
  52. }
  53. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  54. {
  55. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  56. }
  57. }
  58. /* ISR for sensor interrupt */
  59. static void irq_callback(void *args)
  60. {
  61. rt_sensor_t sensor = args;
  62. rt_uint8_t i;
  63. if (sensor->module)
  64. {
  65. /* Invoke a callback for all sensors in the module */
  66. for (i = 0; i < sensor->module->sen_num; i++)
  67. {
  68. rt_sensor_cb(sensor->module->sen[i]);
  69. }
  70. }
  71. else
  72. {
  73. rt_sensor_cb(sensor);
  74. }
  75. }
  76. /* Sensor interrupt initialization function */
  77. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  78. {
  79. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  80. {
  81. return -RT_EINVAL;
  82. }
  83. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  84. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  85. {
  86. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  87. }
  88. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  89. {
  90. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  91. }
  92. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  93. {
  94. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  95. }
  96. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  97. LOG_I("interrupt init success");
  98. return 0;
  99. }
  100. /* Sensor interrupt enable */
  101. static void rt_sensor_irq_enable(rt_sensor_t sensor)
  102. {
  103. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  104. {
  105. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  106. }
  107. }
  108. /* Sensor interrupt disable */
  109. static void rt_sensor_irq_disable(rt_sensor_t sensor)
  110. {
  111. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  112. {
  113. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  114. }
  115. }
  116. /* RT-Thread Device Interface */
  117. static rt_err_t rt_sensor_init(rt_device_t dev)
  118. {
  119. rt_sensor_t sensor = (rt_sensor_t)dev;
  120. RT_ASSERT(dev != RT_NULL);
  121. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  122. {
  123. /* Allocate memory for the sensor buffer */
  124. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  125. if (sensor->data_buf == RT_NULL)
  126. {
  127. return -RT_ENOMEM;
  128. }
  129. }
  130. return RT_EOK;
  131. }
  132. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  133. {
  134. rt_sensor_t sensor = (rt_sensor_t)dev;
  135. RT_ASSERT(dev != RT_NULL);
  136. if (sensor->module)
  137. {
  138. /* take the module mutex */
  139. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  140. }
  141. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  142. {
  143. /* If polling mode is supported, configure it to polling mode */
  144. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING) == RT_EOK)
  145. {
  146. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  147. }
  148. }
  149. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  150. {
  151. /* If interrupt mode is supported, configure it to interrupt mode */
  152. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
  153. {
  154. sensor->config.mode = RT_SENSOR_MODE_INT;
  155. /* Initialization sensor interrupt */
  156. rt_sensor_irq_init(sensor);
  157. }
  158. }
  159. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  160. {
  161. /* If fifo mode is supported, configure it to fifo mode */
  162. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
  163. {
  164. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  165. /* Initialization sensor interrupt */
  166. rt_sensor_irq_init(sensor);
  167. }
  168. }
  169. else
  170. {
  171. return -RT_EINVAL;
  172. }
  173. /* Configure power mode to normal mode */
  174. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  175. {
  176. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  177. }
  178. if (sensor->module)
  179. {
  180. /* release the module mutex */
  181. rt_mutex_release(sensor->module->lock);
  182. }
  183. return RT_EOK;
  184. }
  185. static rt_err_t rt_sensor_close(rt_device_t dev)
  186. {
  187. rt_sensor_t sensor = (rt_sensor_t)dev;
  188. RT_ASSERT(dev != RT_NULL);
  189. if (sensor->module)
  190. {
  191. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  192. }
  193. /* Configure power mode to power down mode */
  194. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  195. {
  196. sensor->config.power = RT_SENSOR_POWER_DOWN;
  197. }
  198. /* Sensor disable interrupt */
  199. rt_sensor_irq_disable(sensor);
  200. if (sensor->module)
  201. {
  202. rt_mutex_release(sensor->module->lock);
  203. }
  204. return RT_EOK;
  205. }
  206. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  207. {
  208. rt_sensor_t sensor = (rt_sensor_t)dev;
  209. rt_size_t result = 0;
  210. RT_ASSERT(dev != RT_NULL);
  211. if (buf == NULL || len == 0)
  212. {
  213. return 0;
  214. }
  215. if (sensor->module)
  216. {
  217. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  218. }
  219. /* The buffer is not empty. Read the data in the buffer first */
  220. if (sensor->data_len > 0)
  221. {
  222. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  223. {
  224. len = sensor->data_len / sizeof(struct rt_sensor_data);
  225. }
  226. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  227. /* Clear the buffer */
  228. sensor->data_len = 0;
  229. result = len;
  230. }
  231. else
  232. {
  233. /* If the buffer is empty read the data */
  234. result = sensor->ops->fetch_data(sensor, buf, len);
  235. }
  236. if (sensor->module)
  237. {
  238. rt_mutex_release(sensor->module->lock);
  239. }
  240. return result;
  241. }
  242. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  243. {
  244. rt_sensor_t sensor = (rt_sensor_t)dev;
  245. rt_err_t result = RT_EOK;
  246. RT_ASSERT(dev != RT_NULL);
  247. if (sensor->module)
  248. {
  249. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  250. }
  251. switch (cmd)
  252. {
  253. case RT_SENSOR_CTRL_GET_ID:
  254. if (args)
  255. {
  256. sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args);
  257. }
  258. break;
  259. case RT_SENSOR_CTRL_GET_INFO:
  260. if (args)
  261. {
  262. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  263. }
  264. break;
  265. case RT_SENSOR_CTRL_SET_RANGE:
  266. /* Configuration measurement range */
  267. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  268. if (result == RT_EOK)
  269. {
  270. sensor->config.range = (rt_int32_t)args;
  271. LOG_D("set range %d", sensor->config.range);
  272. }
  273. break;
  274. case RT_SENSOR_CTRL_SET_ODR:
  275. /* Configuration data output rate */
  276. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  277. if (result == RT_EOK)
  278. {
  279. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  280. LOG_D("set odr %d", sensor->config.odr);
  281. }
  282. break;
  283. case RT_SENSOR_CTRL_SET_MODE:
  284. /* Configuration sensor work mode */
  285. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, args);
  286. if (result == RT_EOK)
  287. {
  288. sensor->config.mode = (rt_uint32_t)args & 0xFF;
  289. LOG_D("set work mode code:", sensor->config.mode);
  290. if (sensor->config.mode == RT_SENSOR_MODE_POLLING)
  291. {
  292. rt_sensor_irq_disable(sensor);
  293. }
  294. else if (sensor->config.mode == RT_SENSOR_MODE_INT || sensor->config.mode == RT_SENSOR_MODE_FIFO)
  295. {
  296. rt_sensor_irq_enable(sensor);
  297. }
  298. }
  299. break;
  300. case RT_SENSOR_CTRL_SET_POWER:
  301. /* Configuration sensor power mode */
  302. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  303. if (result == RT_EOK)
  304. {
  305. sensor->config.power = (rt_uint32_t)args & 0xFF;
  306. LOG_D("set power mode code:", sensor->config.power);
  307. }
  308. break;
  309. case RT_SENSOR_CTRL_SELF_TEST:
  310. /* Device self-test */
  311. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  312. break;
  313. default:
  314. return -RT_ERROR;
  315. }
  316. if (sensor->module)
  317. {
  318. rt_mutex_release(sensor->module->lock);
  319. }
  320. return result;
  321. }
  322. #ifdef RT_USING_DEVICE_OPS
  323. const static struct rt_device_ops rt_sensor_ops =
  324. {
  325. rt_sensor_init,
  326. rt_sensor_open,
  327. rt_sensor_close,
  328. rt_sensor_read,
  329. RT_NULL,
  330. rt_sensor_control
  331. };
  332. #endif
  333. /*
  334. * sensor register
  335. */
  336. int rt_hw_sensor_register(rt_sensor_t sensor,
  337. const char *name,
  338. rt_uint32_t flag,
  339. void *data)
  340. {
  341. rt_int8_t result;
  342. rt_device_t device;
  343. RT_ASSERT(sensor != RT_NULL);
  344. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  345. /* Add a type name for the sensor device */
  346. sensor_name = sensor_name_str[sensor->info.type];
  347. device_name = rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  348. if (device_name == RT_NULL)
  349. {
  350. LOG_E("device_name calloc failed!");
  351. return -RT_ERROR;
  352. }
  353. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  354. strcat(device_name, name);
  355. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  356. {
  357. /* Create a mutex lock for the module */
  358. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
  359. if (sensor->module->lock == RT_NULL)
  360. {
  361. rt_free(device_name);
  362. return -RT_ERROR;
  363. }
  364. }
  365. device = &sensor->parent;
  366. #ifdef RT_USING_DEVICE_OPS
  367. device->ops = &rt_sensor_ops;
  368. #else
  369. device->init = rt_sensor_init;
  370. device->open = rt_sensor_open;
  371. device->close = rt_sensor_close;
  372. device->read = rt_sensor_read;
  373. device->write = RT_NULL;
  374. device->control = rt_sensor_control;
  375. #endif
  376. device->type = RT_Device_Class_Sensor;
  377. device->rx_indicate = RT_NULL;
  378. device->tx_complete = RT_NULL;
  379. device->user_data = data;
  380. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  381. if (result != RT_EOK)
  382. {
  383. LOG_E("rt_sensor register err code: %d", result);
  384. return result;
  385. }
  386. LOG_I("rt_sensor init success");
  387. return RT_EOK;
  388. }