mmu.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-01-10 bernard porting to AM1808
  9. * 2021-11-28 GuEe-GUI first version
  10. * 2022-12-10 WangXiaoyao porting to MM
  11. * 2024-07-08 Shell added support for ASID
  12. */
  13. #define DBG_TAG "hw.mmu"
  14. #define DBG_LVL DBG_INFO
  15. #include <rtdbg.h>
  16. #include <rthw.h>
  17. #include <rtthread.h>
  18. #include <stddef.h>
  19. #include <stdint.h>
  20. #include <string.h>
  21. #define __MMU_INTERNAL
  22. #include "mm_aspace.h"
  23. #include "mm_page.h"
  24. #include "mmu.h"
  25. #include "tlb.h"
  26. #include "ioremap.h"
  27. #ifdef RT_USING_SMART
  28. #include <lwp_mm.h>
  29. #endif
  30. #define TCR_CONFIG_TBI0 rt_hw_mmu_config_tbi(0)
  31. #define TCR_CONFIG_TBI1 rt_hw_mmu_config_tbi(1)
  32. #define MMU_LEVEL_MASK 0x1ffUL
  33. #define MMU_LEVEL_SHIFT 9
  34. #define MMU_ADDRESS_BITS 39
  35. #define MMU_ADDRESS_MASK 0x0000fffffffff000UL
  36. #define MMU_ATTRIB_MASK 0xfff0000000000ffcUL
  37. #define MMU_TYPE_MASK 3UL
  38. #define MMU_TYPE_USED 1UL
  39. #define MMU_TYPE_BLOCK 1UL
  40. #define MMU_TYPE_TABLE 3UL
  41. #define MMU_TYPE_PAGE 3UL
  42. #define MMU_TBL_BLOCK_2M_LEVEL 2
  43. #define MMU_TBL_PAGE_4k_LEVEL 3
  44. #define MMU_TBL_LEVEL_NR 4
  45. /* restrict virtual address on usage of RT_NULL */
  46. #ifndef KERNEL_VADDR_START
  47. #define KERNEL_VADDR_START 0x1000
  48. #endif
  49. volatile unsigned long MMUTable[512] __attribute__((aligned(4 * 1024)));
  50. struct mmu_level_info
  51. {
  52. unsigned long *pos;
  53. void *page;
  54. };
  55. static void _kenrel_unmap_4K(unsigned long *lv0_tbl, void *v_addr)
  56. {
  57. int level;
  58. unsigned long va = (unsigned long)v_addr;
  59. unsigned long *cur_lv_tbl = lv0_tbl;
  60. unsigned long page;
  61. unsigned long off;
  62. struct mmu_level_info level_info[4];
  63. int ref;
  64. int level_shift = MMU_ADDRESS_BITS;
  65. unsigned long *pos;
  66. rt_memset(level_info, 0, sizeof level_info);
  67. for (level = 0; level < MMU_TBL_LEVEL_NR; level++)
  68. {
  69. off = (va >> level_shift);
  70. off &= MMU_LEVEL_MASK;
  71. page = cur_lv_tbl[off];
  72. if (!(page & MMU_TYPE_USED))
  73. {
  74. break;
  75. }
  76. if ((page & MMU_TYPE_MASK) == MMU_TYPE_BLOCK)
  77. {
  78. break;
  79. }
  80. /* next table entry in current level */
  81. level_info[level].pos = cur_lv_tbl + off;
  82. cur_lv_tbl = (unsigned long *)(page & MMU_ADDRESS_MASK);
  83. cur_lv_tbl = (unsigned long *)((unsigned long)cur_lv_tbl - PV_OFFSET);
  84. level_info[level].page = cur_lv_tbl;
  85. level_shift -= MMU_LEVEL_SHIFT;
  86. }
  87. level = MMU_TBL_PAGE_4k_LEVEL;
  88. pos = level_info[level].pos;
  89. if (pos)
  90. {
  91. *pos = (unsigned long)RT_NULL;
  92. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, pos, sizeof(void *));
  93. }
  94. level--;
  95. while (level >= 0)
  96. {
  97. pos = level_info[level].pos;
  98. if (pos)
  99. {
  100. void *cur_page = level_info[level].page;
  101. ref = rt_page_ref_get(cur_page, 0);
  102. if (ref == 1)
  103. {
  104. *pos = (unsigned long)RT_NULL;
  105. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, pos, sizeof(void *));
  106. }
  107. rt_pages_free(cur_page, 0);
  108. }
  109. else
  110. {
  111. break;
  112. }
  113. level--;
  114. }
  115. return;
  116. }
  117. static int _kernel_map_4K(unsigned long *lv0_tbl, void *vaddr, void *paddr, unsigned long attr)
  118. {
  119. int ret = 0;
  120. int level;
  121. unsigned long *cur_lv_tbl = lv0_tbl;
  122. unsigned long page;
  123. unsigned long off;
  124. rt_ubase_t va = (rt_ubase_t)vaddr;
  125. rt_ubase_t pa = (rt_ubase_t)paddr;
  126. int level_shift = MMU_ADDRESS_BITS;
  127. if (va & ARCH_PAGE_MASK)
  128. {
  129. return MMU_MAP_ERROR_VANOTALIGN;
  130. }
  131. if (pa & ARCH_PAGE_MASK)
  132. {
  133. return MMU_MAP_ERROR_PANOTALIGN;
  134. }
  135. for (level = 0; level < MMU_TBL_PAGE_4k_LEVEL; level++)
  136. {
  137. off = (va >> level_shift);
  138. off &= MMU_LEVEL_MASK;
  139. if (!(cur_lv_tbl[off] & MMU_TYPE_USED))
  140. {
  141. page = (unsigned long)rt_pages_alloc_ext(0, PAGE_ANY_AVAILABLE);
  142. if (!page)
  143. {
  144. ret = MMU_MAP_ERROR_NOPAGE;
  145. goto err;
  146. }
  147. rt_memset((void *)page, 0, ARCH_PAGE_SIZE);
  148. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, (void *)page, ARCH_PAGE_SIZE);
  149. cur_lv_tbl[off] = (page + PV_OFFSET) | MMU_TYPE_TABLE;
  150. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, cur_lv_tbl + off, sizeof(void *));
  151. }
  152. else
  153. {
  154. page = cur_lv_tbl[off];
  155. page &= MMU_ADDRESS_MASK;
  156. /* page to va */
  157. page -= PV_OFFSET;
  158. rt_page_ref_inc((void *)page, 0);
  159. }
  160. page = cur_lv_tbl[off];
  161. if ((page & MMU_TYPE_MASK) == MMU_TYPE_BLOCK)
  162. {
  163. /* is block! error! */
  164. ret = MMU_MAP_ERROR_CONFLICT;
  165. goto err;
  166. }
  167. cur_lv_tbl = (unsigned long *)(page & MMU_ADDRESS_MASK);
  168. cur_lv_tbl = (unsigned long *)((unsigned long)cur_lv_tbl - PV_OFFSET);
  169. level_shift -= MMU_LEVEL_SHIFT;
  170. }
  171. /* now is level page */
  172. attr &= MMU_ATTRIB_MASK;
  173. pa |= (attr | MMU_TYPE_PAGE); /* page */
  174. off = (va >> ARCH_PAGE_SHIFT);
  175. off &= MMU_LEVEL_MASK;
  176. cur_lv_tbl[off] = pa; /* page */
  177. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, cur_lv_tbl + off, sizeof(void *));
  178. return ret;
  179. err:
  180. _kenrel_unmap_4K(lv0_tbl, (void *)va);
  181. return ret;
  182. }
  183. static int _kernel_map_2M(unsigned long *lv0_tbl, void *vaddr, void *paddr, unsigned long attr)
  184. {
  185. int ret = 0;
  186. int level;
  187. unsigned long *cur_lv_tbl = lv0_tbl;
  188. unsigned long page;
  189. unsigned long off;
  190. unsigned long va = (unsigned long)vaddr;
  191. unsigned long pa = (unsigned long)paddr;
  192. int level_shift = MMU_ADDRESS_BITS;
  193. if (va & ARCH_SECTION_MASK)
  194. {
  195. return MMU_MAP_ERROR_VANOTALIGN;
  196. }
  197. if (pa & ARCH_PAGE_MASK)
  198. {
  199. return MMU_MAP_ERROR_PANOTALIGN;
  200. }
  201. for (level = 0; level < MMU_TBL_BLOCK_2M_LEVEL; level++)
  202. {
  203. off = (va >> level_shift);
  204. off &= MMU_LEVEL_MASK;
  205. if (!(cur_lv_tbl[off] & MMU_TYPE_USED))
  206. {
  207. page = (unsigned long)rt_pages_alloc_ext(0, PAGE_ANY_AVAILABLE);
  208. if (!page)
  209. {
  210. ret = MMU_MAP_ERROR_NOPAGE;
  211. goto err;
  212. }
  213. rt_memset((char *)page, 0, ARCH_PAGE_SIZE);
  214. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, (void *)page, ARCH_PAGE_SIZE);
  215. cur_lv_tbl[off] = (page + PV_OFFSET) | MMU_TYPE_TABLE;
  216. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, cur_lv_tbl + off, sizeof(void *));
  217. }
  218. else
  219. {
  220. page = cur_lv_tbl[off];
  221. page &= MMU_ADDRESS_MASK;
  222. /* page to va */
  223. page -= PV_OFFSET;
  224. rt_page_ref_inc((void *)page, 0);
  225. }
  226. page = cur_lv_tbl[off];
  227. if ((page & MMU_TYPE_MASK) == MMU_TYPE_BLOCK)
  228. {
  229. /* is block! error! */
  230. ret = MMU_MAP_ERROR_CONFLICT;
  231. goto err;
  232. }
  233. cur_lv_tbl = (unsigned long *)(page & MMU_ADDRESS_MASK);
  234. cur_lv_tbl = (unsigned long *)((unsigned long)cur_lv_tbl - PV_OFFSET);
  235. level_shift -= MMU_LEVEL_SHIFT;
  236. }
  237. /* now is level page */
  238. attr &= MMU_ATTRIB_MASK;
  239. pa |= (attr | MMU_TYPE_BLOCK); /* block */
  240. off = (va >> ARCH_SECTION_SHIFT);
  241. off &= MMU_LEVEL_MASK;
  242. cur_lv_tbl[off] = pa;
  243. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, cur_lv_tbl + off, sizeof(void *));
  244. return ret;
  245. err:
  246. _kenrel_unmap_4K(lv0_tbl, (void *)va);
  247. return ret;
  248. }
  249. void *rt_hw_mmu_map(rt_aspace_t aspace, void *v_addr, void *p_addr, size_t size,
  250. size_t attr)
  251. {
  252. int ret = -1;
  253. void *unmap_va = v_addr;
  254. size_t npages;
  255. size_t stride;
  256. int (*mapper)(unsigned long *lv0_tbl, void *vaddr, void *paddr, unsigned long attr);
  257. if (((rt_ubase_t)v_addr & ARCH_SECTION_MASK) || (size & ARCH_SECTION_MASK))
  258. {
  259. /* legacy 4k mapping */
  260. npages = size >> ARCH_PAGE_SHIFT;
  261. stride = ARCH_PAGE_SIZE;
  262. mapper = _kernel_map_4K;
  263. }
  264. else
  265. {
  266. /* 2m huge page */
  267. npages = size >> ARCH_SECTION_SHIFT;
  268. stride = ARCH_SECTION_SIZE;
  269. mapper = _kernel_map_2M;
  270. }
  271. while (npages--)
  272. {
  273. MM_PGTBL_LOCK(aspace);
  274. ret = mapper(aspace->page_table, v_addr, p_addr, attr);
  275. MM_PGTBL_UNLOCK(aspace);
  276. if (ret != 0)
  277. {
  278. /* other types of return value are taken as programming error */
  279. RT_ASSERT(ret == MMU_MAP_ERROR_NOPAGE);
  280. /* error, undo map */
  281. while (unmap_va != v_addr)
  282. {
  283. MM_PGTBL_LOCK(aspace);
  284. _kenrel_unmap_4K(aspace->page_table, (void *)unmap_va);
  285. MM_PGTBL_UNLOCK(aspace);
  286. unmap_va = (char *)unmap_va + stride;
  287. }
  288. break;
  289. }
  290. v_addr = (char *)v_addr + stride;
  291. p_addr = (char *)p_addr + stride;
  292. }
  293. if (ret == 0)
  294. {
  295. return unmap_va;
  296. }
  297. return NULL;
  298. }
  299. void rt_hw_mmu_unmap(rt_aspace_t aspace, void *v_addr, size_t size)
  300. {
  301. // caller guarantee that v_addr & size are page aligned
  302. size_t npages = size >> ARCH_PAGE_SHIFT;
  303. if (!aspace->page_table)
  304. {
  305. return;
  306. }
  307. while (npages--)
  308. {
  309. MM_PGTBL_LOCK(aspace);
  310. if (rt_hw_mmu_v2p(aspace, v_addr) != ARCH_MAP_FAILED)
  311. _kenrel_unmap_4K(aspace->page_table, v_addr);
  312. MM_PGTBL_UNLOCK(aspace);
  313. v_addr = (char *)v_addr + ARCH_PAGE_SIZE;
  314. }
  315. }
  316. #ifdef ARCH_USING_ASID
  317. /**
  318. * the asid is to identified specialized address space on TLB.
  319. * In the best case, each address space has its own exclusive asid. However,
  320. * ARM only guarantee with 8 bits of ID space, which give us only 254(except
  321. * the reserved 1 ASID for kernel).
  322. */
  323. static rt_spinlock_t _asid_lock = RT_SPINLOCK_INIT;
  324. rt_uint16_t _aspace_get_asid(rt_aspace_t aspace)
  325. {
  326. static rt_uint16_t _asid_pool = 0;
  327. rt_uint16_t asid_to, asid_from;
  328. rt_ubase_t ttbr0_from;
  329. asid_to = aspace->asid;
  330. if (asid_to == 0)
  331. {
  332. rt_spin_lock(&_asid_lock);
  333. #define MAX_ASID (1ul << MMU_SUPPORTED_ASID_BITS)
  334. if (_asid_pool && _asid_pool < MAX_ASID)
  335. {
  336. asid_to = ++_asid_pool;
  337. LOG_D("Allocated ASID %d to PID %d(aspace %p)", asid_to, lwp_self()->pid, aspace);
  338. }
  339. else
  340. {
  341. asid_to = _asid_pool = 1;
  342. LOG_D("Overflowed ASID %d to PID %d(aspace %p)", asid_to, lwp_self()->pid, aspace);
  343. }
  344. rt_spin_unlock(&_asid_lock);
  345. aspace->asid = asid_to;
  346. rt_hw_tlb_invalidate_aspace(aspace);
  347. }
  348. __asm__ volatile("mrs %0, ttbr0_el1" :"=r"(ttbr0_from));
  349. asid_from = ttbr0_from >> MMU_ASID_SHIFT;
  350. if (asid_from == asid_to)
  351. {
  352. LOG_D("Conflict ASID. from %d, to %d", asid_from, asid_to);
  353. rt_hw_tlb_invalidate_aspace(aspace);
  354. }
  355. else
  356. {
  357. LOG_D("ASID switched. from %d, to %d", asid_from, asid_to);
  358. }
  359. return asid_to;
  360. }
  361. #else
  362. rt_uint16_t _aspace_get_asid(rt_aspace_t aspace)
  363. {
  364. rt_hw_tlb_invalidate_all();
  365. return 0;
  366. }
  367. #endif /* ARCH_USING_ASID */
  368. #define CREATE_TTBR0(pgtbl, asid) ((rt_ubase_t)(pgtbl) | (rt_ubase_t)(asid) << MMU_ASID_SHIFT)
  369. void rt_hw_aspace_switch(rt_aspace_t aspace)
  370. {
  371. if (aspace != &rt_kernel_space)
  372. {
  373. rt_ubase_t ttbr0;
  374. void *pgtbl = aspace->page_table;
  375. pgtbl = rt_kmem_v2p(pgtbl);
  376. ttbr0 = CREATE_TTBR0(pgtbl, _aspace_get_asid(aspace));
  377. __asm__ volatile("msr ttbr0_el1, %0" ::"r"(ttbr0));
  378. __asm__ volatile("isb" ::: "memory");
  379. }
  380. }
  381. void rt_hw_mmu_ktbl_set(unsigned long tbl)
  382. {
  383. #ifdef RT_USING_SMART
  384. tbl += PV_OFFSET;
  385. __asm__ volatile("msr TTBR1_EL1, %0\n dsb sy\nisb" ::"r"(tbl) : "memory");
  386. #else
  387. __asm__ volatile("msr TTBR0_EL1, %0\n dsb sy\nisb" ::"r"(tbl) : "memory");
  388. #endif
  389. __asm__ volatile("tlbi vmalle1\n dsb sy\nisb" ::: "memory");
  390. __asm__ volatile("ic ialluis\n dsb sy\nisb" ::: "memory");
  391. }
  392. /**
  393. * @brief setup Page Table for kernel space. It's a fixed map
  394. * and all mappings cannot be changed after initialization.
  395. *
  396. * Memory region in struct mem_desc must be page aligned,
  397. * otherwise is a failure and no report will be
  398. * returned.
  399. *
  400. * @param mmu_info
  401. * @param mdesc
  402. * @param desc_nr
  403. */
  404. void rt_hw_mmu_setup(rt_aspace_t aspace, struct mem_desc *mdesc, int desc_nr)
  405. {
  406. void *err;
  407. for (size_t i = 0; i < desc_nr; i++)
  408. {
  409. size_t attr;
  410. switch (mdesc->attr)
  411. {
  412. case NORMAL_MEM:
  413. attr = MMU_MAP_K_RWCB;
  414. break;
  415. case NORMAL_NOCACHE_MEM:
  416. attr = MMU_MAP_K_RWCB;
  417. break;
  418. case DEVICE_MEM:
  419. attr = MMU_MAP_K_DEVICE;
  420. break;
  421. default:
  422. attr = MMU_MAP_K_DEVICE;
  423. }
  424. struct rt_mm_va_hint hint = {.flags = MMF_MAP_FIXED,
  425. .limit_start = aspace->start,
  426. .limit_range_size = aspace->size,
  427. .map_size = mdesc->vaddr_end -
  428. mdesc->vaddr_start + 1,
  429. .prefer = (void *)mdesc->vaddr_start};
  430. if (mdesc->paddr_start == (rt_size_t)ARCH_MAP_FAILED)
  431. mdesc->paddr_start = mdesc->vaddr_start + PV_OFFSET;
  432. int retval;
  433. retval = rt_aspace_map_phy_static(aspace, &mdesc->varea, &hint, attr,
  434. mdesc->paddr_start >> MM_PAGE_SHIFT, &err);
  435. if (retval)
  436. {
  437. LOG_E("%s: map failed with code %d", __FUNCTION__, retval);
  438. RT_ASSERT(0);
  439. }
  440. mdesc++;
  441. }
  442. rt_hw_mmu_ktbl_set((unsigned long)rt_kernel_space.page_table);
  443. rt_page_cleanup();
  444. }
  445. static void _init_region(void *vaddr, size_t size)
  446. {
  447. rt_ioremap_start = vaddr;
  448. rt_ioremap_size = size;
  449. rt_mpr_start = (char *)rt_ioremap_start - rt_mpr_size;
  450. }
  451. /**
  452. * This function will initialize rt_mmu_info structure.
  453. *
  454. * @param mmu_info rt_mmu_info structure
  455. * @param v_address virtual address
  456. * @param size map size
  457. * @param vtable mmu table
  458. * @param pv_off pv offset in kernel space
  459. *
  460. * @return 0 on successful and -1 for fail
  461. */
  462. int rt_hw_mmu_map_init(rt_aspace_t aspace, void *v_address, size_t size,
  463. size_t *vtable, size_t pv_off)
  464. {
  465. size_t va_s, va_e;
  466. if (!aspace || !vtable)
  467. {
  468. return -1;
  469. }
  470. va_s = (size_t)v_address;
  471. va_e = (size_t)v_address + size - 1;
  472. if (va_e < va_s)
  473. {
  474. return -1;
  475. }
  476. va_s >>= ARCH_SECTION_SHIFT;
  477. va_e >>= ARCH_SECTION_SHIFT;
  478. if (va_s == 0)
  479. {
  480. return -1;
  481. }
  482. rt_aspace_init(aspace, (void *)KERNEL_VADDR_START, 0 - KERNEL_VADDR_START,
  483. vtable);
  484. _init_region(v_address, size);
  485. return 0;
  486. }
  487. rt_weak long rt_hw_mmu_config_tbi(int tbi_index)
  488. {
  489. return 0;
  490. }
  491. /************ setting el1 mmu register**************
  492. MAIR_EL1
  493. index 0 : memory outer writeback, write/read alloc
  494. index 1 : memory nocache
  495. index 2 : device nGnRnE
  496. *****************************************************/
  497. void mmu_tcr_init(void)
  498. {
  499. unsigned long val64;
  500. unsigned long pa_range;
  501. val64 = 0x00447fUL;
  502. __asm__ volatile("msr MAIR_EL1, %0\n dsb sy\n" ::"r"(val64));
  503. __asm__ volatile ("mrs %0, ID_AA64MMFR0_EL1":"=r"(val64));
  504. pa_range = val64 & 0xf; /* PARange */
  505. /* TCR_EL1 */
  506. val64 = (16UL << 0) /* t0sz 48bit */
  507. | (0x0UL << 6) /* reserved */
  508. | (0x0UL << 7) /* epd0 */
  509. | (0x3UL << 8) /* t0 wb cacheable */
  510. | (0x3UL << 10) /* inner shareable */
  511. | (0x2UL << 12) /* t0 outer shareable */
  512. | (0x0UL << 14) /* t0 4K */
  513. | (16UL << 16) /* t1sz 48bit */
  514. | (0x0UL << 22) /* define asid use ttbr0.asid */
  515. | (0x0UL << 23) /* epd1 */
  516. | (0x3UL << 24) /* t1 inner wb cacheable */
  517. | (0x3UL << 26) /* t1 outer wb cacheable */
  518. | (0x2UL << 28) /* t1 outer shareable */
  519. | (0x2UL << 30) /* t1 4k */
  520. | (pa_range << 32) /* PA range */
  521. | (0x0UL << 35) /* reserved */
  522. | (0x1UL << 36) /* as: 0:8bit 1:16bit */
  523. | (TCR_CONFIG_TBI0 << 37) /* tbi0 */
  524. | (TCR_CONFIG_TBI1 << 38); /* tbi1 */
  525. __asm__ volatile("msr TCR_EL1, %0\n" ::"r"(val64));
  526. }
  527. struct page_table
  528. {
  529. unsigned long page[512];
  530. };
  531. /* */
  532. static struct page_table* __init_page_array;
  533. static unsigned long __page_off = 0UL;
  534. unsigned long get_ttbrn_base(void)
  535. {
  536. return (unsigned long) __init_page_array;
  537. }
  538. void set_free_page(void *page_array)
  539. {
  540. __init_page_array = page_array;
  541. }
  542. unsigned long get_free_page(void)
  543. {
  544. return (unsigned long) (__init_page_array[__page_off++].page);
  545. }
  546. static int _map_single_page_2M(unsigned long *lv0_tbl, unsigned long va,
  547. unsigned long pa, unsigned long attr,
  548. rt_bool_t flush)
  549. {
  550. int level;
  551. unsigned long *cur_lv_tbl = lv0_tbl;
  552. unsigned long page;
  553. unsigned long off;
  554. int level_shift = MMU_ADDRESS_BITS;
  555. if (va & ARCH_SECTION_MASK)
  556. {
  557. return MMU_MAP_ERROR_VANOTALIGN;
  558. }
  559. if (pa & ARCH_PAGE_MASK)
  560. {
  561. return MMU_MAP_ERROR_PANOTALIGN;
  562. }
  563. for (level = 0; level < MMU_TBL_BLOCK_2M_LEVEL; level++)
  564. {
  565. off = (va >> level_shift);
  566. off &= MMU_LEVEL_MASK;
  567. if (!(cur_lv_tbl[off] & MMU_TYPE_USED))
  568. {
  569. page = get_free_page();
  570. if (!page)
  571. {
  572. return MMU_MAP_ERROR_NOPAGE;
  573. }
  574. rt_memset((char *)page, 0, ARCH_PAGE_SIZE);
  575. cur_lv_tbl[off] = page | MMU_TYPE_TABLE;
  576. if (flush)
  577. {
  578. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, cur_lv_tbl + off, sizeof(void *));
  579. }
  580. }
  581. page = cur_lv_tbl[off];
  582. if ((page & MMU_TYPE_MASK) == MMU_TYPE_BLOCK)
  583. {
  584. /* is block! error! */
  585. return MMU_MAP_ERROR_CONFLICT;
  586. }
  587. cur_lv_tbl = (unsigned long *)(page & MMU_ADDRESS_MASK);
  588. level_shift -= MMU_LEVEL_SHIFT;
  589. }
  590. attr &= MMU_ATTRIB_MASK;
  591. pa |= (attr | MMU_TYPE_BLOCK); /* block */
  592. off = (va >> ARCH_SECTION_SHIFT);
  593. off &= MMU_LEVEL_MASK;
  594. cur_lv_tbl[off] = pa;
  595. if (flush)
  596. {
  597. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, cur_lv_tbl + off, sizeof(void *));
  598. }
  599. return 0;
  600. }
  601. void *rt_hw_mmu_tbl_get(void)
  602. {
  603. uintptr_t tbl;
  604. __asm__ volatile("MRS %0, TTBR0_EL1" : "=r"(tbl));
  605. return rt_kmem_p2v((void *)(tbl & ((1ul << 48) - 2)));
  606. }
  607. void *rt_ioremap_early(void *paddr, size_t size)
  608. {
  609. volatile size_t count;
  610. rt_ubase_t base;
  611. static void *tbl = RT_NULL;
  612. if (!size)
  613. {
  614. return RT_NULL;
  615. }
  616. if (!tbl)
  617. {
  618. tbl = rt_hw_mmu_tbl_get();
  619. }
  620. /* get the total size required including overhead for alignment */
  621. count = (size + ((rt_ubase_t)paddr & ARCH_SECTION_MASK)
  622. + ARCH_SECTION_MASK) >> ARCH_SECTION_SHIFT;
  623. base = (rt_ubase_t)paddr & (~ARCH_SECTION_MASK);
  624. while (count --> 0)
  625. {
  626. if (_map_single_page_2M(tbl, base, base, MMU_MAP_K_DEVICE, RT_TRUE))
  627. {
  628. return RT_NULL;
  629. }
  630. base += ARCH_SECTION_SIZE;
  631. }
  632. return paddr;
  633. }
  634. static int _init_map_2M(unsigned long *lv0_tbl, unsigned long va,
  635. unsigned long pa, unsigned long count,
  636. unsigned long attr)
  637. {
  638. unsigned long i;
  639. int ret;
  640. if (va & ARCH_SECTION_MASK)
  641. {
  642. return -1;
  643. }
  644. if (pa & ARCH_SECTION_MASK)
  645. {
  646. return -1;
  647. }
  648. for (i = 0; i < count; i++)
  649. {
  650. ret = _map_single_page_2M(lv0_tbl, va, pa, attr, RT_FALSE);
  651. va += ARCH_SECTION_SIZE;
  652. pa += ARCH_SECTION_SIZE;
  653. if (ret != 0)
  654. {
  655. return ret;
  656. }
  657. }
  658. return 0;
  659. }
  660. static unsigned long *_query(rt_aspace_t aspace, void *vaddr, int *plvl_shf)
  661. {
  662. int level;
  663. unsigned long va = (unsigned long)vaddr;
  664. unsigned long *cur_lv_tbl;
  665. unsigned long page;
  666. unsigned long off;
  667. int level_shift = MMU_ADDRESS_BITS;
  668. cur_lv_tbl = aspace->page_table;
  669. RT_ASSERT(cur_lv_tbl);
  670. for (level = 0; level < MMU_TBL_PAGE_4k_LEVEL; level++)
  671. {
  672. off = (va >> level_shift);
  673. off &= MMU_LEVEL_MASK;
  674. if (!(cur_lv_tbl[off] & MMU_TYPE_USED))
  675. {
  676. *plvl_shf = level_shift;
  677. return (void *)0;
  678. }
  679. page = cur_lv_tbl[off];
  680. if ((page & MMU_TYPE_MASK) == MMU_TYPE_BLOCK)
  681. {
  682. *plvl_shf = level_shift;
  683. return &cur_lv_tbl[off];
  684. }
  685. cur_lv_tbl = (unsigned long *)(page & MMU_ADDRESS_MASK);
  686. cur_lv_tbl = (unsigned long *)((unsigned long)cur_lv_tbl - PV_OFFSET);
  687. level_shift -= MMU_LEVEL_SHIFT;
  688. }
  689. /* now is level MMU_TBL_PAGE_4k_LEVEL */
  690. off = (va >> ARCH_PAGE_SHIFT);
  691. off &= MMU_LEVEL_MASK;
  692. page = cur_lv_tbl[off];
  693. *plvl_shf = level_shift;
  694. if (!(page & MMU_TYPE_USED))
  695. {
  696. return (void *)0;
  697. }
  698. return &cur_lv_tbl[off];
  699. }
  700. void *rt_hw_mmu_v2p(rt_aspace_t aspace, void *v_addr)
  701. {
  702. int level_shift;
  703. unsigned long paddr;
  704. if (aspace == &rt_kernel_space)
  705. {
  706. paddr = (unsigned long)rt_hw_mmu_kernel_v2p(v_addr);
  707. }
  708. else
  709. {
  710. unsigned long *pte = _query(aspace, v_addr, &level_shift);
  711. if (pte)
  712. {
  713. paddr = *pte & MMU_ADDRESS_MASK;
  714. paddr |= (rt_ubase_t)v_addr & ((1ul << level_shift) - 1);
  715. }
  716. else
  717. {
  718. paddr = (unsigned long)ARCH_MAP_FAILED;
  719. }
  720. }
  721. return (void *)paddr;
  722. }
  723. static int _noncache(rt_ubase_t *pte)
  724. {
  725. int err = 0;
  726. const rt_ubase_t idx_shift = 2;
  727. const rt_ubase_t idx_mask = 0x7 << idx_shift;
  728. rt_ubase_t entry = *pte;
  729. if ((entry & idx_mask) == (NORMAL_MEM << idx_shift))
  730. {
  731. *pte = (entry & ~idx_mask) | (NORMAL_NOCACHE_MEM << idx_shift);
  732. }
  733. else
  734. {
  735. // do not support other type to be noncache
  736. err = -RT_ENOSYS;
  737. }
  738. return err;
  739. }
  740. static int _cache(rt_ubase_t *pte)
  741. {
  742. int err = 0;
  743. const rt_ubase_t idx_shift = 2;
  744. const rt_ubase_t idx_mask = 0x7 << idx_shift;
  745. rt_ubase_t entry = *pte;
  746. if ((entry & idx_mask) == (NORMAL_NOCACHE_MEM << idx_shift))
  747. {
  748. *pte = (entry & ~idx_mask) | (NORMAL_MEM << idx_shift);
  749. }
  750. else
  751. {
  752. // do not support other type to be cache
  753. err = -RT_ENOSYS;
  754. }
  755. return err;
  756. }
  757. static int (*control_handler[MMU_CNTL_DUMMY_END])(rt_ubase_t *pte) = {
  758. [MMU_CNTL_CACHE] = _cache,
  759. [MMU_CNTL_NONCACHE] = _noncache,
  760. };
  761. int rt_hw_mmu_control(struct rt_aspace *aspace, void *vaddr, size_t size,
  762. enum rt_mmu_cntl cmd)
  763. {
  764. int level_shift;
  765. int err = -RT_EINVAL;
  766. rt_ubase_t vstart = (rt_ubase_t)vaddr;
  767. rt_ubase_t vend = vstart + size;
  768. int (*handler)(rt_ubase_t * pte);
  769. if (cmd >= 0 && cmd < MMU_CNTL_DUMMY_END)
  770. {
  771. handler = control_handler[cmd];
  772. while (vstart < vend)
  773. {
  774. rt_ubase_t *pte = _query(aspace, (void *)vstart, &level_shift);
  775. rt_ubase_t range_end = vstart + (1ul << level_shift);
  776. RT_ASSERT(range_end <= vend);
  777. if (pte)
  778. {
  779. err = handler(pte);
  780. RT_ASSERT(err == RT_EOK);
  781. }
  782. vstart = range_end;
  783. }
  784. }
  785. else
  786. {
  787. err = -RT_ENOSYS;
  788. }
  789. return err;
  790. }
  791. void rt_hw_mem_setup_early(unsigned long *tbl0, unsigned long *tbl1,
  792. unsigned long size, unsigned long pv_off)
  793. {
  794. int ret;
  795. unsigned long count = (size + ARCH_SECTION_MASK) >> ARCH_SECTION_SHIFT;
  796. unsigned long normal_attr = MMU_MAP_K_RWCB;
  797. extern unsigned char _start;
  798. unsigned long va = (unsigned long) &_start - pv_off;
  799. va = RT_ALIGN_DOWN(va, 0x200000);
  800. /* setup pv off */
  801. rt_kmem_pvoff_set(pv_off);
  802. /* clean the first two pages */
  803. rt_memset((char *)tbl0, 0, ARCH_PAGE_SIZE);
  804. rt_memset((char *)tbl1, 0, ARCH_PAGE_SIZE);
  805. ret = _init_map_2M(tbl1, va, va + pv_off, count, normal_attr);
  806. if (ret != 0)
  807. {
  808. while (1);
  809. }
  810. ret = _init_map_2M(tbl0, va + pv_off, va + pv_off, count, normal_attr);
  811. if (ret != 0)
  812. {
  813. while (1);
  814. }
  815. }
  816. void *rt_hw_mmu_pgtbl_create(void)
  817. {
  818. size_t *mmu_table;
  819. mmu_table = (size_t *)rt_pages_alloc_ext(0, PAGE_ANY_AVAILABLE);
  820. if (!mmu_table)
  821. {
  822. return RT_NULL;
  823. }
  824. memset(mmu_table, 0, ARCH_PAGE_SIZE);
  825. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_table, ARCH_PAGE_SIZE);
  826. return mmu_table;
  827. }
  828. void rt_hw_mmu_pgtbl_delete(void *pgtbl)
  829. {
  830. rt_pages_free(pgtbl, 0);
  831. }