board.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403
  1. /*
  2. * Copyright (c) 2021-2024 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_femc_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_pwm_drv.h"
  21. #include "hpm_trgm_drv.h"
  22. #include "hpm_pllctl_drv.h"
  23. #include "hpm_enet_drv.h"
  24. #include "hpm_pcfg_drv.h"
  25. static board_timer_cb timer_cb;
  26. /**
  27. * @brief FLASH configuration option definitions:
  28. * option[0]:
  29. * [31:16] 0xfcf9 - FLASH configuration option tag
  30. * [15:4] 0 - Reserved
  31. * [3:0] option words (exclude option[0])
  32. * option[1]:
  33. * [31:28] Flash probe type
  34. * 0 - SFDP SDR / 1 - SFDP DDR
  35. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  36. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  37. * 6 - OctaBus DDR (SPI -> OPI DDR)
  38. * 8 - Xccela DDR (SPI -> OPI DDR)
  39. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  40. * [27:24] Command Pads after Power-on Reset
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [23:20] Command Pads after Configuring FLASH
  43. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  44. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  45. * 0 - Not needed
  46. * 1 - QE bit is at bit 6 in Status Register 1
  47. * 2 - QE bit is at bit1 in Status Register 2
  48. * 3 - QE bit is at bit7 in Status Register 2
  49. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  50. * [15:8] Dummy cycles
  51. * 0 - Auto-probed / detected / default value
  52. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  53. * [7:4] Misc.
  54. * 0 - Not used
  55. * 1 - SPI mode
  56. * 2 - Internal loopback
  57. * 3 - External DQS
  58. * [3:0] Frequency option
  59. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  60. *
  61. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  62. * [31:20] Reserved
  63. * [19:16] IO voltage
  64. * 0 - 3V / 1 - 1.8V
  65. * [15:12] Pin group
  66. * 0 - 1st group / 1 - 2nd group
  67. * [11:8] Connection selection
  68. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  69. * [7:0] Drive Strength
  70. * 0 - Default value
  71. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  72. * JESD216)
  73. * [31:16] reserved
  74. * [15:12] Sector Erase Command Option, not required here
  75. * [11:8] Sector Size Option, not required here
  76. * [7:0] Flash Size Option
  77. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  78. */
  79. #if defined(FLASH_XIP) && FLASH_XIP
  80. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  81. #endif
  82. #if defined(FLASH_UF2) && FLASH_UF2
  83. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  84. #endif
  85. void board_init_console(void)
  86. {
  87. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  88. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  89. console_config_t cfg;
  90. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  91. uart rx pin when configuring pin function will cause a wrong data to be received.
  92. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  93. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  94. /* Configure the UART clock to 24MHz */
  95. clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
  96. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  97. cfg.type = BOARD_CONSOLE_TYPE;
  98. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  99. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  100. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  101. if (status_success != console_init(&cfg)) {
  102. /* failed to initialize debug console */
  103. while (1) {
  104. }
  105. }
  106. #else
  107. while (1) {
  108. }
  109. #endif
  110. #endif
  111. }
  112. void board_print_clock_freq(void)
  113. {
  114. printf("==============================\n");
  115. printf(" %s clock summary\n", BOARD_NAME);
  116. printf("==============================\n");
  117. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  118. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  119. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  120. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  121. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  122. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  123. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  124. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  125. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  126. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  127. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  128. printf("display:\t %luHz\n", clock_get_frequency(clock_display));
  129. printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
  130. printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
  131. printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
  132. printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
  133. printf("==============================\n");
  134. }
  135. void board_init_uart(UART_Type *ptr)
  136. {
  137. /* configure uart's pin before opening uart's clock */
  138. init_uart_pins(ptr);
  139. board_init_uart_clock(ptr);
  140. }
  141. void board_init_ahb(void)
  142. {
  143. clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
  144. }
  145. void board_print_banner(void)
  146. {
  147. const uint8_t banner[] = {"\n\
  148. ----------------------------------------------------------------------\n\
  149. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  150. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  151. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  152. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  153. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  154. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  155. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  156. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  157. ----------------------------------------------------------------------\n"};
  158. #ifdef SDK_VERSION_STRING
  159. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  160. #endif
  161. printf("%s", banner);
  162. }
  163. static void board_turnoff_rgb_led(void)
  164. {
  165. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PE_SET(BOARD_LED_OFF_LEVEL);
  166. HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
  167. HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
  168. HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
  169. HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
  170. HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
  171. HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
  172. }
  173. void board_ungate_mchtmr_at_lp_mode(void)
  174. {
  175. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  176. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  177. }
  178. void board_init(void)
  179. {
  180. board_turnoff_rgb_led();
  181. board_init_clock();
  182. board_init_console();
  183. board_init_pmp();
  184. board_init_ahb();
  185. #if BOARD_SHOW_CLOCK
  186. board_print_clock_freq();
  187. #endif
  188. #if BOARD_SHOW_BANNER
  189. board_print_banner();
  190. #endif
  191. }
  192. void board_init_core1(void)
  193. {
  194. board_init_console();
  195. board_init_pmp();
  196. }
  197. void board_init_sdram_pins(void)
  198. {
  199. init_sdram_pins();
  200. }
  201. uint32_t board_init_femc_clock(void)
  202. {
  203. clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
  204. /* clock_set_source_divider(clock_femc, clk_src_pll1_clk1, 2U); [> 200Mhz <] */
  205. return clock_get_frequency(clock_femc);
  206. }
  207. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
  208. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  209. static void set_reset_pin_level_tm070rdh13(uint8_t level)
  210. {
  211. gpio_write_pin(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN, level);
  212. }
  213. static void set_backlight_tm070rdh13(uint16_t percent)
  214. {
  215. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
  216. }
  217. void board_init_lcd_rgb_tm070rdh13(void)
  218. {
  219. init_lcd_pins(BOARD_LCD_BASE);
  220. gpio_set_pin_output(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN);
  221. gpio_write_pin(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN, 0);
  222. gpio_write_pin(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN, 1);
  223. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  224. gpio_set_pin_output(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN);
  225. hpm_panel_hw_interface_t hw_if = {0};
  226. hpm_panel_t *panel = hpm_panel_find_device_default();
  227. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  228. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
  229. hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
  230. hw_if.set_backlight = set_backlight_tm070rdh13;
  231. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  232. hpm_panel_register_interface(panel, &hw_if);
  233. printf("name: %s, lcdc_clk: %ukhz\n",
  234. hpm_panel_get_name(panel),
  235. lcdc_pixel_clk_khz);
  236. hpm_panel_reset(panel);
  237. hpm_panel_init(panel);
  238. hpm_panel_power_on(panel);
  239. }
  240. #endif
  241. #ifdef CONFIG_HPM_PANEL
  242. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
  243. {
  244. clock_add_to_group(clock_name, 0);
  245. uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
  246. uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
  247. clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
  248. return clock_get_frequency(clock_name) / 1000;
  249. }
  250. void board_lcd_backlight(bool is_on)
  251. {
  252. hpm_panel_t *panel = hpm_panel_find_device_default();
  253. hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
  254. }
  255. void board_init_lcd(void)
  256. {
  257. #ifdef CONFIG_PANEL_RGB_TM070RDH13
  258. board_init_lcd_rgb_tm070rdh13();
  259. #endif
  260. }
  261. void board_panel_para_to_lcdc(lcdc_config_t *config)
  262. {
  263. const hpm_panel_timing_t *timing;
  264. hpm_panel_t *panel = hpm_panel_find_device_default();
  265. timing = hpm_panel_get_timing(panel);
  266. config->resolution_x = timing->hactive;
  267. config->resolution_y = timing->vactive;
  268. config->hsync.pulse_width = timing->hsync_len;
  269. config->hsync.back_porch_pulse = timing->hback_porch;
  270. config->hsync.front_porch_pulse = timing->hfront_porch;
  271. config->vsync.pulse_width = timing->vsync_len;
  272. config->vsync.back_porch_pulse = timing->vback_porch;
  273. config->vsync.front_porch_pulse = timing->vfront_porch;
  274. config->control.invert_hsync = timing->hsync_pol;
  275. config->control.invert_vsync = timing->vsync_pol;
  276. config->control.invert_href = timing->de_pol;
  277. config->control.invert_pixel_data = timing->pixel_data_pol;
  278. config->control.invert_pixel_clock = timing->pixel_clk_pol;
  279. }
  280. #endif
  281. void board_delay_ms(uint32_t ms)
  282. {
  283. clock_cpu_delay_ms(ms);
  284. }
  285. void board_delay_us(uint32_t us)
  286. {
  287. clock_cpu_delay_us(us);
  288. }
  289. void board_timer_isr(void)
  290. {
  291. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  292. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  293. timer_cb();
  294. }
  295. }
  296. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  297. void board_timer_create(uint32_t ms, board_timer_cb cb)
  298. {
  299. uint32_t gptmr_freq;
  300. gptmr_channel_config_t config;
  301. timer_cb = cb;
  302. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  303. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  304. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  305. config.reload = gptmr_freq / 1000 * ms;
  306. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  307. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  308. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  309. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  310. }
  311. void board_i2c_bus_clear(I2C_Type *ptr)
  312. {
  313. init_i2c_pins_as_gpio(ptr);
  314. if (ptr == BOARD_CAP_I2C_BASE) {
  315. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  316. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  317. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  318. printf("CLK is low, please power cycle the board\n");
  319. while (1) {
  320. }
  321. }
  322. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  323. printf("SDA is low, try to issue I2C bus clear\n");
  324. } else {
  325. printf("I2C bus is ready\n");
  326. return;
  327. }
  328. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  329. while (1) {
  330. for (uint32_t i = 0; i < 9; i++) {
  331. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  332. board_delay_ms(10);
  333. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  334. board_delay_ms(10);
  335. }
  336. board_delay_ms(100);
  337. }
  338. printf("I2C bus is cleared\n");
  339. }
  340. }
  341. void board_init_i2c(I2C_Type *ptr)
  342. {
  343. hpm_stat_t stat;
  344. uint32_t freq;
  345. i2c_config_t config;
  346. board_i2c_bus_clear(ptr);
  347. init_i2c_pins(ptr);
  348. clock_add_to_group(clock_i2c0, 0);
  349. clock_add_to_group(clock_i2c1, 0);
  350. clock_add_to_group(clock_i2c2, 0);
  351. clock_add_to_group(clock_i2c3, 0);
  352. /* Configure the I2C clock to 24MHz */
  353. clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  354. config.i2c_mode = i2c_mode_normal;
  355. config.is_10bit_addressing = false;
  356. freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
  357. stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
  358. if (stat != status_success) {
  359. printf("failed to initialize i2c 0x%x\n", (uint32_t)BOARD_CAP_I2C_BASE);
  360. while (1) {
  361. }
  362. }
  363. }
  364. uint32_t board_init_uart_clock(UART_Type *ptr)
  365. {
  366. uint32_t freq = 0;
  367. clock_name_t clock_name = clock_uart0;
  368. bool need_init_clock = true;
  369. if (ptr == HPM_UART0) {
  370. clock_name = clock_uart0;
  371. } else if (ptr == HPM_UART1) {
  372. clock_name = clock_uart1;
  373. } else if (ptr == HPM_UART2) {
  374. clock_name = clock_uart2;
  375. } else if (ptr == HPM_UART3) {
  376. clock_name = clock_uart3;
  377. } else if (ptr == HPM_UART4) {
  378. clock_name = clock_uart4;
  379. } else if (ptr == HPM_UART5) {
  380. clock_name = clock_uart5;
  381. } else if (ptr == HPM_UART6) {
  382. clock_name = clock_uart6;
  383. } else if (ptr == HPM_UART7) {
  384. clock_name = clock_uart7;
  385. } else if (ptr == HPM_UART8) {
  386. clock_name = clock_uart8;
  387. } else if (ptr == HPM_UART9) {
  388. clock_name = clock_uart9;
  389. } else if (ptr == HPM_UART10) {
  390. clock_name = clock_uart10;
  391. } else if (ptr == HPM_UART11) {
  392. clock_name = clock_uart11;
  393. } else if (ptr == HPM_UART12) {
  394. clock_name = clock_uart12;
  395. } else if (ptr == HPM_UART13) {
  396. clock_name = clock_uart13;
  397. } else if (ptr == HPM_UART14) {
  398. clock_name = clock_uart14;
  399. } else if (ptr == HPM_UART15) {
  400. clock_name = clock_uart15;
  401. } else {
  402. /* Unsupported instance */
  403. need_init_clock = false;
  404. }
  405. if (need_init_clock) {
  406. clock_set_source_divider(clock_name, clk_src_osc24m, 1);
  407. clock_add_to_group(clock_name, 0);
  408. freq = clock_get_frequency(clock_name);
  409. }
  410. return freq;
  411. }
  412. uint32_t board_init_spi_clock(SPI_Type *ptr)
  413. {
  414. if (ptr == HPM_SPI2) {
  415. /* SPI2 clock configure */
  416. clock_add_to_group(clock_spi2, 0);
  417. clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U); /* 80MHz */
  418. return clock_get_frequency(clock_spi2);
  419. }
  420. return 0;
  421. }
  422. void board_init_cap_touch(void)
  423. {
  424. init_cap_pins();
  425. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  426. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  427. board_delay_ms(1);
  428. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  429. board_delay_ms(1);
  430. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  431. board_delay_ms(6);
  432. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  433. board_init_i2c(BOARD_CAP_I2C_BASE);
  434. }
  435. void board_init_gpio_pins(void)
  436. {
  437. init_gpio_pins();
  438. }
  439. void board_init_spi_pins(SPI_Type *ptr)
  440. {
  441. init_spi_pins(ptr);
  442. }
  443. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  444. {
  445. init_spi_pins_with_gpio_as_cs(ptr);
  446. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  447. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  448. }
  449. void board_write_spi_cs(uint32_t pin, uint8_t state)
  450. {
  451. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  452. }
  453. uint8_t board_get_led_pwm_off_level(void)
  454. {
  455. return BOARD_LED_OFF_LEVEL;
  456. }
  457. uint8_t board_get_led_gpio_off_level(void)
  458. {
  459. return BOARD_LED_OFF_LEVEL;
  460. }
  461. void board_init_led_pins(void)
  462. {
  463. board_turnoff_rgb_led();
  464. init_led_pins_as_gpio();
  465. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  466. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  467. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  468. }
  469. void board_led_toggle(void)
  470. {
  471. #ifdef BOARD_LED_TOGGLE_RGB
  472. static uint8_t i;
  473. gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, (7 & (1 << i)) << BOARD_R_GPIO_PIN);
  474. i++;
  475. i = i % 3;
  476. #else
  477. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  478. #endif
  479. }
  480. void board_led_write(uint8_t state)
  481. {
  482. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  483. }
  484. void board_init_cam_pins(void)
  485. {
  486. init_cam_pins();
  487. /* enable cam RST pin out with high level */
  488. gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
  489. }
  490. void board_write_cam_rst(uint8_t state)
  491. {
  492. gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
  493. }
  494. void board_init_usb_pins(void)
  495. {
  496. /* set pull-up for USBx OC pins and ID pins */
  497. init_usb_pins();
  498. /* configure USBx ID pins as input function */
  499. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  500. gpio_set_pin_input(BOARD_USB1_ID_PORT, BOARD_USB1_ID_GPIO_INDEX, BOARD_USB1_ID_GPIO_PIN);
  501. /* configure USBx OC Flag pins as input function */
  502. gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
  503. gpio_set_pin_input(BOARD_USB1_OC_PORT, BOARD_USB1_OC_GPIO_INDEX, BOARD_USB1_OC_GPIO_PIN);
  504. }
  505. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  506. {
  507. (void) usb_index;
  508. (void) level;
  509. }
  510. void board_init_pmp(void)
  511. {
  512. uint32_t start_addr;
  513. uint32_t end_addr;
  514. uint32_t length;
  515. pmp_entry_t pmp_entry[16];
  516. uint8_t index = 0;
  517. /* Init noncachable memory */
  518. extern uint32_t __noncacheable_start__[];
  519. extern uint32_t __noncacheable_end__[];
  520. start_addr = (uint32_t) __noncacheable_start__;
  521. end_addr = (uint32_t) __noncacheable_end__;
  522. length = end_addr - start_addr;
  523. if (length > 0) {
  524. /* Ensure the address and the length are power of 2 aligned */
  525. assert((length & (length - 1U)) == 0U);
  526. assert((start_addr & (length - 1U)) == 0U);
  527. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  528. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  529. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  530. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  531. index++;
  532. }
  533. pmp_config(&pmp_entry[0], index);
  534. }
  535. void board_init_clock(void)
  536. {
  537. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  538. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  539. /* Configure the External OSC ramp-up time: ~9ms */
  540. pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
  541. /* Select clock setting preset1 */
  542. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  543. }
  544. /* Add most Clocks to group 0 */
  545. /* not open uart clock in this API, uart should configure pin function before opening clock */
  546. clock_add_to_group(clock_cpu0, 0);
  547. clock_add_to_group(clock_mchtmr0, 0);
  548. clock_add_to_group(clock_axi0, 0);
  549. clock_add_to_group(clock_axi1, 0);
  550. clock_add_to_group(clock_axi2, 0);
  551. clock_add_to_group(clock_ahb, 0);
  552. clock_add_to_group(clock_femc, 0);
  553. clock_add_to_group(clock_xpi0, 0);
  554. clock_add_to_group(clock_xpi1, 0);
  555. clock_add_to_group(clock_gptmr0, 0);
  556. clock_add_to_group(clock_gptmr1, 0);
  557. clock_add_to_group(clock_gptmr2, 0);
  558. clock_add_to_group(clock_gptmr3, 0);
  559. clock_add_to_group(clock_gptmr4, 0);
  560. clock_add_to_group(clock_gptmr5, 0);
  561. clock_add_to_group(clock_gptmr6, 0);
  562. clock_add_to_group(clock_gptmr7, 0);
  563. clock_add_to_group(clock_i2c0, 0);
  564. clock_add_to_group(clock_i2c1, 0);
  565. clock_add_to_group(clock_i2c2, 0);
  566. clock_add_to_group(clock_i2c3, 0);
  567. clock_add_to_group(clock_spi0, 0);
  568. clock_add_to_group(clock_spi1, 0);
  569. clock_add_to_group(clock_spi2, 0);
  570. clock_add_to_group(clock_spi3, 0);
  571. clock_add_to_group(clock_can0, 0);
  572. clock_add_to_group(clock_can1, 0);
  573. clock_add_to_group(clock_can2, 0);
  574. clock_add_to_group(clock_can3, 0);
  575. clock_add_to_group(clock_display, 0);
  576. clock_add_to_group(clock_sdxc0, 0);
  577. clock_add_to_group(clock_sdxc1, 0);
  578. clock_add_to_group(clock_camera0, 0);
  579. clock_add_to_group(clock_camera1, 0);
  580. clock_add_to_group(clock_ptpc, 0);
  581. clock_add_to_group(clock_ref0, 0);
  582. clock_add_to_group(clock_ref1, 0);
  583. clock_add_to_group(clock_watchdog0, 0);
  584. clock_add_to_group(clock_eth0, 0);
  585. clock_add_to_group(clock_eth1, 0);
  586. clock_add_to_group(clock_sdp, 0);
  587. clock_add_to_group(clock_xdma, 0);
  588. clock_add_to_group(clock_ram0, 0);
  589. clock_add_to_group(clock_ram1, 0);
  590. clock_add_to_group(clock_usb0, 0);
  591. clock_add_to_group(clock_usb1, 0);
  592. clock_add_to_group(clock_jpeg, 0);
  593. clock_add_to_group(clock_pdma, 0);
  594. clock_add_to_group(clock_kman, 0);
  595. clock_add_to_group(clock_gpio, 0);
  596. clock_add_to_group(clock_mbx0, 0);
  597. clock_add_to_group(clock_hdma, 0);
  598. clock_add_to_group(clock_rng, 0);
  599. clock_add_to_group(clock_mot0, 0);
  600. clock_add_to_group(clock_mot1, 0);
  601. clock_add_to_group(clock_mot2, 0);
  602. clock_add_to_group(clock_mot3, 0);
  603. clock_add_to_group(clock_acmp, 0);
  604. clock_add_to_group(clock_dao, 0);
  605. clock_add_to_group(clock_synt, 0);
  606. clock_add_to_group(clock_lmm0, 0);
  607. clock_add_to_group(clock_lmm1, 0);
  608. clock_add_to_group(clock_pdm, 0);
  609. clock_add_to_group(clock_adc0, 0);
  610. clock_add_to_group(clock_adc1, 0);
  611. clock_add_to_group(clock_adc2, 0);
  612. clock_add_to_group(clock_adc3, 0);
  613. clock_add_to_group(clock_i2s0, 0);
  614. clock_add_to_group(clock_i2s1, 0);
  615. clock_add_to_group(clock_i2s2, 0);
  616. clock_add_to_group(clock_i2s3, 0);
  617. /* Connect Group0 to CPU0 */
  618. clock_connect_group_to_cpu(0, 0);
  619. /* Add the CPU1 clock to Group1 */
  620. clock_add_to_group(clock_mchtmr1, 1);
  621. clock_add_to_group(clock_mbx1, 1);
  622. /* Connect Group1 to CPU1 */
  623. clock_connect_group_to_cpu(1, 1);
  624. /* Bump up DCDC voltage to 1200mv */
  625. pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
  626. pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
  627. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  628. printf("Failed to set pll0_clk0 to %luHz\n", BOARD_CPU_FREQ);
  629. while (1) {
  630. }
  631. }
  632. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  633. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  634. clock_update_core_clock();
  635. clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
  636. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  637. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  638. }
  639. uint32_t board_init_cam_clock(CAM_Type *ptr)
  640. {
  641. uint32_t freq = 0;
  642. if (ptr == HPM_CAM0) {
  643. /* Configure camera clock to 24MHz */
  644. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  645. freq = clock_get_frequency(clock_camera0);
  646. } else if (ptr == HPM_CAM1) {
  647. /* Configure camera clock to 24MHz */
  648. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  649. freq = clock_get_frequency(clock_camera1);
  650. } else {
  651. /* Invalid camera instance */
  652. }
  653. return freq;
  654. }
  655. uint32_t board_init_lcd_clock(void)
  656. {
  657. uint32_t freq;
  658. clock_add_to_group(clock_display, 0);
  659. /* Configure LCDC clock to 59.4MHz */
  660. clock_set_source_divider(clock_display, clk_src_pll4_clk0, 10U);
  661. freq = clock_get_frequency(clock_display);
  662. return freq;
  663. }
  664. uint32_t board_init_dao_clock(void)
  665. {
  666. clock_add_to_group(clock_dao, 0);
  667. sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
  668. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
  669. return clock_get_frequency(clock_dao);
  670. }
  671. uint32_t board_init_pdm_clock(void)
  672. {
  673. clock_add_to_group(clock_pdm, 0);
  674. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  675. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  676. return clock_get_frequency(clock_pdm);
  677. }
  678. hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
  679. {
  680. return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq); /* pll3clk */
  681. }
  682. void board_init_i2s_pins(I2S_Type *ptr)
  683. {
  684. init_i2s_pins(ptr);
  685. }
  686. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  687. {
  688. uint32_t freq = 0;
  689. if (ptr == HPM_I2S0) {
  690. clock_add_to_group(clock_i2s0, 0);
  691. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  692. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  693. freq = clock_get_frequency(clock_i2s0);
  694. } else if (ptr == HPM_I2S1) {
  695. clock_add_to_group(clock_i2s1, 0);
  696. sysctl_config_clock(HPM_SYSCTL, clock_node_aud1, clock_source_pll3_clk0, 25);
  697. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud1_clk);
  698. freq = clock_get_frequency(clock_i2s1);
  699. } else {
  700. ;
  701. }
  702. return freq;
  703. }
  704. /* adjust I2S source clock base on sample rate */
  705. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  706. {
  707. uint32_t freq = 0;
  708. if (ptr == HPM_I2S0) {
  709. clock_add_to_group(clock_i2s0, 0);
  710. if ((sample_rate % 22050) == 0) {
  711. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  712. } else {
  713. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  714. }
  715. clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
  716. freq = clock_get_frequency(clock_i2s0);
  717. } else if (ptr == HPM_I2S1) {
  718. clock_add_to_group(clock_i2s1, 0);
  719. if ((sample_rate % 22050) == 0) {
  720. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  721. } else {
  722. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  723. }
  724. clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
  725. freq = clock_get_frequency(clock_i2s1);
  726. } else {
  727. ;
  728. }
  729. return freq;
  730. }
  731. void board_init_adc12_pins(void)
  732. {
  733. init_adc12_pins();
  734. }
  735. void board_init_adc16_pins(void)
  736. {
  737. init_adc16_pins();
  738. }
  739. uint32_t board_init_adc12_clock(ADC12_Type *ptr, bool clk_src_ahb)
  740. {
  741. uint32_t freq = 0;
  742. if (ptr == HPM_ADC0) {
  743. if (clk_src_ahb) {
  744. /* Configure the ADC clock from AHB (@200MHz by default)*/
  745. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  746. } else {
  747. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  748. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  749. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  750. }
  751. freq = clock_get_frequency(clock_adc0);
  752. } else if (ptr == HPM_ADC1) {
  753. if (clk_src_ahb) {
  754. /* Configure the ADC clock from AHB (@200MHz by default)*/
  755. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  756. } else {
  757. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  758. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  759. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  760. }
  761. freq = clock_get_frequency(clock_adc1);
  762. } else if (ptr == HPM_ADC2) {
  763. if (clk_src_ahb) {
  764. /* Configure the ADC clock from AHB (@200MHz by default)*/
  765. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  766. } else {
  767. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  768. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  769. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  770. }
  771. freq = clock_get_frequency(clock_adc2);
  772. }
  773. return freq;
  774. }
  775. uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
  776. {
  777. uint32_t freq = 0;
  778. if (ptr == HPM_ADC3) {
  779. if (clk_src_ahb) {
  780. /* Configure the ADC clock from AHB (@200MHz by default)*/
  781. clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
  782. } else {
  783. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  784. clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
  785. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  786. }
  787. freq = clock_get_frequency(clock_adc3);
  788. }
  789. return freq;
  790. }
  791. void board_init_can(CAN_Type *ptr)
  792. {
  793. init_can_pins(ptr);
  794. }
  795. uint32_t board_init_can_clock(CAN_Type *ptr)
  796. {
  797. uint32_t freq = 0;
  798. if (ptr == HPM_CAN0) {
  799. /* Set the CAN0 peripheral clock to 80MHz */
  800. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  801. freq = clock_get_frequency(clock_can0);
  802. } else if (ptr == HPM_CAN1) {
  803. /* Set the CAN1 peripheral clock to 80MHz */
  804. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  805. freq = clock_get_frequency(clock_can1);
  806. } else if (ptr == HPM_CAN2) {
  807. /* Set the CAN2 peripheral clock to 80MHz */
  808. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  809. freq = clock_get_frequency(clock_can2);
  810. } else if (ptr == HPM_CAN3) {
  811. /* Set the CAN3 peripheral clock to 80MHz */
  812. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  813. freq = clock_get_frequency(clock_can3);
  814. } else {
  815. /* Invalid CAN instance */
  816. }
  817. return freq;
  818. }
  819. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  820. {
  821. uint32_t freq = 0;
  822. if (ptr == HPM_GPTMR0) {
  823. clock_add_to_group(clock_gptmr0, 0);
  824. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  825. freq = clock_get_frequency(clock_gptmr0);
  826. }
  827. else if (ptr == HPM_GPTMR1) {
  828. clock_add_to_group(clock_gptmr1, 0);
  829. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  830. freq = clock_get_frequency(clock_gptmr1);
  831. }
  832. else if (ptr == HPM_GPTMR2) {
  833. clock_add_to_group(clock_gptmr2, 0);
  834. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  835. freq = clock_get_frequency(clock_gptmr2);
  836. }
  837. else if (ptr == HPM_GPTMR3) {
  838. clock_add_to_group(clock_gptmr3, 0);
  839. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  840. freq = clock_get_frequency(clock_gptmr3);
  841. }
  842. else if (ptr == HPM_GPTMR4) {
  843. clock_add_to_group(clock_gptmr4, 0);
  844. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
  845. freq = clock_get_frequency(clock_gptmr4);
  846. }
  847. else if (ptr == HPM_GPTMR5) {
  848. clock_add_to_group(clock_gptmr5, 0);
  849. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
  850. freq = clock_get_frequency(clock_gptmr5);
  851. }
  852. else if (ptr == HPM_GPTMR6) {
  853. clock_add_to_group(clock_gptmr6, 0);
  854. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
  855. freq = clock_get_frequency(clock_gptmr6);
  856. }
  857. else if (ptr == HPM_GPTMR7) {
  858. clock_add_to_group(clock_gptmr7, 0);
  859. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
  860. freq = clock_get_frequency(clock_gptmr7);
  861. }
  862. else {
  863. /* Invalid instance */
  864. }
  865. return freq;
  866. }
  867. /*
  868. * this function will be called during startup to initialize external memory for data use
  869. */
  870. void _init_ext_ram(void)
  871. {
  872. uint32_t femc_clk_in_hz;
  873. clock_add_to_group(clock_femc, 0);
  874. board_init_sdram_pins();
  875. femc_clk_in_hz = board_init_femc_clock();
  876. femc_config_t config = {0};
  877. femc_sdram_config_t sdram_config = {0};
  878. femc_default_config(HPM_FEMC, &config);
  879. femc_init(HPM_FEMC, &config);
  880. femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
  881. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  882. sdram_config.prescaler = 0x3;
  883. sdram_config.burst_len_in_byte = 8;
  884. sdram_config.auto_refresh_count_in_one_burst = 1;
  885. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  886. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  887. sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
  888. sdram_config.refresh_recover_in_ns = 60; /* Trc */
  889. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  890. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  891. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  892. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  893. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  894. sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
  895. sdram_config.cs = BOARD_SDRAM_CS;
  896. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  897. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  898. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  899. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  900. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  901. sdram_config.delay_cell_disable = true;
  902. sdram_config.delay_cell_value = 0;
  903. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  904. }
  905. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  906. {
  907. if (ptr == BOARD_APP_SDCARD_SDXC_BASE) {
  908. init_sdxc_pwr_pin(ptr, true);
  909. gpio_set_pin_output_with_initial(BOARD_APP_SDCARD_POWER_EN_GPIO_BASE, BOARD_APP_SDCARD_POWER_EN_GPIO_INDEX, BOARD_APP_SDCARD_POWER_EN_GPIO_PIN, on_off);
  910. }
  911. }
  912. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  913. {
  914. uint32_t actual_freq = 0;
  915. do {
  916. if (ptr != BOARD_APP_SDCARD_SDXC_BASE) {
  917. break;
  918. }
  919. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  920. sdxc_enable_inverse_clock(ptr, false);
  921. sdxc_enable_sd_clock(ptr, false);
  922. /* Configure the clock below 400KHz for the identification state */
  923. if (freq <= 400000UL) {
  924. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  925. }
  926. /* configure the clock to 24MHz for the SDR12/Default speed */
  927. else if (freq <= 26000000UL) {
  928. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  929. }
  930. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  931. else if (freq <= 52000000UL) {
  932. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  933. }
  934. /* Configure the clock to 100MHz for the SDR50 */
  935. else if (freq <= 100000000UL) {
  936. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  937. }
  938. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  939. else if (freq <= 208000000UL) {
  940. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  941. }
  942. /* For other unsupported clock ranges, configure the clock to 24MHz */
  943. else {
  944. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  945. }
  946. if (need_inverse) {
  947. sdxc_enable_inverse_clock(ptr, true);
  948. }
  949. sdxc_enable_sd_clock(ptr, true);
  950. actual_freq = clock_get_frequency(sdxc_clk);
  951. } while (false);
  952. return actual_freq;
  953. }
  954. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  955. {
  956. /* This feature is not supported */
  957. }
  958. bool board_sd_detect_card(SDXC_Type *ptr)
  959. {
  960. GPIO_Type *gpio = BOARD_APP_SDCARD_CARD_DETECTION_GPIO;
  961. uint32_t gpio_index = BOARD_APP_SDCARD_CARD_DETECTION_GPIO_INDEX;
  962. uint32_t pin_index = BOARD_APP_SDCARD_CARD_DETECTION_PIN_INDEX;
  963. return ((gpio->DI[gpio_index].VALUE & (1UL << pin_index)) == 0U);
  964. }
  965. static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
  966. {
  967. pwm_cmp_config_t cmp_config = {0};
  968. pwm_output_channel_t ch_config = {0};
  969. pwm_stop_counter(ptr);
  970. pwm_get_default_cmp_config(ptr, &cmp_config);
  971. pwm_get_default_output_channel_config(ptr, &ch_config);
  972. pwm_set_reload(ptr, 0, 0xF);
  973. pwm_set_start_count(ptr, 0, 0);
  974. cmp_config.mode = pwm_cmp_mode_output_compare;
  975. cmp_config.cmp = 0x10;
  976. cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
  977. pwm_config_cmp(ptr, cmp_index, &cmp_config);
  978. ch_config.cmp_start_index = cmp_index;
  979. ch_config.cmp_end_index = cmp_index;
  980. ch_config.invert_output = false;
  981. pwm_config_output_channel(ptr, pin, &ch_config);
  982. }
  983. void board_init_rgb_pwm_pins(void)
  984. {
  985. trgm_output_t config = {0};
  986. board_turnoff_rgb_led();
  987. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
  988. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
  989. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
  990. init_rgb_pwm_pins();
  991. config.type = 0;
  992. config.invert = false;
  993. /* Red: TRGM1 P1 */
  994. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
  995. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
  996. /* Green: TRGM0 P6 */
  997. config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
  998. trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
  999. /* Blue: TRGM1 P3 */
  1000. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
  1001. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
  1002. }
  1003. void board_disable_output_rgb_led(uint8_t color)
  1004. {
  1005. switch (color) {
  1006. case BOARD_RGB_RED:
  1007. trgm_disable_io_output(HPM_TRGM1, 1 << 1);
  1008. break;
  1009. case BOARD_RGB_GREEN:
  1010. trgm_disable_io_output(HPM_TRGM0, 1 << 6);
  1011. break;
  1012. case BOARD_RGB_BLUE:
  1013. trgm_disable_io_output(HPM_TRGM1, 1 << 3);
  1014. break;
  1015. default:
  1016. while (1) {
  1017. ;
  1018. }
  1019. }
  1020. }
  1021. void board_enable_output_rgb_led(uint8_t color)
  1022. {
  1023. switch (color) {
  1024. case BOARD_RGB_RED:
  1025. trgm_enable_io_output(HPM_TRGM1, 1 << 1);
  1026. break;
  1027. case BOARD_RGB_GREEN:
  1028. trgm_enable_io_output(HPM_TRGM0, 1 << 6);
  1029. break;
  1030. case BOARD_RGB_BLUE:
  1031. trgm_enable_io_output(HPM_TRGM1, 1 << 3);
  1032. break;
  1033. default:
  1034. while (1) {
  1035. ;
  1036. }
  1037. }
  1038. }
  1039. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  1040. {
  1041. /* set clock source */
  1042. if (ptr == HPM_ENET0) {
  1043. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  1044. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  1045. } else if (ptr == HPM_ENET1) {
  1046. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
  1047. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  1048. } else {
  1049. return status_invalid_argument;
  1050. }
  1051. return status_success;
  1052. }
  1053. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  1054. {
  1055. /* Configure Enet clock to output reference clock */
  1056. if (ptr == HPM_ENET1) {
  1057. if (internal) {
  1058. /* set pll output frequency at 1GHz */
  1059. if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
  1060. /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 */
  1061. pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
  1062. /* set eth clock frequency at 50MHz for enet0 */
  1063. clock_set_source_divider(ptr == HPM_ENET0 ? clock_eth0 : clock_eth1, clk_src_pll2_clk1, 5);
  1064. } else {
  1065. return status_fail;
  1066. }
  1067. }
  1068. } else {
  1069. return status_invalid_argument;
  1070. }
  1071. enet_rmii_enable_clock(ptr, internal);
  1072. return status_success;
  1073. }
  1074. hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
  1075. {
  1076. if (ptr == HPM_ENET0) {
  1077. return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
  1078. }
  1079. return status_invalid_argument;
  1080. }
  1081. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  1082. {
  1083. init_enet_pins(ptr);
  1084. if (ptr == HPM_ENET0) {
  1085. gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  1086. } else if (ptr == HPM_ENET1) {
  1087. gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  1088. } else {
  1089. return status_invalid_argument;
  1090. }
  1091. return status_success;
  1092. }
  1093. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  1094. {
  1095. if (ptr == HPM_ENET0) {
  1096. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  1097. board_delay_ms(1);
  1098. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
  1099. } else if (ptr == HPM_ENET1) {
  1100. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  1101. board_delay_ms(1);
  1102. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
  1103. } else {
  1104. return status_invalid_argument;
  1105. }
  1106. return status_success;
  1107. }
  1108. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  1109. {
  1110. (void) ptr;
  1111. return enet_pbl_32;
  1112. }
  1113. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  1114. {
  1115. if (ptr == HPM_ENET0) {
  1116. intc_m_enable_irq(IRQn_ENET0);
  1117. } else if (ptr == HPM_ENET1) {
  1118. intc_m_enable_irq(IRQn_ENET1);
  1119. } else {
  1120. return status_invalid_argument;
  1121. }
  1122. return status_success;
  1123. }
  1124. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  1125. {
  1126. if (ptr == HPM_ENET0) {
  1127. intc_m_disable_irq(IRQn_ENET0);
  1128. } else if (ptr == HPM_ENET1) {
  1129. intc_m_disable_irq(IRQn_ENET1);
  1130. } else {
  1131. return status_invalid_argument;
  1132. }
  1133. return status_success;
  1134. }
  1135. void board_init_enet_pps_pins(ENET_Type *ptr)
  1136. {
  1137. (void) ptr;
  1138. init_enet_pps_pins();
  1139. }
  1140. #if defined(ENET_MULTIPLE_PORT) && ENET_MULTIPLE_PORT
  1141. hpm_stat_t board_init_multiple_enet_pins(void)
  1142. {
  1143. board_init_enet_pins(HPM_ENET0);
  1144. board_init_enet_pins(HPM_ENET1);
  1145. return status_success;
  1146. }
  1147. hpm_stat_t board_init_multiple_enet_clock(void)
  1148. {
  1149. /* Set RGMII clock delay */
  1150. board_init_enet_rgmii_clock_delay(HPM_ENET0);
  1151. /* Set RMII reference clock */
  1152. board_init_enet_rmii_reference_clock(HPM_ENET1, BOARD_ENET_RMII_INT_REF_CLK);
  1153. printf("Enet1 Reference Clock: %s\n", BOARD_ENET_RMII_INT_REF_CLK ? "Internal Clock" : "External Clock");
  1154. return status_success;
  1155. }
  1156. hpm_stat_t board_reset_multiple_enet_phy(void)
  1157. {
  1158. board_reset_enet_phy(HPM_ENET0);
  1159. board_reset_enet_phy(HPM_ENET1);
  1160. return status_success;
  1161. }
  1162. hpm_stat_t board_init_enet_phy(ENET_Type *ptr)
  1163. {
  1164. rtl8211_config_t phy_config0;
  1165. rtl8201_config_t phy_config1;
  1166. if (ptr == HPM_ENET0) {
  1167. rtl8211_reset(ptr);
  1168. rtl8211_basic_mode_default_config(HPM_ENET0, &phy_config0);
  1169. if (rtl8211_basic_mode_init(HPM_ENET0, &phy_config0) == true) {
  1170. return status_success;
  1171. } else {
  1172. printf("Enet0 phy init failed!\n");
  1173. return status_fail;
  1174. }
  1175. } else if (ptr == HPM_ENET1) {
  1176. rtl8201_reset(HPM_ENET1);
  1177. rtl8201_basic_mode_default_config(HPM_ENET1, &phy_config1);
  1178. if (rtl8201_basic_mode_init(HPM_ENET1, &phy_config1) == true) {
  1179. return status_success;
  1180. } else {
  1181. printf("Enet1 phy init failed!\n");
  1182. return status_fail;
  1183. }
  1184. } else {
  1185. return status_invalid_argument;
  1186. }
  1187. }
  1188. ENET_Type *board_get_enet_base(uint8_t idx)
  1189. {
  1190. if (idx == 0) {
  1191. return HPM_ENET0;
  1192. } else {
  1193. return HPM_ENET1;
  1194. }
  1195. }
  1196. uint8_t board_get_enet_phy_itf(uint8_t idx)
  1197. {
  1198. if (idx == 0) {
  1199. return BOARD_ENET_RGMII_PHY_ITF;
  1200. } else {
  1201. return BOARD_ENET_RMII_PHY_ITF;
  1202. }
  1203. }
  1204. void board_get_enet_phy_status(uint8_t idx, void *status)
  1205. {
  1206. if (idx == 0) {
  1207. rtl8211_get_phy_status(HPM_ENET0, status);
  1208. } else {
  1209. rtl8201_get_phy_status(HPM_ENET1, status);
  1210. }
  1211. }
  1212. #endif
  1213. void board_init_dao_pins(void)
  1214. {
  1215. init_dao_pins();
  1216. }