dev_accel.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2011-07-13 onelife Initial creation for using EFM32 ADC module to
  9. * interface the Freescale MMA7361L
  10. * 2011-08-02 onelife Add digital interface support of using EFM32 IIC
  11. * module for the Freescale MMA7455L
  12. */
  13. /***************************************************************************//**
  14. * @addtogroup efm32
  15. * @{
  16. ******************************************************************************/
  17. /* Includes ------------------------------------------------------------------*/
  18. #include "board.h"
  19. #if defined(EFM32_USING_ACCEL)
  20. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_ADC)
  21. #include "drv_adc.h"
  22. #elif (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  23. #include "drv_iic.h"
  24. #include "hdl_interrupt.h"
  25. #endif
  26. #include "dev_accel.h"
  27. /* Private typedef -----------------------------------------------------------*/
  28. /* Private define ------------------------------------------------------------*/
  29. /* Private macro -------------------------------------------------------------*/
  30. #ifdef EFM32_ACCEL_DEBUG
  31. #define accel_debug(format,args...) rt_kprintf(format, ##args)
  32. #else
  33. #define accel_debug(format,args...)
  34. #endif
  35. /* Private constants ---------------------------------------------------------*/
  36. static rt_device_t accel;
  37. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_ADC)
  38. static struct efm32_adc_control_t control = \
  39. {ADC_MODE_SCAN, {3, ACCEL_USING_DMA}, {}};
  40. static struct efm32_accel_result_t accelOffset = {0};
  41. #elif (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  42. static const struct efm32_iic_control_t control = \
  43. {IIC_STATE_MASTER, 0x0000};
  44. #endif
  45. static rt_bool_t accelInTime = true;
  46. static rt_uint32_t accelConfig = 0;
  47. /* Private variables ---------------------------------------------------------*/
  48. /* Private function prototypes -----------------------------------------------*/
  49. /* Private functions ---------------------------------------------------------*/
  50. /***************************************************************************//**
  51. * @brief
  52. * Get accelerometer output
  53. *
  54. * @details
  55. *
  56. * @note
  57. *
  58. * @param[out] data
  59. * Pointer to output buffer
  60. *
  61. * @param[in] lowResolution
  62. * Resolution selection
  63. *
  64. * @return
  65. * Error code
  66. ******************************************************************************/
  67. rt_err_t efm_accel_get_data(struct efm32_accel_result_t *data,
  68. rt_bool_t lowResolution)
  69. {
  70. RT_ASSERT(accel != RT_NULL);
  71. rt_err_t ret;
  72. if (data == RT_NULL)
  73. {
  74. return -RT_ERROR;
  75. }
  76. ret = RT_EOK;
  77. do
  78. {
  79. /* --------- ADC interface --------- */
  80. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_ADC)
  81. struct efm32_adc_result_t result;
  82. result.mode = control.mode;
  83. result.buffer = (void *)data;
  84. if ((ret = accel->control(accel, RT_DEVICE_CTRL_RESUME,
  85. (void *)&result)) != RT_EOK)
  86. {
  87. break;
  88. }
  89. if ((ret = accel->control(accel, RT_DEVICE_CTRL_ADC_RESULT, \
  90. (void *)&result)) != RT_EOK)
  91. {
  92. break;
  93. }
  94. data->x += accelOffset.x - 0x800;
  95. data->y += accelOffset.y - 0x800;
  96. data->z += accelOffset.z - 0x800;
  97. if (lowResolution)
  98. {
  99. data->x >>= 4;
  100. data->y >>= 4;
  101. data->z >>= 4;
  102. }
  103. /* --------- IIC interface --------- */
  104. #elif (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  105. if (lowResolution || \
  106. ((accelConfig & ACCEL_MASK_RANGE) != MCTL_RANGE_8G))
  107. {
  108. rt_int8_t buf[3];
  109. buf[0] = XOUT8;
  110. if (accel->read(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, \
  111. sizeof(buf)) == 0)
  112. {
  113. ret = -RT_ERROR;
  114. break;
  115. }
  116. data->x = buf[0];
  117. data->y = buf[1];
  118. data->z = buf[2];
  119. }
  120. else
  121. {
  122. rt_uint8_t buf[6];
  123. rt_uint16_t *temp = (rt_uint16_t *)&buf;
  124. buf[0] = XOUTL;
  125. if (accel->read(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, \
  126. sizeof(buf)) == 0)
  127. {
  128. ret = -RT_ERROR;
  129. break;
  130. }
  131. data->x = (*temp & 0x200) ? ((rt_uint32_t)*temp | ~0x3FF) : \
  132. ((rt_uint32_t)*temp & 0x3FF);
  133. data->y = (*++temp & 0x200) ? ((rt_uint32_t)*temp | ~0x3FF) : \
  134. ((rt_uint32_t)*temp & 0x3FF);
  135. data->z = (*++temp & 0x200) ? ((rt_uint32_t)*temp | ~0x3FF) : \
  136. ((rt_uint32_t)*temp & 0x3FF);
  137. }
  138. #endif
  139. return RT_EOK;
  140. } while (0);
  141. accel_debug("Accel err: Get data failed!\n");
  142. return ret;
  143. }
  144. /***************************************************************************//**
  145. * @brief
  146. * Accelerometer timeout interrupt handler
  147. *
  148. * @details
  149. *
  150. * @note
  151. *
  152. * @param[in] parameter
  153. * Parameter
  154. ******************************************************************************/
  155. static void efm_accel_timer(void* parameter)
  156. {
  157. accelInTime = false;
  158. }
  159. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  160. /***************************************************************************//**
  161. * @brief
  162. * Accelerometer level and pulse detection interrupts handler
  163. *
  164. * @details
  165. *
  166. * @note
  167. *
  168. * @param[in] device
  169. * Pointer to device descriptor
  170. ******************************************************************************/
  171. static void efm_accel_isr(rt_device_t device)
  172. {
  173. rt_uint8_t buf[2];
  174. if ((accelConfig & ACCEL_MASK_MODE) != ACCEL_MODE_MEASUREMENT)
  175. {
  176. /* Read detection source */
  177. buf[0] = DETSRC;
  178. if (accel->read(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 1) != 1)
  179. {
  180. accel_debug("Accel: read error\n");
  181. return;
  182. }
  183. accel_debug("Accel: DETSRC %x\n", buf[0]);
  184. /* Reset the interrupt flags: Part 1 */
  185. buf[0] = INTRST;
  186. buf[1] = INTRST_INT_1 | INTRST_INT_2;
  187. accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2);
  188. /* Read status to waste some time */
  189. buf[0] = STATUS;
  190. if (accel->read(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 1) != 1)
  191. {
  192. accel_debug("Accel: read error\n");
  193. return;
  194. }
  195. accel_debug("Accel: STATUS %x\n", buf[0]);
  196. /* Reset the interrupt flags: Part 2 */
  197. buf[0] = INTRST;
  198. buf[1] = 0x00;
  199. accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2);
  200. }
  201. }
  202. /***************************************************************************//**
  203. * @brief
  204. * Accelerometer configuration function
  205. *
  206. * @details
  207. *
  208. * @note
  209. *
  210. * @param[in] config
  211. * Configuration options
  212. *
  213. * @param[in] level_threshold
  214. * Level detection threshold
  215. *
  216. * @param[in] pulse_threshold
  217. * Pulse detection threshold
  218. *
  219. * @param[in] pulse_duration
  220. * Time window for 1st pulse
  221. *
  222. * @param[in] pulse_latency
  223. * Pulse latency Time
  224. *
  225. * @param[in] pulse_duration2
  226. * Time window for 2nd pulse
  227. *
  228. * @return
  229. * Error code
  230. ******************************************************************************/
  231. rt_err_t efm_accel_config(rt_uint32_t config,
  232. rt_uint8_t level_threshold,
  233. rt_uint8_t pulse_threshold,
  234. rt_uint8_t pulse_duration,
  235. rt_uint8_t pulse_latency,
  236. rt_uint8_t pulse_duration2)
  237. {
  238. rt_err_t ret;
  239. rt_uint8_t buf[2];
  240. rt_uint8_t mode, mctl_reg, ctl1_reg, ctl2_reg;
  241. ret = RT_EOK;
  242. mctl_reg = 0;
  243. ctl1_reg = 0;
  244. ctl2_reg = 0;
  245. /* Modify MCTL */
  246. mode = config & ACCEL_MASK_MODE;
  247. switch (mode)
  248. {
  249. case ACCEL_MODE_STANDBY:
  250. mctl_reg |= MCTL_MODE_STANDBY;
  251. break;
  252. case ACCEL_MODE_MEASUREMENT:
  253. mctl_reg |= MCTL_MODE_MEASUREMENT;
  254. break;
  255. case ACCEL_MODE_LEVEL:
  256. mctl_reg |= MCTL_MODE_LEVEL;
  257. break;
  258. case ACCEL_MODE_PULSE:
  259. mctl_reg |= MCTL_MODE_PULSE;
  260. break;
  261. default:
  262. return -RT_ERROR;
  263. }
  264. switch (config & ACCEL_MASK_RANGE)
  265. {
  266. case ACCEL_RANGE_8G:
  267. mctl_reg |= MCTL_RANGE_8G;
  268. break;
  269. case ACCEL_RANGE_4G:
  270. mctl_reg |= MCTL_RANGE_4G;
  271. break;
  272. case ACCEL_RANGE_2G:
  273. mctl_reg |= MCTL_RANGE_2G;
  274. break;
  275. default:
  276. return -RT_ERROR;
  277. }
  278. if ((mode == ACCEL_MODE_LEVEL) || (mode == ACCEL_MODE_PULSE))
  279. {
  280. mctl_reg |= MCTL_PIN_INT1;
  281. }
  282. /* Modify CTL1 */
  283. if (config & ACCEL_INTPIN_INVERSE)
  284. {
  285. ctl1_reg |= CTL1_INTPIN_INVERSE;
  286. }
  287. switch (config & ACCEL_MASK_INT)
  288. {
  289. case ACCEL_INT_LEVEL_PULSE:
  290. ctl1_reg |= CTL1_INT_LEVEL_PULSE;
  291. break;
  292. case ACCEL_INT_PULSE_LEVEL:
  293. ctl1_reg |= CTL1_INT_PULSE_LEVEL;
  294. break;
  295. case ACCEL_INT_SINGLE_DOUBLE:
  296. ctl1_reg |= CTL1_INT_SINGLE_DOUBLE;
  297. break;
  298. default:
  299. break;
  300. }
  301. switch (config & ACCEL_MASK_DISABLE)
  302. {
  303. case ACCEL_DISABLE_X:
  304. ctl1_reg |= CTL1_X_DISABLE;
  305. break;
  306. case ACCEL_DISABLE_Y:
  307. ctl1_reg |= CTL1_Y_DISABLE;
  308. break;
  309. case ACCEL_DISABLE_Z:
  310. ctl1_reg |= CTL1_Z_DISABLE;
  311. break;
  312. default:
  313. break;
  314. }
  315. if (config & ACCEL_THRESHOLD_INTEGER)
  316. {
  317. ctl1_reg |= CTL1_THRESHOLD_INTEGER;
  318. }
  319. if (config & ACCEL_BANDWIDTH_125HZ)
  320. {
  321. ctl1_reg |= CTL1_BANDWIDTH_125HZ;
  322. }
  323. /* Modify CTL2 */
  324. if (config & ACCEL_LEVEL_AND)
  325. {
  326. ctl2_reg |= CTL2_LEVEL_AND;
  327. }
  328. if (config & ACCEL_PULSE_AND)
  329. {
  330. ctl2_reg |= CTL2_PULSE_AND;
  331. }
  332. if (config & ACCEL_DRIVE_STRONG)
  333. {
  334. ctl2_reg |= CTL2_DRIVE_STRONG;
  335. }
  336. do
  337. {
  338. /* Write registers */
  339. buf[0] = MCTL;
  340. buf[1] = mctl_reg;
  341. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  342. {
  343. ret = -RT_ERROR;
  344. break;
  345. }
  346. accel_debug("Accel: MCTL %x\n", mctl_reg);
  347. buf[0] = CTL1;
  348. buf[1] = ctl1_reg;
  349. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  350. {
  351. ret = -RT_ERROR;
  352. break;
  353. }
  354. accel_debug("Accel: CTL1 %x\n", ctl1_reg);
  355. buf[0] = CTL2;
  356. buf[1] = ctl2_reg;
  357. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  358. {
  359. ret = -RT_ERROR;
  360. break;
  361. }
  362. accel_debug("Accel: CTL2 %x\n", ctl2_reg);
  363. accelConfig = config;
  364. if (mode == ACCEL_MODE_PULSE)
  365. {
  366. buf[0] = PDTH;
  367. buf[1] = pulse_threshold;
  368. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  369. {
  370. ret = -RT_ERROR;
  371. break;
  372. }
  373. accel_debug("Accel: PDTH %x\n", buf[1]);
  374. buf[0] = PW;
  375. buf[1] = pulse_duration;
  376. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  377. {
  378. ret = -RT_ERROR;
  379. break;
  380. }
  381. accel_debug("Accel: PW %x\n", buf[1]);
  382. buf[0] = LT;
  383. buf[1] = pulse_latency;
  384. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  385. {
  386. ret = -RT_ERROR;
  387. break;
  388. }
  389. accel_debug("Accel: LT %x\n", buf[1]);
  390. buf[0] = TW;
  391. buf[1] = pulse_duration2;
  392. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  393. {
  394. ret = -RT_ERROR;
  395. break;
  396. }
  397. accel_debug("Accel: TW %x\n", buf[1]);
  398. }
  399. if ((mode == ACCEL_MODE_LEVEL) || (mode == ACCEL_MODE_PULSE))
  400. {
  401. efm32_irq_hook_init_t hook;
  402. /* Reset the interrupt flags: Part 1 */
  403. buf[0] = INTRST;
  404. buf[1] = INTRST_INT_1 | INTRST_INT_2;
  405. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  406. {
  407. ret = -RT_ERROR;
  408. break;
  409. }
  410. /* Set level detection threshold */
  411. buf[0] = LDTH;
  412. if (config & ACCEL_THRESHOLD_INTEGER)
  413. {
  414. buf[1] = level_threshold;
  415. }
  416. else
  417. {
  418. buf[1] = level_threshold & 0x7f;
  419. }
  420. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  421. {
  422. ret = -RT_ERROR;
  423. break;
  424. }
  425. accel_debug("Accel: LDTH %x\n", buf[1]);
  426. /* Config interrupt */
  427. hook.type = efm32_irq_type_gpio;
  428. hook.unit = ACCEL_INT1_PIN;
  429. hook.cbFunc = efm_accel_isr;
  430. hook.userPtr = RT_NULL;
  431. efm32_irq_hook_register(&hook);
  432. hook.unit = ACCEL_INT2_PIN;
  433. efm32_irq_hook_register(&hook);
  434. /* Clear pending interrupt */
  435. BITBAND_Peripheral(&(GPIO->IFC), ACCEL_INT1_PIN, 0x1UL);
  436. BITBAND_Peripheral(&(GPIO->IFC), ACCEL_INT2_PIN, 0x1UL);
  437. /* Set raising edge interrupt and clear/enable it */
  438. GPIO_IntConfig(
  439. ACCEL_INT1_PORT,
  440. ACCEL_INT1_PIN,
  441. true,
  442. false,
  443. true);
  444. GPIO_IntConfig(
  445. ACCEL_INT2_PORT,
  446. ACCEL_INT2_PIN,
  447. true,
  448. false,
  449. true);
  450. if (((rt_uint8_t)ACCEL_INT1_PORT % 2) || \
  451. ((rt_uint8_t)ACCEL_INT2_PORT % 2))
  452. {
  453. NVIC_ClearPendingIRQ(GPIO_ODD_IRQn);
  454. NVIC_SetPriority(GPIO_ODD_IRQn, EFM32_IRQ_PRI_DEFAULT);
  455. NVIC_EnableIRQ(GPIO_ODD_IRQn);
  456. }
  457. if (!((rt_uint8_t)ACCEL_INT1_PORT % 2) || \
  458. !((rt_uint8_t)ACCEL_INT2_PORT % 2))
  459. {
  460. NVIC_ClearPendingIRQ(GPIO_EVEN_IRQn);
  461. NVIC_SetPriority(GPIO_EVEN_IRQn, EFM32_IRQ_PRI_DEFAULT);
  462. NVIC_EnableIRQ(GPIO_EVEN_IRQn);
  463. }
  464. /* Reset the interrupt flags: Part 2 */
  465. buf[0] = INTRST;
  466. buf[1] = 0x00;
  467. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, (void *)buf, 2) == 0)
  468. {
  469. ret = -RT_ERROR;
  470. break;
  471. }
  472. }
  473. } while (0);
  474. return ret;
  475. }
  476. #endif
  477. /***************************************************************************//**
  478. * @brief
  479. * Accelerometer auto-zero calibration function
  480. *
  481. * @details
  482. *
  483. * @note
  484. *
  485. * @param[in] mode
  486. * 0, simple mode (assuming the device is placed on flat surface)
  487. * 1, interaction method
  488. *
  489. * @param[in] period
  490. * Time period to perform auto-zero calibration
  491. *
  492. * @return
  493. * Error code
  494. ******************************************************************************/
  495. rt_err_t efm_accel_auto_zero(rt_uint8_t mode, rt_tick_t period)
  496. {
  497. RT_ASSERT(accel != RT_NULL);
  498. rt_timer_t calTimer;
  499. struct efm32_accel_result_t min = {0, 0, 0};
  500. struct efm32_accel_result_t max = {0, 0, 0};
  501. struct efm32_accel_result_t temp, sum;
  502. rt_int32_t simpleOffset[] = ACCEL_CAL_1G_VALUE;
  503. rt_uint8_t cmd[7] = {0};
  504. rt_uint8_t i, j;
  505. /* Reset offset */
  506. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_ADC)
  507. accelOffset.x = 0;
  508. accelOffset.y = 0;
  509. accelOffset.z = 0;
  510. #elif (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  511. cmd[0] = XOFFL;
  512. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, cmd, sizeof(cmd)) == 0)
  513. {
  514. return -RT_ERROR;
  515. }
  516. #endif
  517. if (mode == ACCEL_CAL_SIMPLE)
  518. {
  519. /* Simple mode */
  520. for (j = 0; j < ACCEL_CAL_ROUND; j++)
  521. {
  522. sum.x = 0x0;
  523. sum.y = 0x0;
  524. sum.z = 0x0;
  525. for (i = 0; i < ACCEL_CAL_SAMPLES; i++)
  526. {
  527. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  528. /* Waiting for data ready */
  529. while(!GPIO_PinInGet(ACCEL_INT1_PORT, ACCEL_INT1_PIN));
  530. #endif
  531. if (efm_accel_get_data(&temp, false) != RT_EOK)
  532. {
  533. return -RT_ERROR;
  534. }
  535. sum.x += temp.x;
  536. sum.y += temp.y;
  537. sum.z += temp.z;
  538. }
  539. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_ADC)
  540. temp.x = sum.x / ACCEL_CAL_SAMPLES;
  541. temp.y = sum.y / ACCEL_CAL_SAMPLES;
  542. temp.z = sum.z / ACCEL_CAL_SAMPLES - simpleOffset[ACCEL_G_SELECT];
  543. if ((temp.x == 0) && (temp.y == 0) && \
  544. (temp.z == 0))
  545. {
  546. accel_debug("Accel: Offset %+d %+d %+d\n",
  547. accelOffset.x, accelOffset.y, accelOffset.z);
  548. break;
  549. }
  550. accelOffset.x -= temp.x;
  551. accelOffset.y -= temp.y;
  552. accelOffset.z -= temp.z;
  553. #elif (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  554. temp.x = sum.x / (ACCEL_CAL_SAMPLES >> 1);
  555. temp.y = sum.y / (ACCEL_CAL_SAMPLES >> 1);
  556. temp.z = sum.z / (ACCEL_CAL_SAMPLES >> 1) \
  557. - (simpleOffset[ACCEL_G_SELECT] << 1);
  558. if ((temp.x == 0) && (temp.y == 0) && \
  559. (temp.z == 0))
  560. {
  561. break;
  562. }
  563. /* Set offset drift registers */
  564. max.x -= temp.x;
  565. max.y -= temp.y;
  566. max.z -= temp.z;
  567. *(rt_int16_t *)&cmd[1] = (rt_int16_t)max.x;
  568. *(rt_int16_t *)&cmd[3] = (rt_int16_t)max.y;
  569. *(rt_int16_t *)&cmd[5] = (rt_int16_t)max.z;
  570. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, cmd, sizeof(cmd)) == 0)
  571. {
  572. return -RT_ERROR;
  573. }
  574. accel_debug("Accel: Offset %+d %+d %+d\n", *(rt_int16_t *)&cmd[1], \
  575. *(rt_int16_t *)&cmd[3], *(rt_int16_t *)&cmd[5]);
  576. #endif
  577. rt_thread_delay(1);
  578. }
  579. }
  580. else
  581. {
  582. /* Interact mode */
  583. if ((calTimer = rt_timer_create(
  584. "cal_tmr",
  585. efm_accel_timer,
  586. RT_NULL,
  587. period,
  588. RT_TIMER_FLAG_ONE_SHOT)) == RT_NULL)
  589. {
  590. accel_debug("Accel err: Create timer failed!\n");
  591. return -RT_ERROR;
  592. }
  593. accelInTime = true;
  594. rt_timer_start(calTimer);
  595. do
  596. {
  597. sum.x = 0x0;
  598. sum.y = 0x0;
  599. sum.z = 0x0;
  600. for (i = 0; i < ACCEL_CAL_SAMPLES; i++)
  601. {
  602. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  603. /* Waiting for data ready */
  604. while(!GPIO_PinInGet(ACCEL_INT1_PORT, ACCEL_INT1_PIN));
  605. #endif
  606. if (efm_accel_get_data(&temp, false) != RT_EOK)
  607. {
  608. return -RT_ERROR;
  609. }
  610. sum.x += temp.x;
  611. sum.y += temp.y;
  612. sum.z += temp.z;
  613. }
  614. sum.x /= ACCEL_CAL_SAMPLES;
  615. sum.y /= ACCEL_CAL_SAMPLES;
  616. sum.z /= ACCEL_CAL_SAMPLES;
  617. if (sum.x < min.x)
  618. {
  619. min.x = sum.x;
  620. }
  621. if (sum.y < min.y)
  622. {
  623. min.y = sum.y;
  624. }
  625. if (sum.z < min.z)
  626. {
  627. min.z = sum.z;
  628. }
  629. if (sum.x > max.x)
  630. {
  631. max.x = sum.x;
  632. }
  633. if (sum.y > max.y)
  634. {
  635. max.y = sum.y;
  636. }
  637. if (sum.z > max.z)
  638. {
  639. max.z = sum.z;
  640. }
  641. rt_thread_delay(1);
  642. } while (accelInTime);
  643. accel_debug("Accel: Min %+d %+d %+d, max %+d %+d %+d\n",
  644. min.x, min.y, min.z, max.x, max.y, max.z);
  645. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_ADC)
  646. accelOffset.x = -((min.x + max.x) >> 1);
  647. accelOffset.y = -((min.y + max.y) >> 1);
  648. accelOffset.z = -((min.z + max.z) >> 1);
  649. accel_debug("Accel: Offset %+d %+d %+d\n",
  650. accelOffset.x, accelOffset.y, accelOffset.z);
  651. #elif (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  652. /* Set offset drift registers */
  653. *(rt_int16_t *)&cmd[1] = (rt_int16_t)-(min.x + max.x);
  654. *(rt_int16_t *)&cmd[3] = (rt_int16_t)-(min.y + max.y);
  655. *(rt_int16_t *)&cmd[5] = (rt_int16_t)-(min.z + max.z);
  656. if (accel->write(accel, ACCEL_IIC_SLAVE_ADDRESS, cmd, sizeof(cmd)) == 0)
  657. {
  658. return -RT_ERROR;
  659. }
  660. accel_debug("Accel: Offset %+d %+d %+d\n",
  661. *(rt_int16_t *)&cmd[1], *(rt_int16_t *)&cmd[3], *(rt_int16_t *)&cmd[5]);
  662. #endif
  663. rt_timer_delete(calTimer);
  664. }
  665. return RT_EOK;
  666. }
  667. /***************************************************************************//**
  668. * @brief
  669. * Initialize the accelerometer
  670. *
  671. * @details
  672. *
  673. * @note
  674. *
  675. * @return
  676. * Error code
  677. ******************************************************************************/
  678. rt_err_t efm_accel_init(void)
  679. {
  680. rt_err_t ret;
  681. ret = RT_EOK;
  682. do
  683. {
  684. /* Find ADC device */
  685. accel = rt_device_find(ACCEL_USING_DEVICE_NAME);
  686. if (accel == RT_NULL)
  687. {
  688. accel_debug("Accel err: Can't find device: %s!\n", ACCEL_USING_DEVICE_NAME);
  689. ret = -RT_ERROR;
  690. break;
  691. }
  692. accel_debug("Accel: Find device %s\n", ACCEL_USING_DEVICE_NAME);
  693. /* --------- ADC interface --------- */
  694. #if (EFM32_USING_ACCEL == EFM32_INTERFACE_ADC)
  695. ADC_InitScan_TypeDef scanInit = ADC_INITSCAN_DEFAULT;
  696. #if defined(EFM32_GXXX_DK)
  697. /* Enable accelerometer */
  698. DVK_enablePeripheral(DVK_ACCEL);
  699. /* Select g-range */
  700. #if (ACCEL_G_SELECT == 0)
  701. DVK_disablePeripheral(DVK_ACCEL_GSEL);
  702. #elif (ACCEL_G_SELECT == 1)
  703. DVK_enablePeripheral(DVK_ACCEL_GSEL);
  704. #else
  705. #error "Wrong value for ACCEL_G_SELECT"
  706. #endif
  707. #endif
  708. /* Init ADC for scan mode */
  709. scanInit.reference = adcRefVDD;
  710. scanInit.input = ACCEL_X_ADC_CH | ACCEL_Y_ADC_CH | ACCEL_Z_ADC_CH;
  711. control.scan.init = &scanInit;
  712. if ((ret = accel->control(accel, RT_DEVICE_CTRL_ADC_MODE, \
  713. (void *)&control)) != RT_EOK)
  714. {
  715. break;
  716. }
  717. /* --------- IIC interface --------- */
  718. #elif (EFM32_USING_ACCEL == EFM32_INTERFACE_IIC)
  719. rt_uint8_t cmd[2];
  720. /* Initialize */
  721. if ((ret = accel->control(accel, RT_DEVICE_CTRL_IIC_SETTING, \
  722. (void *)&control)) != RT_EOK)
  723. {
  724. break;
  725. }
  726. if (efm_accel_config(
  727. ACCEL_MODE_MEASUREMENT | ACCEL_RANGE_2G,
  728. EFM32_NO_DATA,
  729. EFM32_NO_DATA,
  730. EFM32_NO_DATA,
  731. EFM32_NO_DATA,
  732. EFM32_NO_DATA) != RT_EOK)
  733. {
  734. break;
  735. }
  736. /* Config interrupt pin1 */
  737. GPIO_PinModeSet(ACCEL_INT1_PORT, ACCEL_INT1_PIN, gpioModeInput, 0);
  738. /* Config interrupt pin2 */
  739. GPIO_PinModeSet(ACCEL_INT2_PORT, ACCEL_INT2_PIN, gpioModeInput, 0);
  740. #endif
  741. accel_debug("Accel: Init OK\n");
  742. return RT_EOK;
  743. } while (0);
  744. accel_debug("Accel err: Init failed!\n");
  745. return -RT_ERROR;
  746. }
  747. /*******************************************************************************
  748. * Export to FINSH
  749. ******************************************************************************/
  750. #ifdef RT_USING_FINSH
  751. #include <finsh.h>
  752. void accel_cal(rt_uint8_t mode, rt_uint32_t second)
  753. {
  754. if (efm_accel_auto_zero(mode, RT_TICK_PER_SECOND * second) != RT_EOK)
  755. {
  756. rt_kprintf("Error occurred.");
  757. return;
  758. }
  759. rt_kprintf("Calibration done.\n");
  760. }
  761. FINSH_FUNCTION_EXPORT(accel_cal, auto-zero calibration.)
  762. void list_accel(void)
  763. {
  764. struct efm32_accel_result_t data;
  765. efm_accel_get_data(&data, false);
  766. rt_kprintf("X: %d, Y: %d, Z: %d\n", data.x, data.y, data.z);
  767. }
  768. FINSH_FUNCTION_EXPORT(list_accel, list accelerometer info.)
  769. void test_accel(rt_uint8_t mode)
  770. {
  771. if (mode == 0)
  772. {
  773. if (efm_accel_config(
  774. ACCEL_MODE_LEVEL | ACCEL_RANGE_8G | ACCEL_INT_LEVEL_PULSE | \
  775. ACCEL_SOURCE_LEVEL_X | ACCEL_SOURCE_LEVEL_Y,
  776. 0x1f,
  777. EFM32_NO_DATA,
  778. EFM32_NO_DATA,
  779. EFM32_NO_DATA,
  780. EFM32_NO_DATA) != RT_EOK)
  781. {
  782. rt_kprintf("efm_accel_config(): error\n");
  783. return;
  784. }
  785. }
  786. else
  787. {
  788. if (efm_accel_config(
  789. ACCEL_MODE_PULSE | ACCEL_RANGE_8G | ACCEL_INT_SINGLE_DOUBLE | \
  790. ACCEL_SOURCE_PULSE_X | ACCEL_SOURCE_PULSE_Y,
  791. 0x1f,
  792. 0x1f,
  793. 200,
  794. 255,
  795. 255) != RT_EOK)
  796. {
  797. rt_kprintf("efm_accel_config(): error\n");
  798. return;
  799. }
  800. }
  801. }
  802. FINSH_FUNCTION_EXPORT(test_accel, list accelerometer info.)
  803. #endif
  804. #endif
  805. /***************************************************************************//**
  806. * @}
  807. ******************************************************************************/