test_qspi.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. /*
  2. * Copyright (c) 2022-2024, Xiaohua Semiconductor Co., Ltd.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2024-12-30 CDT first version
  9. */
  10. /*
  11. * 程序清单:这是一个 QSPI 设备使用例程
  12. * 例程导出了 qspi_w25q_sample 命令到控制终端
  13. * 命令调用格式:qspi_w25q_sample qspi10
  14. * 命令解释:命令第二个参数是要使用的QSPI设备名称,为空则使用默认的QSPI设备
  15. * 程序功能:通过QSPI设备读取 w25q 的 ID 数据
  16. */
  17. #include <rtthread.h>
  18. #include <rtdevice.h>
  19. #include "board_config.h"
  20. #if defined(BSP_USING_QSPI)
  21. #include "drv_qspi.h"
  22. #define W25Q_QSPI_DEVICE_NAME "qspi10"
  23. #define W25Q_FLAG_BUSY (0x01)
  24. #define W25Q_WR_ENABLE (0x06)
  25. #define W25Q_SECTOR_ERASE (0x20)
  26. #define W25Q_RD_STATUS_REG1 (0x05)
  27. #define W25Q_PAGE_PROGRAM (0x02)
  28. #define W25Q64_QUAD_INPUT_PAGE_PROGRAM (0x32)
  29. #define W25Q_STD_RD (0x03)
  30. #define W25Q_FAST_RD (0x0B)
  31. #define W25Q_FAST_RD_DUAL_OUTPUT (0x3B)
  32. #define W25Q_FAST_RD_DUAL_IO (0xBB)
  33. #define W25Q_FAST_RD_QUAD_OUTPUT (0x6B)
  34. #define W25Q_FAST_RD_QUAD_IO (0xEB)
  35. #define W25Q64_RD_STATUS_REG1 (0x05)
  36. #define W25Q64_WR_STATUS_REG1 (0x01)
  37. #define W25Q64_RD_STATUS_REG2 (0x35)
  38. #define W25Q64_WR_STATUS_REG2 (0x31)
  39. #define W25Q64_RD_STATUS_REG3 (0x15)
  40. #define W25Q64_WR_STATUS_REG3 (0x11)
  41. #define W25Q_PAGE_SIZE (256UL)
  42. #define W25Q_SECTOR_SIZE (1024UL * 4UL)
  43. #define W25Q_PAGE_PER_SECTOR (W25Q_SECTOR_SIZE / W25Q_PAGE_SIZE)
  44. #define W25Q_MAX_ADDR (0x800000UL)
  45. #define W25Q_QSPI_DATA_LINE_WIDTH 1
  46. #define W25Q_QSPI_RD_MD (W25Q_FAST_RD_QUAD_IO)
  47. #define W25Q_QSPI_WR_RD_ADDR 0x4000
  48. #define W25Q_QSPI_DATA_BUF_LEN 0x2000
  49. #define W25Q_QSPI_WR_CMD W25Q64_QUAD_INPUT_PAGE_PROGRAM
  50. #if defined (HC32F460) || defined (HC32F4A0) || defined (HC32F472)
  51. #ifndef BSP_QSPI_USING_SOFT_CS
  52. #if (W25Q_QSPI_WR_CMD == W25Q64_QUAD_INPUT_PAGE_PROGRAM)
  53. #error "QUAD PAGE PROGRAM must use soft CS pin!!"
  54. #endif
  55. #endif
  56. #endif
  57. #if W25Q_QSPI_RD_MD == W25Q_STD_RD
  58. #define W25Q_QSPI_RD_DUMMY_CYCLE 0
  59. #elif W25Q_QSPI_RD_MD == W25Q_FAST_RD_DUAL_IO
  60. #define W25Q_QSPI_RD_DUMMY_CYCLE 4
  61. #elif W25Q_QSPI_RD_MD == W25Q_FAST_RD_QUAD_IO
  62. #define W25Q_QSPI_RD_DUMMY_CYCLE 6
  63. #else
  64. #define W25Q_QSPI_RD_DUMMY_CYCLE 8
  65. #endif
  66. #if (W25Q_QSPI_RD_MD == W25Q_FAST_RD_QUAD_IO)
  67. #define W25Q_QSPI_ADDR_LINE 4
  68. #elif (W25Q_QSPI_RD_MD == W25Q_FAST_RD_DUAL_IO)
  69. #define W25Q_QSPI_ADDR_LINE 2
  70. #else
  71. #define W25Q_QSPI_ADDR_LINE 1
  72. #endif
  73. #if (W25Q_QSPI_RD_MD == W25Q_STD_RD) || (W25Q_QSPI_RD_MD == W25Q_FAST_RD)
  74. #define W25Q_QSPI_DATA_LINE 1
  75. #elif (W25Q_QSPI_RD_MD == W25Q_FAST_RD_DUAL_OUTPUT) || (W25Q_QSPI_RD_MD == W25Q_FAST_RD_DUAL_IO)
  76. #define W25Q_QSPI_DATA_LINE 2
  77. #else
  78. #define W25Q_QSPI_DATA_LINE 4
  79. #endif
  80. struct rt_qspi_device *qspi_dev_w25q; /* QSPI 设备句柄 */
  81. static uint8_t u8WrBuf[W25Q_QSPI_DATA_BUF_LEN];
  82. static uint8_t u8RdBuf[W25Q_QSPI_DATA_BUF_LEN];
  83. static int rt_hw_qspi_flash_init(void)
  84. {
  85. #ifndef BSP_QSPI_USING_SOFT_CS
  86. if (RT_EOK != rt_hw_qspi_bus_attach_device("qspi1", "qspi10", RT_NULL, W25Q_QSPI_DATA_LINE_WIDTH, RT_NULL, RT_NULL))
  87. #else
  88. #if defined (HC32F472)
  89. if (RT_EOK != rt_hw_qspi_bus_attach_device("qspi1", "qspi10", GET_PIN(B, 12), W25Q_QSPI_DATA_LINE_WIDTH, RT_NULL, RT_NULL))
  90. #elif defined (HC32F4A0) || defined (HC32F460) || defined (HC32F448) || defined (HC32F4A8)
  91. if (RT_EOK != rt_hw_qspi_bus_attach_device("qspi1", "qspi10", GET_PIN(C, 7), W25Q_QSPI_DATA_LINE_WIDTH, RT_NULL, RT_NULL))
  92. #endif
  93. #endif
  94. {
  95. rt_kprintf("Failed to attach the qspi device.");
  96. return -RT_ERROR;
  97. }
  98. return RT_EOK;
  99. }
  100. /* 导出到自动初始化 */
  101. INIT_COMPONENT_EXPORT(rt_hw_qspi_flash_init);
  102. void w25q_read_uid(struct rt_qspi_device *device)
  103. {
  104. rt_uint8_t w25x_read_uid = 0x4B; /* 命令 */
  105. rt_uint8_t u8UID[8] = {0};
  106. rt_uint8_t txBuf[5] = {0};
  107. rt_memset(txBuf, 0xFF, 5);
  108. txBuf[0] = w25x_read_uid;
  109. if (8 != rt_qspi_send_then_recv(device, txBuf, 5, u8UID, 8))
  110. {
  111. rt_kprintf("qspi get uid failed!\n");
  112. }
  113. else
  114. {
  115. rt_kprintf("w25q UID is: %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x\r\n",
  116. u8UID[0], u8UID[1], u8UID[2], u8UID[3], u8UID[4], u8UID[5], u8UID[6], u8UID[7]);
  117. }
  118. }
  119. int32_t w25q_check_process_done(struct rt_qspi_device *device, uint32_t u32Timeout)
  120. {
  121. __IO uint32_t u32Count = 0U;
  122. int32_t i32Ret = LL_ERR_TIMEOUT;
  123. rt_uint8_t rxBuf[5] = {0};
  124. rt_uint8_t txBuf[5] = {0};
  125. txBuf[0] = W25Q_RD_STATUS_REG1;
  126. while (u32Count < u32Timeout)
  127. {
  128. if (1 != rt_qspi_send_then_recv(device, txBuf, 1, rxBuf, 1))
  129. {
  130. rt_kprintf("qspi get SR failed!\n");
  131. }
  132. else
  133. {
  134. if (W25Q_FLAG_BUSY != (rxBuf[0] & W25Q_FLAG_BUSY))
  135. {
  136. i32Ret = LL_OK;
  137. break;
  138. }
  139. }
  140. rt_thread_mdelay(1);
  141. u32Count++;
  142. }
  143. return i32Ret;
  144. }
  145. rt_err_t bsp_qspi_send_then_recv(struct rt_qspi_device *device, const void *send_buf, rt_size_t send_length, void *recv_buf, rt_size_t recv_length)
  146. {
  147. RT_ASSERT(send_buf);
  148. RT_ASSERT(recv_buf);
  149. RT_ASSERT(send_length != 0);
  150. struct rt_qspi_message message;
  151. unsigned char *ptr = (unsigned char *)send_buf;
  152. rt_size_t count = 0;
  153. rt_err_t result = 0;
  154. message.instruction.content = ptr[0];
  155. message.instruction.qspi_lines = 1;
  156. count++;
  157. /* get address */
  158. if (send_length > 1)
  159. {
  160. if (send_length >= 4)
  161. {
  162. /* address size is 3 Byte */
  163. message.address.content = (ptr[1] << 16) | (ptr[2] << 8) | (ptr[3]);
  164. message.address.size = 24;
  165. count += 3;
  166. }
  167. else
  168. {
  169. return -RT_ERROR;
  170. }
  171. message.address.qspi_lines = W25Q_QSPI_ADDR_LINE;
  172. }
  173. else
  174. {
  175. /* no address stage */
  176. message.address.content = 0 ;
  177. message.address.qspi_lines = 0;
  178. message.address.size = 0;
  179. }
  180. message.alternate_bytes.content = 0;
  181. message.alternate_bytes.size = 0;
  182. message.alternate_bytes.qspi_lines = 0;
  183. /* set dummy cycles */
  184. message.dummy_cycles = W25Q_QSPI_RD_DUMMY_CYCLE;
  185. /* set recv buf and recv size */
  186. message.parent.recv_buf = recv_buf;
  187. message.parent.send_buf = RT_NULL;
  188. message.parent.length = recv_length;
  189. message.parent.cs_take = 1;
  190. message.parent.cs_release = 1;
  191. message.qspi_data_lines = W25Q_QSPI_DATA_LINE;
  192. result = rt_qspi_transfer_message(device, &message);
  193. if (result == 0)
  194. {
  195. result = -RT_EIO;
  196. }
  197. else
  198. {
  199. result = recv_length;
  200. }
  201. return result;
  202. }
  203. rt_err_t bsp_qspi_send(struct rt_qspi_device *device, const void *send_buf, rt_size_t length, uint8_t dataLine)
  204. {
  205. RT_ASSERT(send_buf);
  206. RT_ASSERT(length != 0);
  207. struct rt_qspi_message message;
  208. unsigned char *ptr = (unsigned char *)send_buf;
  209. rt_size_t count = 0;
  210. rt_err_t result = 0;
  211. message.instruction.content = ptr[0];
  212. message.instruction.qspi_lines = 1;
  213. count++;
  214. /* get address */
  215. if (length > 1)
  216. {
  217. if (device->config.medium_size > 0x1000000 && length >= 5)
  218. {
  219. /* medium size greater than 16Mb, address size is 4 Byte */
  220. message.address.content = (ptr[1] << 24) | (ptr[2] << 16) | (ptr[3] << 8) | (ptr[4]);
  221. message.address.size = 32;
  222. message.address.qspi_lines = 1;
  223. count += 4;
  224. }
  225. else if (length >= 4)
  226. {
  227. /* address size is 3 Byte */
  228. message.address.content = (ptr[1] << 16) | (ptr[2] << 8) | (ptr[3]);
  229. message.address.size = 24;
  230. message.address.qspi_lines = 1;
  231. count += 3;
  232. }
  233. else
  234. {
  235. /* no address stage */
  236. message.address.content = 0 ;
  237. message.address.qspi_lines = 0;
  238. message.address.size = 0;
  239. }
  240. }
  241. else
  242. {
  243. /* no address stage */
  244. message.address.content = 0 ;
  245. message.address.qspi_lines = 0;
  246. message.address.size = 0;
  247. }
  248. message.alternate_bytes.content = 0;
  249. message.alternate_bytes.size = 0;
  250. message.alternate_bytes.qspi_lines = 0;
  251. message.dummy_cycles = 0;
  252. /* determine if there is data to send */
  253. if (length - count > 0)
  254. {
  255. message.qspi_data_lines = dataLine;
  256. }
  257. else
  258. {
  259. message.qspi_data_lines = 0;
  260. }
  261. /* set send buf and send size */
  262. message.parent.send_buf = ptr + count;
  263. message.parent.recv_buf = RT_NULL;
  264. message.parent.length = length - count;
  265. message.parent.cs_take = 1;
  266. message.parent.cs_release = 1;
  267. result = rt_qspi_transfer_message(device, &message);
  268. if (result == 0)
  269. {
  270. result = -RT_EIO;
  271. }
  272. else
  273. {
  274. result = length;
  275. }
  276. return result;
  277. }
  278. void w25q_write_sr(struct rt_qspi_device *device, uint8_t reg, uint8_t value)
  279. {
  280. rt_uint8_t txBuf[5] = {0};
  281. txBuf[0] = W25Q_WR_ENABLE;
  282. if (1 != rt_qspi_send(device, txBuf, 1))
  283. {
  284. rt_kprintf("qspi send cmd failed!\n");
  285. }
  286. txBuf[0] = reg;
  287. txBuf[1] = value;
  288. if (2 != bsp_qspi_send(device, txBuf, 2, 1))
  289. {
  290. rt_kprintf("qspi send addr failed!\n");
  291. }
  292. if (LL_OK != w25q_check_process_done(device, 500U))
  293. {
  294. rt_kprintf("qspi wait busy failed!\n");
  295. }
  296. }
  297. int32_t w25q_read_data(struct rt_qspi_device *device, uint32_t u32Addr, uint8_t *pu8ReadBuf, uint32_t u32Size)
  298. {
  299. int32_t i32Ret = LL_OK;
  300. rt_uint8_t txBuf[5] = {0};
  301. txBuf[0] = W25Q_QSPI_RD_MD;
  302. txBuf[1] = (u32Addr >> 16) & 0xFFU;
  303. txBuf[2] = (u32Addr >> 8) & 0xFFU;
  304. txBuf[3] = u32Addr & 0xFFU;
  305. if (u32Size != bsp_qspi_send_then_recv(device, txBuf, 4, pu8ReadBuf, u32Size))
  306. {
  307. i32Ret = LL_ERR;
  308. }
  309. return i32Ret;
  310. }
  311. int32_t w25q_write_data(struct rt_qspi_device *device, uint32_t u32Addr, uint8_t *pu8WriteBuf, uint32_t u32Size)
  312. {
  313. int32_t i32Ret = LL_OK;
  314. uint32_t u32TempSize, u32AddrOffset = 0U;
  315. uint8_t w25q_txBuf[W25Q_PAGE_SIZE + 10];
  316. if ((u32Addr % W25Q_PAGE_SIZE) != 0U)
  317. {
  318. return LL_ERR_INVD_PARAM;
  319. }
  320. while (u32Size != 0UL)
  321. {
  322. if (u32Size >= W25Q_PAGE_SIZE)
  323. {
  324. u32TempSize = W25Q_PAGE_SIZE;
  325. }
  326. else
  327. {
  328. u32TempSize = u32Size;
  329. }
  330. w25q_txBuf[0] = W25Q_WR_ENABLE;
  331. if (1 != rt_qspi_send(device, w25q_txBuf, 1))
  332. {
  333. rt_kprintf("qspi send cmd failed!\n");
  334. }
  335. w25q_txBuf[0] = W25Q_QSPI_WR_CMD;
  336. w25q_txBuf[1] = (u32Addr >> 16) & 0xFFU;
  337. w25q_txBuf[2] = (u32Addr >> 8) & 0xFFU;
  338. w25q_txBuf[3] = u32Addr & 0xFFU;
  339. rt_memcpy(&w25q_txBuf[4], &pu8WriteBuf[u32AddrOffset], u32TempSize);
  340. if (W25Q64_QUAD_INPUT_PAGE_PROGRAM == w25q_txBuf[0])
  341. {
  342. if ((u32TempSize + 4) != bsp_qspi_send(device, w25q_txBuf, u32TempSize + 4, 4))
  343. {
  344. rt_kprintf("qspi send addr failed!\n");
  345. }
  346. }
  347. else
  348. {
  349. if ((u32TempSize + 4) != bsp_qspi_send(device, w25q_txBuf, u32TempSize + 4, 1))
  350. {
  351. rt_kprintf("qspi send addr failed!\n");
  352. }
  353. }
  354. i32Ret = w25q_check_process_done(device, 500U);
  355. if (i32Ret != LL_OK)
  356. {
  357. break;
  358. }
  359. u32Addr += u32TempSize;
  360. u32AddrOffset += u32TempSize;
  361. u32Size -= u32TempSize;
  362. }
  363. return i32Ret;
  364. }
  365. int32_t w25q_erase_sector(struct rt_qspi_device *device, uint32_t u32Addr, uint32_t u32Size)
  366. {
  367. uint8_t txBuf[10];
  368. uint32_t u32SectorNum, u32Cnt;
  369. int32_t i32Ret = LL_OK;
  370. if ((u32Addr % W25Q_SECTOR_SIZE) != 0U)
  371. {
  372. return LL_ERR_INVD_PARAM;
  373. }
  374. u32SectorNum = u32Size / W25Q_SECTOR_SIZE;
  375. if ((u32Size % W25Q_SECTOR_SIZE) != 0U)
  376. {
  377. u32SectorNum += 1;
  378. }
  379. for (u32Cnt = 0; u32Cnt < u32SectorNum; u32Cnt++)
  380. {
  381. txBuf[0] = W25Q_WR_ENABLE;
  382. if (1 != rt_qspi_send(device, txBuf, 1))
  383. {
  384. rt_kprintf("qspi send cmd failed!\n");
  385. }
  386. txBuf[0] = W25Q_SECTOR_ERASE;
  387. txBuf[1] = (u32Addr >> 16) & 0xFFU;
  388. txBuf[2] = (u32Addr >> 8) & 0xFFU;
  389. txBuf[3] = u32Addr & 0xFFU;
  390. if (4 != rt_qspi_send(device, txBuf, 4))
  391. {
  392. rt_kprintf("qspi send addr failed!\n");
  393. }
  394. if (LL_OK != w25q_check_process_done(device, 500U))
  395. {
  396. i32Ret = LL_ERR;
  397. break;
  398. }
  399. u32Addr += W25Q_SECTOR_SIZE;
  400. }
  401. return i32Ret;
  402. }
  403. void w25q_write_read_data(struct rt_qspi_device *device, uint32_t u32Addr)
  404. {
  405. uint32_t u32Cnt;
  406. for (u32Cnt = 0; u32Cnt < W25Q_QSPI_DATA_BUF_LEN; u32Cnt++)
  407. {
  408. u8WrBuf[u32Cnt] = u32Cnt & 0xFFUL;
  409. u8RdBuf[u32Cnt] = 0U;
  410. }
  411. if (LL_OK != w25q_erase_sector(device, u32Addr, W25Q_QSPI_DATA_BUF_LEN))
  412. {
  413. rt_kprintf("qspi erase sector failed!\n");
  414. }
  415. if (LL_OK != w25q_write_data(device, u32Addr, u8WrBuf, W25Q_QSPI_DATA_BUF_LEN))
  416. {
  417. rt_kprintf("qspi write data failed!\n");
  418. }
  419. if (LL_OK != w25q_read_data(device, u32Addr, u8RdBuf, W25Q_QSPI_DATA_BUF_LEN))
  420. {
  421. rt_kprintf("qspi read data failed!\n");
  422. }
  423. if (rt_memcmp(u8WrBuf, u8RdBuf, W25Q_QSPI_DATA_BUF_LEN) == 0)
  424. {
  425. rt_kprintf("qspi write and read test ok: addr=0x%06X\n", u32Addr);
  426. }
  427. else
  428. {
  429. rt_kprintf("qspi write and read failed!\n");
  430. }
  431. }
  432. static void qspi_thread_entry(void *parameter)
  433. {
  434. rt_err_t ret;
  435. struct rt_qspi_configuration qcfg = {0};
  436. uint32_t u32Addr = W25Q_QSPI_WR_RD_ADDR;
  437. qcfg.medium_size = W25Q_MAX_ADDR;
  438. qcfg.qspi_dl_width = W25Q_QSPI_DATA_LINE_WIDTH;
  439. qcfg.parent.mode = RT_SPI_MODE_0;
  440. qcfg.parent.data_width = 8;
  441. qcfg.parent.max_hz = 10000000UL;
  442. ret = rt_qspi_configure(qspi_dev_w25q, &qcfg);
  443. if ((RT_EOK != ret) && (-RT_EBUSY != ret))
  444. {
  445. rt_kprintf("qspi config failed!\n");
  446. }
  447. /* 读取UID */
  448. w25q_read_uid(qspi_dev_w25q);
  449. /* Set QE = 1 */
  450. w25q_write_sr(qspi_dev_w25q, W25Q64_WR_STATUS_REG2, 0x02);
  451. while (1)
  452. {
  453. /* 读写对比数据 */
  454. w25q_write_read_data(qspi_dev_w25q, u32Addr);
  455. u32Addr += W25Q_QSPI_DATA_BUF_LEN;
  456. if (u32Addr >= (W25Q_MAX_ADDR - W25Q_QSPI_DATA_BUF_LEN))
  457. {
  458. u32Addr = W25Q_QSPI_WR_RD_ADDR;
  459. }
  460. rt_thread_mdelay(500);
  461. }
  462. }
  463. void qspi_w25q_sample(int argc, char *argv[])
  464. {
  465. char name[RT_NAME_MAX];
  466. if (argc == 2)
  467. {
  468. rt_strncpy(name, argv[1], RT_NAME_MAX);
  469. }
  470. else
  471. {
  472. rt_strncpy(name, W25Q_QSPI_DEVICE_NAME, RT_NAME_MAX);
  473. }
  474. /* 查找 qspi 设备获取设备句柄 */
  475. qspi_dev_w25q = (struct rt_qspi_device *)rt_device_find(name);
  476. if (!qspi_dev_w25q)
  477. {
  478. rt_kprintf("qspi sample run failed! can't find %s device!\n", name);
  479. }
  480. else
  481. {
  482. /* 创建 线程 */
  483. rt_thread_t thread = rt_thread_create("qspi", qspi_thread_entry, RT_NULL, 2048, 15, 10);
  484. /* 创建成功则启动线程 */
  485. if (thread != RT_NULL)
  486. {
  487. rt_thread_startup(thread);
  488. }
  489. }
  490. }
  491. /* 导出到 msh 命令列表中 */
  492. MSH_CMD_EXPORT(qspi_w25q_sample, qspi w25q sample);
  493. #endif