1
0

drv_can.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2023-03-30 luobeihai first version
  9. */
  10. #include "drv_can.h"
  11. #ifdef RT_USING_CAN
  12. #if defined(BSP_USING_CAN1) || defined(BSP_USING_CAN2)
  13. #define LOG_TAG "drv_can"
  14. #include <drv_log.h>
  15. #ifdef BSP_USING_CAN1
  16. static struct apm32_can drv_can1 =
  17. {
  18. .name = "can1",
  19. .CANx = CAN1,
  20. };
  21. #endif
  22. #ifdef BSP_USING_CAN2
  23. static struct apm32_can drv_can2 =
  24. {
  25. .name = "can2",
  26. .CANx = CAN2,
  27. };
  28. #endif
  29. /* baud calculation example: PCLK1 / ((timeSegment1 + timeSegment2 + 1) * prescaler) = 36 / ((1 + 8 + 3) * 3) = 1MHz */
  30. #if defined (SOC_SERIES_APM32F1) || defined (SOC_SERIES_APM32E1) || defined (SOC_SERIES_APM32S1) /* APB1 36MHz(max) */
  31. static const struct apm32_baud_rate_tab can_baud_rate_tab[] =
  32. {
  33. APM32_CAN_BAUD_DEF(CAN1MBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 3),
  34. APM32_CAN_BAUD_DEF(CAN800kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_5, CAN_TIME_SEGMENT2_3, 5),
  35. APM32_CAN_BAUD_DEF(CAN500kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 6),
  36. APM32_CAN_BAUD_DEF(CAN250kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 12),
  37. APM32_CAN_BAUD_DEF(CAN125kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 24),
  38. APM32_CAN_BAUD_DEF(CAN100kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 30),
  39. APM32_CAN_BAUD_DEF(CAN50kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 60),
  40. APM32_CAN_BAUD_DEF(CAN20kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 150),
  41. APM32_CAN_BAUD_DEF(CAN10kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 300),
  42. };
  43. #elif defined (SOC_SERIES_APM32F4) /* APB1 42MHz(max) */
  44. static const struct apm32_baud_rate_tab can_baud_rate_tab[] =
  45. {
  46. APM32_CAN_BAUD_DEF(CAN1MBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 3),
  47. APM32_CAN_BAUD_DEF(CAN800kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_4, 4),
  48. APM32_CAN_BAUD_DEF(CAN500kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 6),
  49. APM32_CAN_BAUD_DEF(CAN250kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 12),
  50. APM32_CAN_BAUD_DEF(CAN125kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 24),
  51. APM32_CAN_BAUD_DEF(CAN100kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 30),
  52. APM32_CAN_BAUD_DEF(CAN50kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 60),
  53. APM32_CAN_BAUD_DEF(CAN20kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 150),
  54. APM32_CAN_BAUD_DEF(CAN10kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 300),
  55. };
  56. #endif
  57. static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
  58. {
  59. rt_uint32_t len, index;
  60. len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
  61. for (index = 0; index < len; index++)
  62. {
  63. if (can_baud_rate_tab[index].baud_rate == baud)
  64. return index;
  65. }
  66. return 0; /* default baud is CAN1MBaud */
  67. }
  68. static rt_err_t apm32_can_config(struct rt_can_device *can, struct can_configure *cfg)
  69. {
  70. struct apm32_can *drv_can;
  71. rt_uint32_t baud_index;
  72. RT_ASSERT(can);
  73. RT_ASSERT(cfg);
  74. drv_can = (struct apm32_can *)can->parent.user_data;
  75. RT_ASSERT(drv_can);
  76. /* init can gpio and enable can clock */
  77. extern void apm32_msp_can_init(void *Instance);
  78. apm32_msp_can_init(drv_can->CANx);
  79. CAN_ConfigStructInit(&drv_can->can_init);
  80. drv_can->can_init.autoBusOffManage = ENABLE;
  81. drv_can->can_init.autoWakeUpMode = DISABLE;
  82. drv_can->can_init.nonAutoRetran = DISABLE;
  83. drv_can->can_init.rxFIFOLockMode = DISABLE;
  84. drv_can->can_init.txFIFOPriority = ENABLE;
  85. /* can mode config */
  86. switch (cfg->mode)
  87. {
  88. case RT_CAN_MODE_NORMAL:
  89. drv_can->can_init.mode = CAN_MODE_NORMAL;
  90. break;
  91. case RT_CAN_MODE_LISTEN:
  92. drv_can->can_init.mode = CAN_MODE_SILENT;
  93. break;
  94. case RT_CAN_MODE_LOOPBACK:
  95. drv_can->can_init.mode = CAN_MODE_LOOPBACK;
  96. break;
  97. case RT_CAN_MODE_LOOPBACKANLISTEN:
  98. drv_can->can_init.mode = CAN_MODE_SILENT_LOOPBACK;
  99. break;
  100. default:
  101. drv_can->can_init.mode = CAN_MODE_NORMAL;
  102. break;
  103. }
  104. /* can baud config */
  105. baud_index = get_can_baud_index(cfg->baud_rate);
  106. drv_can->can_init.syncJumpWidth = can_baud_rate_tab[baud_index].syncJumpWidth;
  107. drv_can->can_init.timeSegment1 = can_baud_rate_tab[baud_index].timeSegment1;
  108. drv_can->can_init.timeSegment2 = can_baud_rate_tab[baud_index].timeSegment2;
  109. drv_can->can_init.prescaler = can_baud_rate_tab[baud_index].prescaler;
  110. /* init can */
  111. if (CAN_Config(drv_can->CANx, &drv_can->can_init) != SUCCESS)
  112. {
  113. LOG_D("Can init error");
  114. return -RT_ERROR;
  115. }
  116. /* default filter config */
  117. #if defined(SOC_SERIES_APM32F4) || defined(APM32F10X_CL)
  118. CAN_ConfigFilter(&drv_can->FilterConfig);
  119. #else
  120. CAN_ConfigFilter(drv_can->CANx, &drv_can->FilterConfig);
  121. #endif
  122. return RT_EOK;
  123. }
  124. static rt_err_t apm32_can_control(struct rt_can_device *can, int cmd, void *arg)
  125. {
  126. rt_uint32_t argval;
  127. struct apm32_can *drv_can;
  128. struct rt_can_filter_config *filter_cfg;
  129. RT_ASSERT(can != RT_NULL);
  130. drv_can = (struct apm32_can *)can->parent.user_data;
  131. RT_ASSERT(drv_can != RT_NULL);
  132. switch (cmd)
  133. {
  134. case RT_DEVICE_CTRL_CLR_INT:
  135. argval = (rt_uint32_t) arg;
  136. if (argval == RT_DEVICE_FLAG_INT_RX)
  137. {
  138. if (CAN1 == drv_can->CANx)
  139. {
  140. NVIC_DisableIRQRequest(CAN1_RX0_IRQn);
  141. NVIC_DisableIRQRequest(CAN1_RX1_IRQn);
  142. }
  143. #ifdef BSP_USING_CAN2
  144. if (CAN2 == drv_can->CANx)
  145. {
  146. NVIC_DisableIRQRequest(CAN2_RX0_IRQn);
  147. NVIC_DisableIRQRequest(CAN2_RX1_IRQn);
  148. }
  149. #endif
  150. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F0MP);
  151. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F0FULL);
  152. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F0OVR);
  153. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F1MP);
  154. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F1FULL);
  155. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F1OVR);
  156. }
  157. else if (argval == RT_DEVICE_FLAG_INT_TX)
  158. {
  159. if (CAN1 == drv_can->CANx)
  160. {
  161. NVIC_DisableIRQRequest(CAN1_TX_IRQn);
  162. }
  163. #ifdef BSP_USING_CAN2
  164. if (CAN2 == drv_can->CANx)
  165. {
  166. NVIC_DisableIRQRequest(CAN2_TX_IRQn);
  167. }
  168. #endif
  169. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_TXME);
  170. }
  171. else if (argval == RT_DEVICE_CAN_INT_ERR)
  172. {
  173. if (CAN1 == drv_can->CANx)
  174. {
  175. NVIC_DisableIRQRequest(CAN1_SCE_IRQn);
  176. }
  177. #ifdef BSP_USING_CAN2
  178. if (CAN2 == drv_can->CANx)
  179. {
  180. NVIC_DisableIRQRequest(CAN2_SCE_IRQn);
  181. }
  182. #endif
  183. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_ERRW);
  184. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_ERRP);
  185. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_BOF);
  186. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_LEC);
  187. CAN_DisableInterrupt(drv_can->CANx, CAN_INT_ERR);
  188. }
  189. break;
  190. case RT_DEVICE_CTRL_SET_INT:
  191. argval = (rt_uint32_t) arg;
  192. if (argval == RT_DEVICE_FLAG_INT_RX)
  193. {
  194. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F0MP);
  195. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F0FULL);
  196. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F0OVR);
  197. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F1MP);
  198. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F1FULL);
  199. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F1OVR);
  200. if (CAN1 == drv_can->CANx)
  201. {
  202. NVIC_EnableIRQRequest(CAN1_RX0_IRQn, 1, 0);
  203. NVIC_EnableIRQRequest(CAN1_RX1_IRQn, 1, 0);
  204. }
  205. #ifdef BSP_USING_CAN2
  206. if (CAN2 == drv_can->CANx)
  207. {
  208. NVIC_EnableIRQRequest(CAN2_RX0_IRQn, 1, 0);
  209. NVIC_EnableIRQRequest(CAN2_RX1_IRQn, 1, 0);
  210. }
  211. #endif
  212. }
  213. else if (argval == RT_DEVICE_FLAG_INT_TX)
  214. {
  215. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_TXME);
  216. if (CAN1 == drv_can->CANx)
  217. {
  218. NVIC_EnableIRQRequest(CAN1_TX_IRQn, 1, 0);
  219. }
  220. #ifdef BSP_USING_CAN2
  221. if (CAN2 == drv_can->CANx)
  222. {
  223. NVIC_EnableIRQRequest(CAN2_TX_IRQn, 1, 0);
  224. }
  225. #endif
  226. }
  227. else if (argval == RT_DEVICE_CAN_INT_ERR)
  228. {
  229. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_ERRW);
  230. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_ERRP);
  231. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_BOF);
  232. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_LEC);
  233. CAN_EnableInterrupt(drv_can->CANx, CAN_INT_ERR);
  234. if (CAN1 == drv_can->CANx)
  235. {
  236. NVIC_EnableIRQRequest(CAN1_SCE_IRQn, 1, 0);
  237. }
  238. #ifdef BSP_USING_CAN2
  239. if (CAN2 == drv_can->CANx)
  240. {
  241. NVIC_EnableIRQRequest(CAN2_SCE_IRQn, 1, 0);
  242. }
  243. #endif
  244. }
  245. break;
  246. case RT_CAN_CMD_SET_FILTER:
  247. {
  248. rt_uint32_t id_h = 0;
  249. rt_uint32_t id_l = 0;
  250. rt_uint32_t mask_h = 0;
  251. rt_uint32_t mask_l = 0;
  252. rt_uint32_t mask_l_tail = 0; //CAN_FxR2 bit [2:0]
  253. if (RT_NULL == arg)
  254. {
  255. /* default filter config */
  256. #if defined(SOC_SERIES_APM32F4) || defined(APM32F10X_CL)
  257. CAN_ConfigFilter(&drv_can->FilterConfig);
  258. #else
  259. CAN_ConfigFilter(drv_can->CANx, &drv_can->FilterConfig);
  260. #endif
  261. }
  262. else
  263. {
  264. filter_cfg = (struct rt_can_filter_config *)arg;
  265. /* get default filter */
  266. for (int i = 0; i < filter_cfg->count; i++)
  267. {
  268. if (filter_cfg->items[i].hdr_bank == -1)
  269. {
  270. /* use default filter bank settings */
  271. if (rt_strcmp(drv_can->name, "can1") == 0)
  272. {
  273. /* can1 banks 0~13 */
  274. drv_can->FilterConfig.filterNumber = i;
  275. }
  276. else if (rt_strcmp(drv_can->name, "can2") == 0)
  277. {
  278. /* can2 banks 14~27 */
  279. drv_can->FilterConfig.filterNumber = i + 14;
  280. }
  281. }
  282. else
  283. {
  284. /* use user-defined filter bank settings */
  285. drv_can->FilterConfig.filterNumber = filter_cfg->items[i].hdr_bank;
  286. }
  287. /**
  288. * ID | CAN_FxR1[31:24] | CAN_FxR1[23:16] | CAN_FxR1[15:8] | CAN_FxR1[7:0] |
  289. * MASK | CAN_FxR2[31:24] | CAN_FxR2[23:16] | CAN_FxR2[15:8] | CAN_FxR2[7:0] |
  290. * STD ID | STID[10:3] | STDID[2:0] |<- 21bit ->|
  291. * EXT ID | EXTID[28:21] | EXTID[20:13] | EXTID[12:5] | EXTID[4:0] IDE RTR 0|
  292. * @note the 32bit STD ID must << 21 to fill CAN_FxR1[31:21] and EXT ID must << 3,
  293. * -> but the id bit of struct rt_can_filter_item is 29,
  294. * -> so STD id << 18 and EXT id Don't need << 3, when get the high 16bit.
  295. * -> FilterIdHigh : (((STDid << 18) or (EXT id)) >> 13) & 0xFFFF,
  296. * -> FilterIdLow: ((STDid << 18) or (EXT id << 3)) & 0xFFFF.
  297. * @note the mask bit of struct rt_can_filter_item is 32,
  298. * -> FilterMaskIdHigh: (((STD mask << 21) or (EXT mask <<3)) >> 16) & 0xFFFF
  299. * -> FilterMaskIdLow: ((STD mask << 21) or (EXT mask <<3)) & 0xFFFF
  300. */
  301. if (filter_cfg->items[i].mode == CAN_FILTER_MODE_IDMASK)
  302. {
  303. /* make sure the CAN_FxR1[2:0](IDE RTR) work */
  304. mask_l_tail = 0x06;
  305. drv_can->FilterConfig.filterMode = CAN_FILTER_MODE_IDMASK;
  306. }
  307. else if (filter_cfg->items[i].mode == CAN_FILTER_MODE_IDLIST)
  308. {
  309. /* same as CAN_FxR1 */
  310. mask_l_tail = (filter_cfg->items[i].ide << 2) | (filter_cfg->items[i].rtr << 1);
  311. drv_can->FilterConfig.filterMode = CAN_FILTER_MODE_IDLIST;
  312. }
  313. if (filter_cfg->items[i].ide == RT_CAN_STDID)
  314. {
  315. id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF;
  316. id_l = ((filter_cfg->items[i].id << 18) |
  317. (filter_cfg->items[i].ide << 2) |
  318. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  319. mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF;
  320. mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF;
  321. }
  322. else if (filter_cfg->items[i].ide == RT_CAN_EXTID)
  323. {
  324. id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF;
  325. id_l = ((filter_cfg->items[i].id << 3) |
  326. (filter_cfg->items[i].ide << 2) |
  327. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  328. mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF;
  329. mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF;
  330. }
  331. drv_can->FilterConfig.filterIdHigh = id_h;
  332. drv_can->FilterConfig.filterIdLow = id_l;
  333. drv_can->FilterConfig.filterMaskIdHigh = mask_h;
  334. drv_can->FilterConfig.filterMaskIdLow = mask_l;
  335. drv_can->FilterConfig.filterFIFO = CAN_FILTER_FIFO_0;
  336. drv_can->FilterConfig.filterScale = CAN_FILTER_SCALE_32BIT;
  337. drv_can->FilterConfig.filterActivation = ENABLE;
  338. /* Filter conf */
  339. #if defined(SOC_SERIES_APM32F4) || defined(APM32F10X_CL)
  340. CAN_ConfigFilter(&drv_can->FilterConfig);
  341. #else
  342. CAN_ConfigFilter(drv_can->CANx, &drv_can->FilterConfig);
  343. #endif
  344. }
  345. }
  346. break;
  347. }
  348. case RT_CAN_CMD_SET_MODE:
  349. argval = (rt_uint32_t) arg;
  350. if (argval != RT_CAN_MODE_NORMAL &&
  351. argval != RT_CAN_MODE_LISTEN &&
  352. argval != RT_CAN_MODE_LOOPBACK &&
  353. argval != RT_CAN_MODE_LOOPBACKANLISTEN)
  354. {
  355. return -RT_ERROR;
  356. }
  357. if (argval != drv_can->device.config.mode)
  358. {
  359. drv_can->device.config.mode = argval;
  360. return apm32_can_config(&drv_can->device, &drv_can->device.config);
  361. }
  362. break;
  363. case RT_CAN_CMD_SET_BAUD:
  364. argval = (rt_uint32_t) arg;
  365. if (argval != CAN1MBaud &&
  366. argval != CAN800kBaud &&
  367. argval != CAN500kBaud &&
  368. argval != CAN250kBaud &&
  369. argval != CAN125kBaud &&
  370. argval != CAN100kBaud &&
  371. argval != CAN50kBaud &&
  372. argval != CAN20kBaud &&
  373. argval != CAN10kBaud)
  374. {
  375. return -RT_ERROR;
  376. }
  377. if (argval != drv_can->device.config.baud_rate)
  378. {
  379. drv_can->device.config.baud_rate = argval;
  380. return apm32_can_config(&drv_can->device, &drv_can->device.config);
  381. }
  382. break;
  383. case RT_CAN_CMD_SET_PRIV:
  384. argval = (rt_uint32_t) arg;
  385. if (argval != RT_CAN_MODE_PRIV &&
  386. argval != RT_CAN_MODE_NOPRIV)
  387. {
  388. return -RT_ERROR;
  389. }
  390. if (argval != drv_can->device.config.privmode)
  391. {
  392. drv_can->device.config.privmode = argval;
  393. return apm32_can_config(&drv_can->device, &drv_can->device.config);
  394. }
  395. break;
  396. case RT_CAN_CMD_GET_STATUS:
  397. {
  398. rt_uint32_t errtype;
  399. errtype = drv_can->CANx->ERRSTS;
  400. drv_can->device.status.rcverrcnt = errtype >> 24;
  401. drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
  402. drv_can->device.status.lasterrtype = errtype & 0x70;
  403. drv_can->device.status.errcode = errtype & 0x07;
  404. rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
  405. }
  406. break;
  407. }
  408. return RT_EOK;
  409. }
  410. static int can_send_rtmsg(CAN_T *CANx, struct rt_can_msg *pmsg, uint32_t mailbox_index)
  411. {
  412. CAN_TxMessage_T CAN_TxMessage = {0};
  413. CAN_TxMessage_T *TxMessage = &CAN_TxMessage;
  414. if (RT_CAN_STDID == pmsg->ide)
  415. {
  416. TxMessage->typeID = CAN_TYPEID_STD;
  417. TxMessage->stdID = pmsg->id;
  418. }
  419. else
  420. {
  421. TxMessage->typeID = CAN_TYPEID_EXT;
  422. TxMessage->extID = pmsg->id;
  423. }
  424. if (RT_CAN_DTR == pmsg->rtr)
  425. {
  426. TxMessage->remoteTxReq = CAN_RTXR_DATA;
  427. }
  428. else
  429. {
  430. TxMessage->remoteTxReq = CAN_RTXR_REMOTE;
  431. }
  432. /* Set up the Id */
  433. CANx->sTxMailBox[mailbox_index].TXMID &= 0x00000001;
  434. if (TxMessage->typeID == CAN_TYPEID_STD)
  435. {
  436. CANx->sTxMailBox[mailbox_index].TXMID |= (TxMessage->stdID << 21) | (TxMessage->remoteTxReq);
  437. }
  438. else
  439. {
  440. CANx->sTxMailBox[mailbox_index].TXMID |= (TxMessage->extID << 3) | (TxMessage->typeID) | (TxMessage->remoteTxReq);
  441. }
  442. /* Set up the TXDLEN */
  443. TxMessage->dataLengthCode = pmsg->len & 0x0FU;
  444. CANx->sTxMailBox[mailbox_index].TXDLEN &= (uint32_t)0xFFFFFFF0;
  445. CANx->sTxMailBox[mailbox_index].TXDLEN |= TxMessage->dataLengthCode;
  446. /* Set up the data field */
  447. CANx->sTxMailBox[mailbox_index].TXMDH = (((uint32_t)pmsg->data[7] << 24) |
  448. ((uint32_t)pmsg->data[6] << 16) |
  449. ((uint32_t)pmsg->data[5] << 8) |
  450. ((uint32_t)pmsg->data[4]));
  451. CANx->sTxMailBox[mailbox_index].TXMDL = (((uint32_t)pmsg->data[3] << 24) |
  452. ((uint32_t)pmsg->data[2] << 16) |
  453. ((uint32_t)pmsg->data[1] << 8) |
  454. ((uint32_t)pmsg->data[0]));
  455. /* Request transmission */
  456. CANx->sTxMailBox[mailbox_index].TXMID |= 0x00000001;
  457. return RT_EOK;
  458. }
  459. static int apm32_can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  460. {
  461. struct apm32_can *drv_can;
  462. RT_ASSERT(can != RT_NULL);
  463. RT_ASSERT(buf != RT_NULL);
  464. drv_can = (struct apm32_can *)can->parent.user_data;
  465. RT_ASSERT(drv_can != RT_NULL);
  466. /* Select one empty transmit mailbox */
  467. switch (box_num)
  468. {
  469. case CAN_TX_MAILBIX_0:
  470. if ((drv_can->CANx->TXSTS & 0x04000000) != 0x04000000)
  471. {
  472. /* Return function status */
  473. return -RT_ERROR;
  474. }
  475. break;
  476. case CAN_TX_MAILBIX_1:
  477. if ((drv_can->CANx->TXSTS & 0x08000000) != 0x08000000)
  478. {
  479. /* Return function status */
  480. return -RT_ERROR;
  481. }
  482. break;
  483. case CAN_TX_MAILBIX_2:
  484. if ((drv_can->CANx->TXSTS & 0x10000000) != 0x10000000)
  485. {
  486. /* Return function status */
  487. return -RT_ERROR;
  488. }
  489. break;
  490. default:
  491. RT_ASSERT(0);
  492. break;
  493. }
  494. /* Start send msg */
  495. return can_send_rtmsg(drv_can->CANx, ((struct rt_can_msg *)buf), box_num);
  496. }
  497. static int apm32_can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  498. {
  499. struct apm32_can *drv_can;
  500. struct rt_can_msg *pmsg;
  501. CAN_RxMessage_T RxMessage = {0};
  502. RT_ASSERT(can);
  503. drv_can = (struct apm32_can *)can->parent.user_data;
  504. pmsg = (struct rt_can_msg *) buf;
  505. CAN_RxMessage(drv_can->CANx, (CAN_RX_FIFO_T)fifo, &RxMessage);
  506. /* get data */
  507. pmsg->data[0] = RxMessage.data[0];
  508. pmsg->data[1] = RxMessage.data[1];
  509. pmsg->data[2] = RxMessage.data[2];
  510. pmsg->data[3] = RxMessage.data[3];
  511. pmsg->data[4] = RxMessage.data[4];
  512. pmsg->data[5] = RxMessage.data[5];
  513. pmsg->data[6] = RxMessage.data[6];
  514. pmsg->data[7] = RxMessage.data[7];
  515. /* get id */
  516. if (CAN_TYPEID_STD == RxMessage.typeID)
  517. {
  518. pmsg->ide = RT_CAN_STDID;
  519. pmsg->id = RxMessage.stdID;
  520. }
  521. else
  522. {
  523. pmsg->ide = RT_CAN_EXTID;
  524. pmsg->id = RxMessage.extID;
  525. }
  526. /* get type */
  527. if (CAN_RTXR_DATA == RxMessage.remoteTxReq)
  528. {
  529. pmsg->rtr = RT_CAN_DTR;
  530. }
  531. else
  532. {
  533. pmsg->rtr = RT_CAN_RTR;
  534. }
  535. /*get rxfifo = CAN_RX_FIFO0/CAN_RX_FIFO1*/
  536. pmsg->rxfifo = fifo;
  537. /* get len */
  538. pmsg->len = RxMessage.dataLengthCode;
  539. /* get hdr_index */
  540. if (drv_can->CANx == CAN1)
  541. {
  542. pmsg->hdr_index = RxMessage.filterMatchIndex;
  543. }
  544. #ifdef CAN2
  545. else if (drv_can->CANx == CAN2)
  546. {
  547. pmsg->hdr_index = RxMessage.filterMatchIndex;
  548. }
  549. #endif
  550. return RT_EOK;
  551. }
  552. static const struct rt_can_ops _can_ops =
  553. {
  554. apm32_can_config,
  555. apm32_can_control,
  556. apm32_can_sendmsg,
  557. apm32_can_recvmsg,
  558. };
  559. static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
  560. {
  561. struct apm32_can *drv_can;
  562. RT_ASSERT(can != RT_NULL);
  563. drv_can = (struct apm32_can *)can->parent.user_data;
  564. RT_ASSERT(drv_can != RT_NULL);
  565. switch (fifo)
  566. {
  567. case CAN_RX_FIFO_0:
  568. /* save to user list */
  569. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F0MP) && CAN_PendingMessage(drv_can->CANx, CAN_RX_FIFO_0))
  570. {
  571. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  572. }
  573. /* Check FULL flag for FIFO0 */
  574. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F0FULL))
  575. {
  576. /* Clear FIFO0 FULL Flag */
  577. CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_F0FULL);
  578. }
  579. /* Check Overrun flag for FIFO0 */
  580. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F0OVR))
  581. {
  582. /* Clear FIFO0 Overrun Flag */
  583. CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_F0OVR);
  584. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  585. }
  586. break;
  587. case CAN_RX_FIFO_1:
  588. /* save to user list */
  589. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F1MP) && CAN_PendingMessage(drv_can->CANx, CAN_RX_FIFO_1))
  590. {
  591. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  592. }
  593. /* Check FULL flag for FIFO1 */
  594. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F1FULL))
  595. {
  596. /* Clear FIFO1 FULL Flag */
  597. CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_F1FULL);
  598. }
  599. /* Check Overrun flag for FIFO1 */
  600. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F1OVR))
  601. {
  602. /* Clear FIFO1 Overrun Flag */
  603. CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_F1OVR);
  604. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  605. }
  606. break;
  607. }
  608. }
  609. static void _can_sce_isr(struct rt_can_device *can)
  610. {
  611. struct apm32_can *drv_can;
  612. RT_ASSERT(can != RT_NULL);
  613. drv_can = (struct apm32_can *)can->parent.user_data;
  614. RT_ASSERT(drv_can != RT_NULL);
  615. rt_uint32_t errtype = drv_can->CANx->ERRSTS;
  616. switch ((errtype & 0x70) >> 4)
  617. {
  618. case RT_CAN_BUS_BIT_PAD_ERR:
  619. can->status.bitpaderrcnt++;
  620. break;
  621. case RT_CAN_BUS_FORMAT_ERR:
  622. can->status.formaterrcnt++;
  623. break;
  624. case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
  625. can->status.ackerrcnt++;
  626. if (!READ_BIT(drv_can->CANx->TXSTS, 0x00000002))
  627. {
  628. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  629. }
  630. else if (!READ_BIT(drv_can->CANx->TXSTS, 0x00000200))
  631. {
  632. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  633. }
  634. else if (!READ_BIT(drv_can->CANx->TXSTS, 0x00020000))
  635. {
  636. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  637. }
  638. break;
  639. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  640. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  641. can->status.biterrcnt++;
  642. break;
  643. case RT_CAN_BUS_CRC_ERR:
  644. can->status.crcerrcnt++;
  645. break;
  646. }
  647. can->status.lasterrtype = errtype & 0x70;
  648. can->status.rcverrcnt = errtype >> 24;
  649. can->status.snderrcnt = (errtype >> 16 & 0xFF);
  650. can->status.errcode = errtype & 0x07;
  651. /* clear error interrupt flag */
  652. CAN_ClearIntFlag(drv_can->CANx, CAN_INT_ERR);
  653. }
  654. static void _can_tx_isr(struct rt_can_device *can)
  655. {
  656. struct apm32_can *drv_can;
  657. RT_ASSERT(can != RT_NULL);
  658. drv_can = (struct apm32_can *)can->parent.user_data;
  659. RT_ASSERT(drv_can != RT_NULL);
  660. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_REQC0))
  661. {
  662. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | (0x00 << 8));
  663. CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_REQC0);
  664. }
  665. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_REQC1))
  666. {
  667. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | (0x01 << 8));
  668. CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_REQC1);
  669. }
  670. if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_REQC2))
  671. {
  672. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | (0x02 << 8));
  673. CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_REQC2);
  674. }
  675. }
  676. #ifdef BSP_USING_CAN1
  677. /**
  678. * @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
  679. */
  680. void CAN1_TX_IRQHandler(void)
  681. {
  682. rt_interrupt_enter();
  683. _can_tx_isr(&drv_can1.device);
  684. rt_interrupt_leave();
  685. }
  686. /**
  687. * @brief This function handles CAN1 RX0 interrupts.
  688. */
  689. void CAN1_RX0_IRQHandler(void)
  690. {
  691. rt_interrupt_enter();
  692. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
  693. rt_interrupt_leave();
  694. }
  695. /**
  696. * @brief This function handles CAN1 RX1 interrupts.
  697. */
  698. void CAN1_RX1_IRQHandler(void)
  699. {
  700. rt_interrupt_enter();
  701. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
  702. rt_interrupt_leave();
  703. }
  704. /**
  705. * @brief This function handles CAN1 SCE interrupts.
  706. */
  707. void CAN1_SCE_IRQHandler(void)
  708. {
  709. rt_interrupt_enter();
  710. _can_sce_isr(&drv_can1.device);
  711. rt_interrupt_leave();
  712. }
  713. #endif /* BSP_USING_CAN1 */
  714. #ifdef BSP_USING_CAN2
  715. /**
  716. * @brief This function handles CAN2 TX interrupts.
  717. */
  718. void CAN2_TX_IRQHandler(void)
  719. {
  720. rt_interrupt_enter();
  721. _can_tx_isr(&drv_can2.device);
  722. rt_interrupt_leave();
  723. }
  724. /**
  725. * @brief This function handles CAN2 RX0 interrupts.
  726. */
  727. void CAN2_RX0_IRQHandler(void)
  728. {
  729. rt_interrupt_enter();
  730. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
  731. rt_interrupt_leave();
  732. }
  733. /**
  734. * @brief This function handles CAN2 RX1 interrupts.
  735. */
  736. void CAN2_RX1_IRQHandler(void)
  737. {
  738. rt_interrupt_enter();
  739. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
  740. rt_interrupt_leave();
  741. }
  742. /**
  743. * @brief This function handles CAN2 SCE interrupts.
  744. */
  745. void CAN2_SCE_IRQHandler(void)
  746. {
  747. rt_interrupt_enter();
  748. _can_sce_isr(&drv_can2.device);
  749. rt_interrupt_leave();
  750. }
  751. #endif /* BSP_USING_CAN2 */
  752. int rt_hw_can_init(void)
  753. {
  754. struct can_configure config = CANDEFAULTCONFIG;
  755. config.privmode = RT_CAN_MODE_NOPRIV;
  756. config.ticks = 50;
  757. #ifdef RT_CAN_USING_HDR
  758. config.maxhdr = 14;
  759. #if defined(CAN2) && (defined(APM32F10X_CL) || defined(SOC_SERIES_APM32F4))
  760. config.maxhdr = 28;
  761. #endif
  762. #endif
  763. /* config default filter */
  764. CAN_FilterConfig_T filterConf = {0};
  765. filterConf.filterNumber = 0;
  766. filterConf.filterIdHigh = 0x0000;
  767. filterConf.filterIdLow = 0x0000;
  768. filterConf.filterMaskIdHigh = 0x0000;
  769. filterConf.filterMaskIdLow = 0x0000;
  770. filterConf.filterFIFO = CAN_FILTER_FIFO_0;
  771. filterConf.filterMode = CAN_FILTER_MODE_IDMASK;
  772. filterConf.filterScale = CAN_FILTER_SCALE_32BIT;
  773. filterConf.filterActivation = ENABLE;
  774. #ifdef BSP_USING_CAN1
  775. filterConf.filterNumber = 0;
  776. drv_can1.FilterConfig = filterConf;
  777. drv_can1.device.config = config;
  778. /* register CAN1 device */
  779. rt_hw_can_register(&drv_can1.device, drv_can1.name, &_can_ops, &drv_can1);
  780. #endif /* BSP_USING_CAN1 */
  781. #ifdef BSP_USING_CAN2
  782. #if defined(APM32F10X_HD) || defined(APM32E10X_HD) || defined(APM32S10X_MD)
  783. filterConf.filterNumber = 0;
  784. #elif defined(APM32F10X_CL) || defined(SOC_SERIES_APM32F4)
  785. filterConf.filterNumber = 14;
  786. #else
  787. filterConf.filterNumber = 0;
  788. #endif
  789. drv_can2.FilterConfig = filterConf;
  790. drv_can2.device.config = config;
  791. /* register CAN2 device */
  792. rt_hw_can_register(&drv_can2.device, drv_can2.name, &_can_ops, &drv_can2);
  793. #endif /* BSP_USING_CAN2 */
  794. return 0;
  795. }
  796. INIT_BOARD_EXPORT(rt_hw_can_init);
  797. #endif /* defined(BSP_USING_CAN1) || defined(BSP_USING_CAN2) */
  798. #endif /*RT_USING_CAN*/