dev_spi_flash_sfud.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2016-09-28 armink first version.
  9. */
  10. #include <stdint.h>
  11. #include <string.h>
  12. #include <rtdevice.h>
  13. #include "dev_spi_flash.h"
  14. #include "dev_spi_flash_sfud.h"
  15. #ifdef RT_USING_SFUD
  16. #ifndef RT_SFUD_DEFAULT_SPI_CFG
  17. #ifndef RT_SFUD_SPI_MAX_HZ
  18. #define RT_SFUD_SPI_MAX_HZ 50000000
  19. #endif
  20. /* read the JEDEC SFDP command must run at 50 MHz or less */
  21. #define RT_SFUD_DEFAULT_SPI_CFG \
  22. { \
  23. .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
  24. .data_width = 8, \
  25. .max_hz = RT_SFUD_SPI_MAX_HZ, \
  26. }
  27. #endif /* RT_SFUD_DEFAULT_SPI_CFG */
  28. #ifdef SFUD_USING_QSPI
  29. #define RT_SFUD_DEFAULT_QSPI_CFG \
  30. { \
  31. RT_SFUD_DEFAULT_SPI_CFG, \
  32. .medium_size = 0x800000, \
  33. .ddr_mode = 0, \
  34. .qspi_dl_width = 4, \
  35. }
  36. #endif /* SFUD_USING_QSPI */
  37. static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
  38. RT_ASSERT(dev);
  39. switch (cmd) {
  40. case RT_DEVICE_CTRL_BLK_GETGEOME: {
  41. struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
  42. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  43. if (rtt_dev == RT_NULL || geometry == RT_NULL) {
  44. return -RT_ERROR;
  45. }
  46. geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
  47. geometry->sector_count = rtt_dev->geometry.sector_count;
  48. geometry->block_size = rtt_dev->geometry.block_size;
  49. break;
  50. }
  51. case RT_DEVICE_CTRL_BLK_ERASE: {
  52. rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
  53. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  54. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  55. rt_size_t phy_size;
  56. if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
  57. return -RT_ERROR;
  58. }
  59. if (end_addr == start_addr) {
  60. end_addr ++;
  61. }
  62. phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
  63. phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
  64. if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
  65. return -RT_ERROR;
  66. }
  67. break;
  68. }
  69. }
  70. return RT_EOK;
  71. }
  72. static rt_ssize_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
  73. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  74. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  75. RT_ASSERT(dev);
  76. RT_ASSERT(rtt_dev);
  77. RT_ASSERT(sfud_dev);
  78. /* change the block device's logic address to physical address */
  79. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  80. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  81. if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  82. return 0;
  83. } else {
  84. return size;
  85. }
  86. }
  87. static rt_ssize_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
  88. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  89. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  90. RT_ASSERT(dev);
  91. RT_ASSERT(rtt_dev);
  92. RT_ASSERT(sfud_dev);
  93. /* change the block device's logic address to physical address */
  94. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  95. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  96. if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  97. return 0;
  98. } else {
  99. return size;
  100. }
  101. }
  102. /**
  103. * SPI write data then read data
  104. */
  105. static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
  106. size_t read_size) {
  107. sfud_err result = SFUD_SUCCESS;
  108. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  109. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  110. RT_ASSERT(spi);
  111. RT_ASSERT(sfud_dev);
  112. RT_ASSERT(rtt_dev);
  113. #ifdef SFUD_USING_QSPI
  114. struct rt_qspi_device *qspi_dev = RT_NULL;
  115. #endif
  116. if (write_size) {
  117. RT_ASSERT(write_buf);
  118. }
  119. if (read_size) {
  120. RT_ASSERT(read_buf);
  121. }
  122. #ifdef SFUD_USING_QSPI
  123. if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) {
  124. qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  125. if (write_size && read_size) {
  126. if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) <= 0) {
  127. result = SFUD_ERR_TIMEOUT;
  128. }
  129. } else if (write_size) {
  130. if (rt_qspi_send(qspi_dev, write_buf, write_size) <= 0) {
  131. result = SFUD_ERR_TIMEOUT;
  132. }
  133. }
  134. }
  135. else
  136. #endif
  137. {
  138. if (write_size && read_size) {
  139. if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
  140. result = SFUD_ERR_TIMEOUT;
  141. }
  142. } else if (write_size) {
  143. if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) <= 0) {
  144. result = SFUD_ERR_TIMEOUT;
  145. }
  146. } else {
  147. if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) <= 0) {
  148. result = SFUD_ERR_TIMEOUT;
  149. }
  150. }
  151. }
  152. return result;
  153. }
  154. #ifdef SFUD_USING_QSPI
  155. /**
  156. * QSPI fast read data
  157. */
  158. static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) {
  159. struct rt_qspi_message message;
  160. sfud_err result = SFUD_SUCCESS;
  161. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  162. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  163. struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  164. RT_ASSERT(spi);
  165. RT_ASSERT(sfud_dev);
  166. RT_ASSERT(rtt_dev);
  167. RT_ASSERT(qspi_dev);
  168. /* set message struct */
  169. message.instruction.content = qspi_read_cmd_format->instruction;
  170. message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines;
  171. message.address.content = addr;
  172. message.address.size = qspi_read_cmd_format->address_size;
  173. message.address.qspi_lines = qspi_read_cmd_format->address_lines;
  174. message.alternate_bytes.content = 0;
  175. message.alternate_bytes.size = 0;
  176. message.alternate_bytes.qspi_lines = 0;
  177. message.dummy_cycles = qspi_read_cmd_format->dummy_cycles;
  178. message.parent.send_buf = RT_NULL;
  179. message.parent.recv_buf = read_buf;
  180. message.parent.length = read_size;
  181. message.parent.cs_release = 1;
  182. message.parent.cs_take = 1;
  183. message.qspi_data_lines = qspi_read_cmd_format->data_lines;
  184. /* set next */
  185. /* Ensure correct QSPI message chaining by setting next pointer to NULL, preventing unintended data transmission issues.*/
  186. message.parent.next = RT_NULL;
  187. if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) {
  188. result = SFUD_ERR_TIMEOUT;
  189. }
  190. return result;
  191. }
  192. #endif
  193. static void spi_lock(const sfud_spi *spi) {
  194. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  195. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  196. RT_ASSERT(spi);
  197. RT_ASSERT(sfud_dev);
  198. RT_ASSERT(rtt_dev);
  199. rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
  200. }
  201. static void spi_unlock(const sfud_spi *spi) {
  202. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  203. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  204. RT_ASSERT(spi);
  205. RT_ASSERT(sfud_dev);
  206. RT_ASSERT(rtt_dev);
  207. rt_mutex_release(&(rtt_dev->lock));
  208. }
  209. static void retry_delay_100us(void) {
  210. /* 100 microsecond delay */
  211. rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
  212. }
  213. sfud_err sfud_spi_port_init(sfud_flash *flash) {
  214. sfud_err result = SFUD_SUCCESS;
  215. RT_ASSERT(flash);
  216. /* port SPI device interface */
  217. flash->spi.wr = spi_write_read;
  218. #ifdef SFUD_USING_QSPI
  219. flash->spi.qspi_read = qspi_read;
  220. #endif
  221. flash->spi.lock = spi_lock;
  222. flash->spi.unlock = spi_unlock;
  223. flash->spi.user_data = flash;
  224. if (RT_TICK_PER_SECOND < 1000) {
  225. LOG_W("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.", RT_TICK_PER_SECOND);
  226. }
  227. /* 100 microsecond delay */
  228. flash->retry.delay = retry_delay_100us;
  229. /* 60 seconds timeout */
  230. flash->retry.times = 60 * 10000;
  231. return result;
  232. }
  233. #ifdef RT_USING_DEVICE_OPS
  234. const static struct rt_device_ops flash_device_ops =
  235. {
  236. RT_NULL,
  237. RT_NULL,
  238. RT_NULL,
  239. rt_sfud_read,
  240. rt_sfud_write,
  241. rt_sfud_control
  242. };
  243. #endif
  244. /**
  245. * Probe SPI flash by SFUD (Serial Flash Universal Driver) driver library and though SPI device by specified configuration.
  246. *
  247. * @param spi_flash_dev_name the name which will create SPI flash device
  248. * @param spi_dev_name using SPI device name
  249. * @param spi_cfg SPI device configuration
  250. * @param qspi_cfg QSPI device configuration
  251. *
  252. * @return probed SPI flash device, probe failed will return RT_NULL
  253. */
  254. rt_spi_flash_device_t rt_sfud_flash_probe_ex(const char *spi_flash_dev_name, const char *spi_dev_name,
  255. struct rt_spi_configuration *spi_cfg, struct rt_qspi_configuration *qspi_cfg)
  256. {
  257. rt_spi_flash_device_t rtt_dev = RT_NULL;
  258. sfud_flash *sfud_dev = RT_NULL;
  259. char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
  260. extern sfud_err sfud_device_init(sfud_flash *flash);
  261. #ifdef SFUD_USING_QSPI
  262. struct rt_qspi_device *qspi_dev = RT_NULL;
  263. #endif
  264. RT_ASSERT(spi_flash_dev_name);
  265. RT_ASSERT(spi_dev_name);
  266. rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
  267. sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
  268. spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
  269. spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
  270. if (rtt_dev) {
  271. rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
  272. /* initialize lock */
  273. rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_PRIO);
  274. }
  275. if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
  276. rt_memset(sfud_dev, 0, sizeof(sfud_flash));
  277. rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
  278. rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
  279. /* make string end sign */
  280. spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
  281. spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
  282. /* SPI configure */
  283. {
  284. /* RT-Thread SPI device initialize */
  285. rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  286. if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  287. LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
  288. goto error;
  289. }
  290. sfud_dev->spi.name = spi_dev_name_bak;
  291. #ifdef SFUD_USING_QSPI
  292. /* set the qspi line number and configure the QSPI bus */
  293. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  294. qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device;
  295. qspi_cfg->qspi_dl_width = qspi_dev->config.qspi_dl_width;
  296. rt_qspi_configure(qspi_dev, qspi_cfg);
  297. }
  298. else
  299. #endif
  300. rt_spi_configure(rtt_dev->rt_spi_device, spi_cfg);
  301. }
  302. /* SFUD flash device initialize */
  303. {
  304. sfud_dev->name = spi_flash_dev_name_bak;
  305. /* accessed each other */
  306. rtt_dev->user_data = sfud_dev;
  307. rtt_dev->rt_spi_device->user_data = rtt_dev;
  308. rtt_dev->flash_device.user_data = rtt_dev;
  309. sfud_dev->user_data = rtt_dev;
  310. /* initialize SFUD device */
  311. if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
  312. LOG_E("ERROR: SPI flash probe failed by SPI device %s.", spi_dev_name);
  313. goto error;
  314. }
  315. /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
  316. rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
  317. rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
  318. rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
  319. #ifdef SFUD_USING_QSPI
  320. /* reconfigure the QSPI bus for medium size */
  321. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  322. qspi_cfg->medium_size = sfud_dev->chip.capacity;
  323. rt_qspi_configure(qspi_dev, qspi_cfg);
  324. if(qspi_dev->enter_qspi_mode != RT_NULL)
  325. qspi_dev->enter_qspi_mode(qspi_dev);
  326. /* set data lines width */
  327. sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width);
  328. }
  329. #endif /* SFUD_USING_QSPI */
  330. }
  331. /* register device */
  332. rtt_dev->flash_device.type = RT_Device_Class_Block;
  333. #ifdef RT_USING_DEVICE_OPS
  334. rtt_dev->flash_device.ops = &flash_device_ops;
  335. #else
  336. rtt_dev->flash_device.init = RT_NULL;
  337. rtt_dev->flash_device.open = RT_NULL;
  338. rtt_dev->flash_device.close = RT_NULL;
  339. rtt_dev->flash_device.read = rt_sfud_read;
  340. rtt_dev->flash_device.write = rt_sfud_write;
  341. rtt_dev->flash_device.control = rt_sfud_control;
  342. #endif
  343. rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  344. LOG_I("Probe SPI flash %s by SPI device %s success.",spi_flash_dev_name, spi_dev_name);
  345. return rtt_dev;
  346. } else {
  347. LOG_E("ERROR: Low memory.");
  348. goto error;
  349. }
  350. error:
  351. if (rtt_dev) {
  352. rt_mutex_detach(&(rtt_dev->lock));
  353. }
  354. /* may be one of objects memory was malloc success, so need free all */
  355. rt_free(rtt_dev);
  356. rt_free(sfud_dev);
  357. rt_free(spi_flash_dev_name_bak);
  358. rt_free(spi_dev_name_bak);
  359. return RT_NULL;
  360. }
  361. /**
  362. * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
  363. *
  364. * @param spi_flash_dev_name the name which will create SPI flash device
  365. * @param spi_dev_name using SPI device name
  366. *
  367. * @return probed SPI flash device, probe failed will return RT_NULL
  368. */
  369. rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name)
  370. {
  371. struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
  372. #ifndef SFUD_USING_QSPI
  373. return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, RT_NULL);
  374. #else
  375. struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG;
  376. return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, &qspi_cfg);
  377. #endif
  378. }
  379. /**
  380. * Delete SPI flash device
  381. *
  382. * @param spi_flash_dev SPI flash device
  383. *
  384. * @return the operation status, RT_EOK on successful
  385. */
  386. rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
  387. sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
  388. RT_ASSERT(spi_flash_dev);
  389. RT_ASSERT(sfud_flash_dev);
  390. rt_device_unregister(&(spi_flash_dev->flash_device));
  391. rt_mutex_detach(&(spi_flash_dev->lock));
  392. rt_free(sfud_flash_dev->spi.name);
  393. rt_free(sfud_flash_dev->name);
  394. rt_free(sfud_flash_dev);
  395. rt_free(spi_flash_dev);
  396. return RT_EOK;
  397. }
  398. sfud_flash_t rt_sfud_flash_find(const char *spi_dev_name)
  399. {
  400. rt_spi_flash_device_t rtt_dev = RT_NULL;
  401. struct rt_spi_device *rt_spi_device = RT_NULL;
  402. sfud_flash_t sfud_dev = RT_NULL;
  403. rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  404. if (rt_spi_device == RT_NULL || rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  405. LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
  406. goto __error;
  407. }
  408. rtt_dev = (rt_spi_flash_device_t) (rt_spi_device->user_data);
  409. if (rtt_dev && rtt_dev->user_data) {
  410. sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
  411. return sfud_dev;
  412. } else {
  413. LOG_E("ERROR: SFUD flash device not found!");
  414. goto __error;
  415. }
  416. __error:
  417. return RT_NULL;
  418. }
  419. sfud_flash_t rt_sfud_flash_find_by_dev_name(const char *flash_dev_name)
  420. {
  421. rt_spi_flash_device_t rtt_dev = RT_NULL;
  422. sfud_flash_t sfud_dev = RT_NULL;
  423. rtt_dev = (rt_spi_flash_device_t) rt_device_find(flash_dev_name);
  424. if (rtt_dev == RT_NULL || rtt_dev->flash_device.type != RT_Device_Class_Block) {
  425. LOG_E("ERROR: Flash device %s not found!", flash_dev_name);
  426. goto __error;
  427. }
  428. if (rtt_dev->user_data) {
  429. sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
  430. return sfud_dev;
  431. } else {
  432. LOG_E("ERROR: SFUD flash device not found!");
  433. goto __error;
  434. }
  435. __error:
  436. return RT_NULL;
  437. }
  438. #if defined(RT_USING_FINSH)
  439. #include <finsh.h>
  440. static void sf(uint8_t argc, char **argv) {
  441. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  442. #define HEXDUMP_WIDTH 16
  443. #define CMD_PROBE_INDEX 0
  444. #define CMD_READ_INDEX 1
  445. #define CMD_WRITE_INDEX 2
  446. #define CMD_ERASE_INDEX 3
  447. #define CMD_RW_STATUS_INDEX 4
  448. #define CMD_BENCH_INDEX 5
  449. sfud_err result = SFUD_SUCCESS;
  450. static const sfud_flash *sfud_dev = NULL;
  451. static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
  452. size_t i = 0, j = 0;
  453. const char* sf_help_info[] = {
  454. [CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
  455. [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
  456. [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
  457. [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
  458. [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
  459. [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
  460. };
  461. if (argc < 2) {
  462. rt_kprintf("Usage:\n");
  463. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  464. rt_kprintf("%s\n", sf_help_info[i]);
  465. }
  466. rt_kprintf("\n");
  467. } else {
  468. const char *operator = argv[1];
  469. uint32_t addr, size;
  470. if (!strcmp(operator, "probe")) {
  471. if (argc < 3) {
  472. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
  473. } else {
  474. char *spi_dev_name = argv[2];
  475. rtt_dev_bak = rtt_dev;
  476. /* delete the old SPI flash device */
  477. if(rtt_dev_bak) {
  478. rt_sfud_flash_delete(rtt_dev_bak);
  479. }
  480. rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
  481. if (!rtt_dev) {
  482. return;
  483. }
  484. sfud_dev = (sfud_flash_t)rtt_dev->user_data;
  485. if (sfud_dev->chip.capacity < 1024 * 1024) {
  486. rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
  487. } else {
  488. rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
  489. sfud_dev->name);
  490. }
  491. }
  492. } else {
  493. if (!sfud_dev) {
  494. rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
  495. return;
  496. }
  497. if (!rt_strcmp(operator, "read")) {
  498. if (argc < 4) {
  499. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
  500. return;
  501. } else {
  502. addr = strtol(argv[2], NULL, 0);
  503. size = strtol(argv[3], NULL, 0);
  504. uint8_t *data = rt_malloc(size);
  505. if (data) {
  506. result = sfud_read(sfud_dev, addr, size, data);
  507. if (result == SFUD_SUCCESS) {
  508. rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
  509. sfud_dev->name, addr, size);
  510. rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
  511. for (i = 0; i < size; i += HEXDUMP_WIDTH)
  512. {
  513. rt_kprintf("[%08X] ", addr + i);
  514. /* dump hex */
  515. for (j = 0; j < HEXDUMP_WIDTH; j++) {
  516. if (i + j < size) {
  517. rt_kprintf("%02X ", data[i + j]);
  518. } else {
  519. rt_kprintf(" ");
  520. }
  521. }
  522. /* dump char for hex */
  523. for (j = 0; j < HEXDUMP_WIDTH; j++) {
  524. if (i + j < size) {
  525. rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
  526. }
  527. }
  528. rt_kprintf("\n");
  529. }
  530. rt_kprintf("\n");
  531. }
  532. rt_free(data);
  533. } else {
  534. rt_kprintf("Low memory!\n");
  535. }
  536. }
  537. } else if (!rt_strcmp(operator, "write")) {
  538. if (argc < 4) {
  539. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
  540. return;
  541. } else {
  542. addr = strtol(argv[2], NULL, 0);
  543. size = argc - 3;
  544. uint8_t *data = rt_malloc(size);
  545. if (data) {
  546. for (i = 0; i < size; i++) {
  547. data[i] = strtol(argv[3 + i], NULL, 0);
  548. }
  549. result = sfud_write(sfud_dev, addr, size, data);
  550. if (result == SFUD_SUCCESS) {
  551. rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
  552. sfud_dev->name, addr, size);
  553. rt_kprintf("Write data: ");
  554. for (i = 0; i < size; i++) {
  555. rt_kprintf("%d ", data[i]);
  556. }
  557. rt_kprintf(".\n");
  558. }
  559. rt_free(data);
  560. } else {
  561. rt_kprintf("Low memory!\n");
  562. }
  563. }
  564. } else if (!rt_strcmp(operator, "erase")) {
  565. if (argc < 4) {
  566. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
  567. return;
  568. } else {
  569. addr = strtol(argv[2], NULL, 0);
  570. size = strtol(argv[3], NULL, 0);
  571. result = sfud_erase(sfud_dev, addr, size);
  572. if (result == SFUD_SUCCESS) {
  573. rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
  574. addr, size);
  575. }
  576. }
  577. } else if (!rt_strcmp(operator, "status")) {
  578. if (argc < 3) {
  579. uint8_t status;
  580. result = sfud_read_status(sfud_dev, &status);
  581. if (result == SFUD_SUCCESS) {
  582. rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
  583. }
  584. } else if (argc == 4) {
  585. bool is_volatile = strtol(argv[2], NULL, 0);
  586. uint8_t status = strtol(argv[3], NULL, 0);
  587. result = sfud_write_status(sfud_dev, is_volatile, status);
  588. if (result == SFUD_SUCCESS) {
  589. rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
  590. }
  591. } else {
  592. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
  593. return;
  594. }
  595. } else if (!rt_strcmp(operator, "bench")) {
  596. if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
  597. rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
  598. return;
  599. }
  600. /* full chip benchmark test */
  601. addr = 0;
  602. size = sfud_dev->chip.capacity;
  603. uint32_t start_time, time_cast;
  604. size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = SFUD_WRITE_MAX_PAGE_SIZE, cur_op_size;
  605. uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
  606. if (write_data && read_data) {
  607. for (i = 0; i < write_size; i ++) {
  608. write_data[i] = i & 0xFF;
  609. }
  610. /* benchmark testing */
  611. rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  612. start_time = rt_tick_get();
  613. result = sfud_erase(sfud_dev, addr, size);
  614. if (result == SFUD_SUCCESS) {
  615. time_cast = rt_tick_get() - start_time;
  616. rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  617. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  618. } else {
  619. rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
  620. }
  621. /* write test */
  622. rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  623. start_time = rt_tick_get();
  624. for (i = 0; i < size; i += write_size) {
  625. if (i + write_size <= size) {
  626. cur_op_size = write_size;
  627. } else {
  628. cur_op_size = size - i;
  629. }
  630. result = sfud_write(sfud_dev, addr + i, cur_op_size, write_data);
  631. if (result != SFUD_SUCCESS) {
  632. rt_kprintf("Writing %s failed, already wr for %lu bytes, write %d each time\n", sfud_dev->name, i, write_size);
  633. break;
  634. }
  635. }
  636. if (result == SFUD_SUCCESS) {
  637. time_cast = rt_tick_get() - start_time;
  638. rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  639. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  640. } else {
  641. rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
  642. }
  643. /* read test */
  644. rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  645. start_time = rt_tick_get();
  646. for (i = 0; i < size; i += read_size) {
  647. if (i + read_size <= size) {
  648. cur_op_size = read_size;
  649. } else {
  650. cur_op_size = size - i;
  651. }
  652. result = sfud_read(sfud_dev, addr + i, cur_op_size, read_data);
  653. /* data check */
  654. if (memcmp(write_data, read_data, cur_op_size))
  655. {
  656. rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
  657. result = SFUD_ERR_READ;
  658. }
  659. if (result != SFUD_SUCCESS) {
  660. rt_kprintf("Read %s failed, already rd for %lu bytes, read %d each time\n", sfud_dev->name, i, read_size);
  661. break;
  662. }
  663. }
  664. if (result == SFUD_SUCCESS) {
  665. time_cast = rt_tick_get() - start_time;
  666. rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  667. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  668. } else {
  669. rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
  670. }
  671. } else {
  672. rt_kprintf("Low memory!\n");
  673. }
  674. rt_free(write_data);
  675. rt_free(read_data);
  676. } else {
  677. rt_kprintf("Usage:\n");
  678. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  679. rt_kprintf("%s\n", sf_help_info[i]);
  680. }
  681. rt_kprintf("\n");
  682. return;
  683. }
  684. if (result != SFUD_SUCCESS) {
  685. rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
  686. }
  687. }
  688. }
  689. }
  690. MSH_CMD_EXPORT(sf, SPI Flash operate.);
  691. #endif /* defined(RT_USING_FINSH) */
  692. #endif /* RT_USING_SFUD */