1
0

sensor_cmd.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2019-07-16 WillianChan Increase the output of sensor information
  10. */
  11. #include "sensor.h"
  12. #define DBG_TAG "sensor.cmd"
  13. #define DBG_LVL DBG_INFO
  14. #include <rtdbg.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. static rt_sem_t sensor_rx_sem = RT_NULL;
  18. static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
  19. {
  20. switch (sensor->info.type)
  21. {
  22. case RT_SENSOR_CLASS_ACCE:
  23. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mg, timestamp:%5d", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, sensor_data->timestamp);
  24. break;
  25. case RT_SENSOR_CLASS_GYRO:
  26. LOG_I("num:%3d, x:%8d, y:%8d, z:%8d dps, timestamp:%5d", num, sensor_data->data.gyro.x / 1000, sensor_data->data.gyro.y / 1000, sensor_data->data.gyro.z / 1000, sensor_data->timestamp);
  27. break;
  28. case RT_SENSOR_CLASS_MAG:
  29. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mGauss, timestamp:%5d", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, sensor_data->timestamp);
  30. break;
  31. case RT_SENSOR_CLASS_HUMI:
  32. LOG_I("num:%3d, humi:%3d.%d%%, timestamp:%5d", num, sensor_data->data.humi / 10, sensor_data->data.humi % 10, sensor_data->timestamp);
  33. break;
  34. case RT_SENSOR_CLASS_TEMP:
  35. LOG_I("num:%3d, temp:%3d.%dC, timestamp:%5d", num, sensor_data->data.temp / 10, sensor_data->data.temp % 10, sensor_data->timestamp);
  36. break;
  37. case RT_SENSOR_CLASS_BARO:
  38. LOG_I("num:%3d, press:%5d pa, timestamp:%5d", num, sensor_data->data.baro, sensor_data->timestamp);
  39. break;
  40. case RT_SENSOR_CLASS_STEP:
  41. LOG_I("num:%3d, step:%5d, timestamp:%5d", num, sensor_data->data.step, sensor_data->timestamp);
  42. break;
  43. case RT_SENSOR_CLASS_PROXIMITY:
  44. LOG_I("num:%3d, distance:%5d, timestamp:%5d", num, sensor_data->data.proximity, sensor_data->timestamp);
  45. break;
  46. case RT_SENSOR_CLASS_FORCE:
  47. LOG_I("num:%3d, force:%5d, timestamp:%5d", num, sensor_data->data.force, sensor_data->timestamp);
  48. break;
  49. default:
  50. break;
  51. }
  52. }
  53. static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
  54. {
  55. rt_sem_release(sensor_rx_sem);
  56. return 0;
  57. }
  58. static void sensor_fifo_rx_entry(void *parameter)
  59. {
  60. rt_device_t dev = (rt_device_t)parameter;
  61. rt_sensor_t sensor = (rt_sensor_t)parameter;
  62. struct rt_sensor_data *data = RT_NULL;
  63. struct rt_sensor_info info;
  64. rt_size_t res, i;
  65. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  66. data = (struct rt_sensor_data *)rt_malloc(sizeof(struct rt_sensor_data) * info.fifo_max);
  67. if (data == RT_NULL)
  68. {
  69. LOG_E("Memory allocation failed!");
  70. }
  71. while (1)
  72. {
  73. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  74. res = rt_device_read(dev, 0, data, info.fifo_max);
  75. for (i = 0; i < res; i++)
  76. {
  77. sensor_show_data(i, sensor, &data[i]);
  78. }
  79. }
  80. }
  81. static void sensor_fifo(int argc, char **argv)
  82. {
  83. static rt_thread_t tid1 = RT_NULL;
  84. rt_device_t dev = RT_NULL;
  85. rt_sensor_t sensor;
  86. dev = rt_device_find(argv[1]);
  87. if (dev == RT_NULL)
  88. {
  89. LOG_E("Can't find device:%s", argv[1]);
  90. return;
  91. }
  92. sensor = (rt_sensor_t)dev;
  93. if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
  94. {
  95. LOG_E("open device failed!");
  96. return;
  97. }
  98. if (sensor_rx_sem == RT_NULL)
  99. {
  100. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  101. }
  102. else
  103. {
  104. LOG_E("The thread is running, please reboot and try again");
  105. return;
  106. }
  107. tid1 = rt_thread_create("sen_rx_thread",
  108. sensor_fifo_rx_entry, sensor,
  109. 1024,
  110. 15, 5);
  111. if (tid1 != RT_NULL)
  112. rt_thread_startup(tid1);
  113. rt_device_set_rx_indicate(dev, rx_callback);
  114. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  115. }
  116. #ifdef FINSH_USING_MSH
  117. MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
  118. #endif
  119. static void sensor_irq_rx_entry(void *parameter)
  120. {
  121. rt_device_t dev = (rt_device_t)parameter;
  122. rt_sensor_t sensor = (rt_sensor_t)parameter;
  123. struct rt_sensor_data data;
  124. rt_size_t res, i = 0;
  125. while (1)
  126. {
  127. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  128. res = rt_device_read(dev, 0, &data, 1);
  129. if (res == 1)
  130. {
  131. sensor_show_data(i++, sensor, &data);
  132. }
  133. }
  134. }
  135. static void sensor_int(int argc, char **argv)
  136. {
  137. static rt_thread_t tid1 = RT_NULL;
  138. rt_device_t dev = RT_NULL;
  139. rt_sensor_t sensor;
  140. dev = rt_device_find(argv[1]);
  141. if (dev == RT_NULL)
  142. {
  143. LOG_E("Can't find device:%s", argv[1]);
  144. return;
  145. }
  146. sensor = (rt_sensor_t)dev;
  147. if (sensor_rx_sem == RT_NULL)
  148. {
  149. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  150. }
  151. else
  152. {
  153. LOG_E("The thread is running, please reboot and try again");
  154. return;
  155. }
  156. tid1 = rt_thread_create("sen_rx_thread",
  157. sensor_irq_rx_entry, sensor,
  158. 1024,
  159. 15, 5);
  160. if (tid1 != RT_NULL)
  161. rt_thread_startup(tid1);
  162. rt_device_set_rx_indicate(dev, rx_callback);
  163. if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
  164. {
  165. LOG_E("open device failed!");
  166. return;
  167. }
  168. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  169. }
  170. #ifdef FINSH_USING_MSH
  171. MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
  172. #endif
  173. static void sensor_polling(int argc, char **argv)
  174. {
  175. uint16_t num = 10;
  176. rt_device_t dev = RT_NULL;
  177. rt_sensor_t sensor;
  178. struct rt_sensor_data data;
  179. rt_size_t res, i;
  180. dev = rt_device_find(argv[1]);
  181. if (dev == RT_NULL)
  182. {
  183. LOG_E("Can't find device:%s", argv[1]);
  184. return;
  185. }
  186. if (argc > 2)
  187. num = atoi(argv[2]);
  188. sensor = (rt_sensor_t)dev;
  189. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  190. {
  191. LOG_E("open device failed!");
  192. return;
  193. }
  194. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)100);
  195. for (i = 0; i < num; i++)
  196. {
  197. res = rt_device_read(dev, 0, &data, 1);
  198. if (res != 1)
  199. {
  200. LOG_E("read data failed!size is %d", res);
  201. }
  202. else
  203. {
  204. sensor_show_data(i, sensor, &data);
  205. }
  206. rt_thread_mdelay(100);
  207. }
  208. rt_device_close(dev);
  209. }
  210. #ifdef FINSH_USING_MSH
  211. MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
  212. #endif
  213. static void sensor(int argc, char **argv)
  214. {
  215. static rt_device_t dev = RT_NULL;
  216. struct rt_sensor_data data;
  217. rt_size_t res, i;
  218. /* If the number of arguments less than 2 */
  219. if (argc < 2)
  220. {
  221. rt_kprintf("\n");
  222. rt_kprintf("sensor [OPTION] [PARAM]\n");
  223. rt_kprintf(" probe <dev_name> Probe sensor by given name\n");
  224. rt_kprintf(" info Get sensor info\n");
  225. rt_kprintf(" sr <var> Set range to var\n");
  226. rt_kprintf(" sm <var> Set work mode to var\n");
  227. rt_kprintf(" sp <var> Set power mode to var\n");
  228. rt_kprintf(" sodr <var> Set output date rate to var\n");
  229. rt_kprintf(" read [num] Read [num] times sensor\n");
  230. rt_kprintf(" num default 5\n");
  231. return ;
  232. }
  233. else if (!strcmp(argv[1], "info"))
  234. {
  235. struct rt_sensor_info info;
  236. if (dev == RT_NULL)
  237. {
  238. LOG_W("Please probe sensor device first!");
  239. return ;
  240. }
  241. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  242. switch (info.vendor)
  243. {
  244. case RT_SENSOR_VENDOR_UNKNOWN:
  245. rt_kprintf("vendor :unknown vendor\n");
  246. break;
  247. case RT_SENSOR_VENDOR_STM:
  248. rt_kprintf("vendor :STMicroelectronics\n");
  249. break;
  250. case RT_SENSOR_VENDOR_BOSCH:
  251. rt_kprintf("vendor :Bosch\n");
  252. break;
  253. case RT_SENSOR_VENDOR_INVENSENSE:
  254. rt_kprintf("vendor :Invensense\n");
  255. break;
  256. case RT_SENSOR_VENDOR_SEMTECH:
  257. rt_kprintf("vendor :Semtech\n");
  258. break;
  259. case RT_SENSOR_VENDOR_GOERTEK:
  260. rt_kprintf("vendor :Goertek\n");
  261. break;
  262. case RT_SENSOR_VENDOR_MIRAMEMS:
  263. rt_kprintf("vendor :MiraMEMS\n");
  264. break;
  265. case RT_SENSOR_VENDOR_DALLAS:
  266. rt_kprintf("vendor :Dallas\n");
  267. break;
  268. }
  269. rt_kprintf("model :%s\n", info.model);
  270. switch (info.unit)
  271. {
  272. case RT_SENSOR_UNIT_NONE:
  273. rt_kprintf("unit :none\n");
  274. break;
  275. case RT_SENSOR_UNIT_MG:
  276. rt_kprintf("unit :mG\n");
  277. break;
  278. case RT_SENSOR_UNIT_MDPS:
  279. rt_kprintf("unit :mdps\n");
  280. break;
  281. case RT_SENSOR_UNIT_MGAUSS:
  282. rt_kprintf("unit :mGauss\n");
  283. break;
  284. case RT_SENSOR_UNIT_LUX:
  285. rt_kprintf("unit :lux\n");
  286. break;
  287. case RT_SENSOR_UNIT_CM:
  288. rt_kprintf("unit :cm\n");
  289. break;
  290. case RT_SENSOR_UNIT_PA:
  291. rt_kprintf("unit :pa\n");
  292. break;
  293. case RT_SENSOR_UNIT_PERMILLAGE:
  294. rt_kprintf("unit :permillage\n");
  295. break;
  296. case RT_SENSOR_UNIT_DCELSIUS:
  297. rt_kprintf("unit :Celsius\n");
  298. break;
  299. case RT_SENSOR_UNIT_HZ:
  300. rt_kprintf("unit :HZ\n");
  301. break;
  302. case RT_SENSOR_UNIT_ONE:
  303. rt_kprintf("unit :1\n");
  304. break;
  305. case RT_SENSOR_UNIT_BPM:
  306. rt_kprintf("unit :bpm\n");
  307. break;
  308. case RT_SENSOR_UNIT_MM:
  309. rt_kprintf("unit :mm\n");
  310. break;
  311. case RT_SENSOR_UNIT_MN:
  312. rt_kprintf("unit :mN\n");
  313. break;
  314. }
  315. rt_kprintf("range_max :%d\n", info.range_max);
  316. rt_kprintf("range_min :%d\n", info.range_min);
  317. rt_kprintf("period_min:%dms\n", info.period_min);
  318. rt_kprintf("fifo_max :%d\n", info.fifo_max);
  319. }
  320. else if (!strcmp(argv[1], "read"))
  321. {
  322. uint16_t num = 5;
  323. if (dev == RT_NULL)
  324. {
  325. LOG_W("Please probe sensor device first!");
  326. return ;
  327. }
  328. if (argc == 3)
  329. {
  330. num = atoi(argv[2]);
  331. }
  332. for (i = 0; i < num; i++)
  333. {
  334. res = rt_device_read(dev, 0, &data, 1);
  335. if (res != 1)
  336. {
  337. LOG_E("read data failed!size is %d", res);
  338. }
  339. else
  340. {
  341. sensor_show_data(i, (rt_sensor_t)dev, &data);
  342. }
  343. rt_thread_mdelay(100);
  344. }
  345. }
  346. else if (argc == 3)
  347. {
  348. if (!strcmp(argv[1], "probe"))
  349. {
  350. rt_uint8_t reg = 0xFF;
  351. if (dev)
  352. {
  353. rt_device_close(dev);
  354. }
  355. dev = rt_device_find(argv[2]);
  356. if (dev == RT_NULL)
  357. {
  358. LOG_E("Can't find device:%s", argv[1]);
  359. return;
  360. }
  361. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  362. {
  363. LOG_E("open device failed!");
  364. return;
  365. }
  366. rt_device_control(dev, RT_SENSOR_CTRL_GET_ID, &reg);
  367. LOG_I("device id: 0x%x!", reg);
  368. }
  369. else if (dev == RT_NULL)
  370. {
  371. LOG_W("Please probe sensor first!");
  372. return ;
  373. }
  374. else if (!strcmp(argv[1], "sr"))
  375. {
  376. rt_device_control(dev, RT_SENSOR_CTRL_SET_RANGE, (void *)atoi(argv[2]));
  377. }
  378. else if (!strcmp(argv[1], "sm"))
  379. {
  380. rt_device_control(dev, RT_SENSOR_CTRL_SET_MODE, (void *)atoi(argv[2]));
  381. }
  382. else if (!strcmp(argv[1], "sp"))
  383. {
  384. rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER, (void *)atoi(argv[2]));
  385. }
  386. else if (!strcmp(argv[1], "sodr"))
  387. {
  388. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)atoi(argv[2]));
  389. }
  390. else
  391. {
  392. LOG_W("Unknown command, please enter 'sensor' get help information!");
  393. }
  394. }
  395. else
  396. {
  397. LOG_W("Unknown command, please enter 'sensor' get help information!");
  398. }
  399. }
  400. #ifdef FINSH_USING_MSH
  401. MSH_CMD_EXPORT(sensor, sensor test function);
  402. #endif