board.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489
  1. /*
  2. * Copyright (c) 2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. *
  6. */
  7. #include "board.h"
  8. #include "hpm_uart_drv.h"
  9. #include "hpm_gptmr_drv.h"
  10. #include "hpm_lcdc_drv.h"
  11. #include "hpm_i2c_drv.h"
  12. #include "hpm_gpio_drv.h"
  13. #include "pinmux.h"
  14. #include "hpm_pmp_drv.h"
  15. #include "hpm_clock_drv.h"
  16. #include "hpm_sysctl_drv.h"
  17. #include "hpm_pllctlv2_drv.h"
  18. #include "hpm_sdxc_drv.h"
  19. #include "hpm_ddrctl_regs.h"
  20. #include "hpm_ddrphy_regs.h"
  21. #include "hpm_pcfg_drv.h"
  22. #include "hpm_pixelmux_drv.h"
  23. #include "hpm_lvb_drv.h"
  24. #include "hpm_enet_drv.h"
  25. #include "hpm_usb_drv.h"
  26. #include "hpm_mipi_dsi_drv.h"
  27. #include "hpm_mipi_dsi_phy_drv.h"
  28. static board_timer_cb timer_cb;
  29. /**
  30. * @brief FLASH configuration option definitions:
  31. * option[0]:
  32. * [31:16] 0xfcf9 - FLASH configuration option tag
  33. * [15:4] 0 - Reserved
  34. * [3:0] option words (exclude option[0])
  35. * option[1]:
  36. * [31:28] Flash probe type
  37. * 0 - SFDP SDR / 1 - SFDP DDR
  38. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  39. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  40. * 6 - OctaBus DDR (SPI -> OPI DDR)
  41. * 8 - Xccela DDR (SPI -> OPI DDR)
  42. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  43. * [27:24] Command Pads after Power-on Reset
  44. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  45. * [23:20] Command Pads after Configuring FLASH
  46. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  47. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  48. * 0 - Not needed
  49. * 1 - QE bit is at bit 6 in Status Register 1
  50. * 2 - QE bit is at bit1 in Status Register 2
  51. * 3 - QE bit is at bit7 in Status Register 2
  52. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  53. * [15:8] Dummy cycles
  54. * 0 - Auto-probed / detected / default value
  55. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  56. * [7:4] Misc.
  57. * 0 - Not used
  58. * 1 - SPI mode
  59. * 2 - Internal loopback
  60. * 3 - External DQS
  61. * [3:0] Frequency option
  62. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  63. *
  64. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  65. * [31:20] Reserved
  66. * [19:16] IO voltage
  67. * 0 - 3V / 1 - 1.8V
  68. * [15:12] Pin group
  69. * 0 - 1st group / 1 - 2nd group
  70. * [11:8] Connection selection
  71. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  72. * [7:0] Drive Strength
  73. * 0 - Default value
  74. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  75. * JESD216)
  76. * [31:16] reserved
  77. * [15:12] Sector Erase Command Option, not required here
  78. * [11:8] Sector Size Option, not required here
  79. * [7:0] Flash Size Option
  80. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  81. */
  82. #if defined(FLASH_XIP) && FLASH_XIP
  83. __attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
  84. #endif
  85. #if defined(FLASH_UF2) && FLASH_UF2
  86. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  87. #endif
  88. void board_init_console(void)
  89. {
  90. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  91. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  92. console_config_t cfg;
  93. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  94. * uart rx pin when configuring pin function will cause a wrong data to be received.
  95. * And a uart rx dma request will be generated by default uart fifo dma trigger level.
  96. */
  97. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  98. /* Configure the UART clock to 24MHz */
  99. clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
  100. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  101. cfg.type = BOARD_CONSOLE_TYPE;
  102. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  103. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  104. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  105. if (status_success != console_init(&cfg)) {
  106. /* failed to initialize debug console */
  107. while (1) {
  108. }
  109. }
  110. #else
  111. while (1)
  112. ;
  113. #endif
  114. #endif
  115. }
  116. void board_print_clock_freq(void)
  117. {
  118. printf("==============================\n");
  119. printf(" %s clock summary\n", BOARD_NAME);
  120. printf("==============================\n");
  121. printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
  122. printf("gpu0:\t\t %dHz\n", clock_get_frequency(clock_gpu0));
  123. printf("axis:\t\t %dHz\n", clock_get_frequency(clock_axis));
  124. printf("axic:\t\t %dHz\n", clock_get_frequency(clock_axic));
  125. printf("axif:\t\t %dHz\n", clock_get_frequency(clock_axif));
  126. printf("axid:\t\t %dHz\n", clock_get_frequency(clock_axid));
  127. printf("axiv:\t\t %dHz\n", clock_get_frequency(clock_axiv));
  128. printf("axig:\t\t %dHz\n", clock_get_frequency(clock_axig));
  129. printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
  130. printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
  131. printf("==============================\n");
  132. }
  133. void board_init_uart(UART_Type *ptr)
  134. {
  135. /* configure uart's pin before opening uart's clock */
  136. init_uart_pins(ptr);
  137. board_init_uart_clock(ptr);
  138. }
  139. void board_print_banner(void)
  140. {
  141. const uint8_t banner[] = { "\n\
  142. ----------------------------------------------------------------------\n\
  143. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  144. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  145. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  146. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  147. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  148. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  149. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  150. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  151. ----------------------------------------------------------------------\n" };
  152. #ifdef SDK_VERSION_STRING
  153. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  154. #endif
  155. printf("%s", banner);
  156. }
  157. uint8_t board_get_led_gpio_off_level(void)
  158. {
  159. return BOARD_LED_OFF_LEVEL;
  160. }
  161. void board_ungate_mchtmr_at_lp_mode(void)
  162. {
  163. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  164. sysctl_set_cpu0_lp_mode(HPM_SYSCTL, cpu_lp_mode_ungate_cpu_clock);
  165. }
  166. void board_init(void)
  167. {
  168. board_init_clock();
  169. board_init_console();
  170. board_init_pmp();
  171. #if BOARD_SHOW_CLOCK
  172. board_print_clock_freq();
  173. #endif
  174. #if BOARD_SHOW_BANNER
  175. board_print_banner();
  176. #endif
  177. }
  178. void board_delay_us(uint32_t us)
  179. {
  180. clock_cpu_delay_us(us);
  181. }
  182. void board_delay_ms(uint32_t ms)
  183. {
  184. clock_cpu_delay_ms(ms);
  185. }
  186. void board_timer_isr(void)
  187. {
  188. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  189. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  190. timer_cb();
  191. }
  192. }
  193. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  194. void board_timer_create(uint32_t ms, board_timer_cb cb)
  195. {
  196. uint32_t gptmr_freq;
  197. gptmr_channel_config_t config;
  198. timer_cb = cb;
  199. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  200. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  201. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  202. config.reload = gptmr_freq / 1000 * ms;
  203. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  204. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  205. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  206. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  207. }
  208. void board_i2c_bus_clear(I2C_Type *ptr)
  209. {
  210. if (i2c_get_line_scl_status(ptr) == false) {
  211. printf("CLK is low, please power cycle the board\n");
  212. while (1) {
  213. }
  214. }
  215. if (i2c_get_line_sda_status(ptr) == false) {
  216. printf("SDA is low, try to issue I2C bus clear\n");
  217. } else {
  218. printf("I2C bus is ready\n");
  219. return;
  220. }
  221. i2s_gen_reset_signal(ptr, 9);
  222. board_delay_ms(100);
  223. printf("I2C bus is cleared\n");
  224. }
  225. void board_init_i2c(I2C_Type *ptr)
  226. {
  227. hpm_stat_t stat;
  228. uint32_t freq;
  229. i2c_config_t config;
  230. init_i2c_pins(ptr);
  231. board_i2c_bus_clear(ptr);
  232. if (ptr == HPM_I2C0) {
  233. clock_add_to_group(clock_i2c0, 0);
  234. clock_set_source_divider(clock_i2c0, clk_src_osc24m, 1U);
  235. freq = clock_get_frequency(clock_i2c0);
  236. } else if (ptr == HPM_I2C1) {
  237. clock_add_to_group(clock_i2c1, 0);
  238. clock_set_source_divider(clock_i2c1, clk_src_osc24m, 1U);
  239. freq = clock_get_frequency(clock_i2c1);
  240. } else if (ptr == HPM_I2C2) {
  241. clock_add_to_group(clock_i2c2, 0);
  242. clock_set_source_divider(clock_i2c2, clk_src_osc24m, 1U);
  243. freq = clock_get_frequency(clock_i2c2);
  244. } else if (ptr == HPM_I2C3) {
  245. clock_add_to_group(clock_i2c3, 0);
  246. clock_set_source_divider(clock_i2c3, clk_src_osc24m, 1U);
  247. freq = clock_get_frequency(clock_i2c3);
  248. } else {
  249. printf("invild i2c base address 0x%x\n", (uint32_t) ptr);
  250. while (1) {
  251. }
  252. }
  253. config.i2c_mode = i2c_mode_normal;
  254. config.is_10bit_addressing = false;
  255. stat = i2c_init_master(ptr, freq, &config);
  256. if (stat != status_success) {
  257. printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr);
  258. while (1) {
  259. }
  260. }
  261. }
  262. uint32_t board_init_spi_clock(SPI_Type *ptr)
  263. {
  264. if (ptr == HPM_SPI1) {
  265. /* SPI1 clock configure */
  266. clock_add_to_group(clock_spi1, 0);
  267. return clock_get_frequency(clock_spi1);
  268. } else if (ptr == HPM_SPI2) {
  269. /* SPI2 clock configure */
  270. clock_add_to_group(clock_spi2, 0);
  271. return clock_get_frequency(clock_spi2);
  272. } else if (ptr == HPM_SPI3) {
  273. /* SPI3 clock configure */
  274. clock_add_to_group(clock_spi3, 0);
  275. return clock_get_frequency(clock_spi3);
  276. }
  277. return 0;
  278. }
  279. void board_init_gpio_pins(void)
  280. {
  281. init_gpio_pins();
  282. }
  283. void board_init_spi_pins(SPI_Type *ptr)
  284. {
  285. init_spi_pins(ptr);
  286. }
  287. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  288. {
  289. init_spi_pins_with_gpio_as_cs(ptr);
  290. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  291. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  292. }
  293. void board_write_spi_cs(uint32_t pin, uint8_t state)
  294. {
  295. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  296. }
  297. void board_init_led_pins(void)
  298. {
  299. init_led_pins_as_gpio();
  300. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN,
  301. board_get_led_gpio_off_level());
  302. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN,
  303. board_get_led_gpio_off_level());
  304. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN,
  305. board_get_led_gpio_off_level());
  306. }
  307. void board_led_toggle(void)
  308. {
  309. #ifdef BOARD_LED_TOGGLE_RGB
  310. static uint8_t i;
  311. switch (i) {
  312. case 1:
  313. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  314. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
  315. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  316. break;
  317. case 2:
  318. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  319. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  320. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
  321. break;
  322. case 0:
  323. default:
  324. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
  325. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  326. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  327. break;
  328. }
  329. i++;
  330. i = i % 3;
  331. #else
  332. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  333. #endif
  334. }
  335. void board_led_write(uint8_t state)
  336. {
  337. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  338. }
  339. void board_init_pmp(void)
  340. {
  341. extern uint32_t __noncacheable_start__[];
  342. extern uint32_t __noncacheable_end__[];
  343. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  344. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  345. uint32_t length = end_addr - start_addr;
  346. if (length == 0) {
  347. return;
  348. }
  349. /* Ensure the address and the length are power of 2 aligned */
  350. assert((length & (length - 1U)) == 0U);
  351. assert((start_addr & (length - 1U)) == 0U);
  352. pmp_entry_t pmp_entry[3] = { 0 };
  353. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000);
  354. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  355. pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000);
  356. pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  357. pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  358. pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  359. pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  360. pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  361. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  362. }
  363. void board_init_display_system_clock(void)
  364. {
  365. clock_add_to_group(clock_gpu0, 0);
  366. clock_add_to_group(clock_gwc0, 0);
  367. clock_add_to_group(clock_gwc1, 0);
  368. clock_add_to_group(clock_lvb, 0);
  369. clock_add_to_group(clock_lcb, 0);
  370. clock_add_to_group(clock_lcd0, 0);
  371. clock_add_to_group(clock_dsi0, 0);
  372. clock_add_to_group(clock_dsi1, 0);
  373. clock_add_to_group(clock_cam0, 0);
  374. clock_add_to_group(clock_cam1, 0);
  375. clock_add_to_group(clock_jpeg, 0);
  376. clock_add_to_group(clock_pdma, 0);
  377. }
  378. void board_init_clock(void)
  379. {
  380. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  381. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  382. /* Configure the External OSC ramp-up time: ~9ms */
  383. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
  384. /* Select clock setting preset1 */
  385. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  386. }
  387. /* Add most Clocks to group 0 */
  388. /* not open uart clock in this API, uart should configure pin function before opening clock */
  389. clock_add_to_group(clock_cpu0, 0);
  390. clock_add_to_group(clock_ahb, 0);
  391. clock_add_to_group(clock_axic, 0);
  392. clock_add_to_group(clock_axis, 0);
  393. clock_add_to_group(clock_axiv, 0);
  394. clock_add_to_group(clock_axid, 0);
  395. clock_add_to_group(clock_axig, 0);
  396. clock_add_to_group(clock_mchtmr0, 0);
  397. clock_add_to_group(clock_xpi0, 0);
  398. clock_add_to_group(clock_gptmr0, 0);
  399. clock_add_to_group(clock_gptmr1, 0);
  400. clock_add_to_group(clock_gptmr2, 0);
  401. clock_add_to_group(clock_gptmr3, 0);
  402. clock_add_to_group(clock_i2c0, 0);
  403. clock_add_to_group(clock_i2c1, 0);
  404. clock_add_to_group(clock_i2c2, 0);
  405. clock_add_to_group(clock_i2c3, 0);
  406. clock_add_to_group(clock_spi0, 0);
  407. clock_add_to_group(clock_spi1, 0);
  408. clock_add_to_group(clock_spi2, 0);
  409. clock_add_to_group(clock_spi3, 0);
  410. clock_add_to_group(clock_can0, 0);
  411. clock_add_to_group(clock_can1, 0);
  412. clock_add_to_group(clock_can2, 0);
  413. clock_add_to_group(clock_can3, 0);
  414. clock_add_to_group(clock_can4, 0);
  415. clock_add_to_group(clock_can5, 0);
  416. clock_add_to_group(clock_can6, 0);
  417. clock_add_to_group(clock_can7, 0);
  418. clock_add_to_group(clock_ptpc, 0);
  419. clock_add_to_group(clock_ref0, 0);
  420. clock_add_to_group(clock_ref1, 0);
  421. clock_add_to_group(clock_watchdog0, 0);
  422. clock_add_to_group(clock_sdp, 0);
  423. clock_add_to_group(clock_xdma, 0);
  424. clock_add_to_group(clock_xram, 0);
  425. clock_add_to_group(clock_usb0, 0);
  426. clock_add_to_group(clock_kman, 0);
  427. clock_add_to_group(clock_gpio, 0);
  428. clock_add_to_group(clock_mbx0, 0);
  429. clock_add_to_group(clock_hdma, 0);
  430. clock_add_to_group(clock_rng, 0);
  431. clock_add_to_group(clock_adc0, 0);
  432. clock_add_to_group(clock_adc1, 0);
  433. clock_add_to_group(clock_crc0, 0);
  434. clock_add_to_group(clock_dao, 0);
  435. clock_add_to_group(clock_pdm, 0);
  436. clock_add_to_group(clock_smix, 0);
  437. clock_add_to_group(clock_i2s0, 0);
  438. clock_add_to_group(clock_i2s1, 0);
  439. clock_add_to_group(clock_i2s2, 0);
  440. clock_add_to_group(clock_i2s3, 0);
  441. clock_add_to_group(clock_eth0, 0);
  442. clock_add_to_group(clock_ffa, 0);
  443. clock_add_to_group(clock_tsns, 0);
  444. board_init_display_system_clock();
  445. /* Connect Group0 to CPU0 */
  446. clock_connect_group_to_cpu(0, 0);
  447. /* Bump up DCDC voltage to 1150mv */
  448. pcfg_dcdc_set_voltage(HPM_PCFG, 1150);
  449. /* Configure PLL1_CLK0 Post Divider to 1 */
  450. pllctlv2_set_postdiv(HPM_PLLCTLV2, 0, 0, 0);
  451. pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 0, BOARD_CPU_FREQ);
  452. /* Configure axis to 200MHz */
  453. clock_set_source_divider(clock_axis, clk_src_pll1_clk0, 4);
  454. /* Configure axig/clock_gpu0 to 400MHz */
  455. clock_set_source_divider(clock_axig, clk_src_pll1_clk0, 2);
  456. /* Configure mchtmr to 24MHz */
  457. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  458. clock_update_core_clock();
  459. }
  460. void board_init_can(MCAN_Type *ptr)
  461. {
  462. init_can_pins(ptr);
  463. }
  464. uint32_t board_init_can_clock(MCAN_Type *ptr)
  465. {
  466. uint32_t freq = 0;
  467. if (ptr == HPM_MCAN0) {
  468. /* Set the CAN0 peripheral clock to 80MHz */
  469. clock_set_source_divider(clock_can0, clk_src_pll1_clk0, 10);
  470. freq = clock_get_frequency(clock_can0);
  471. } else if (ptr == HPM_MCAN1) {
  472. /* Set the CAN1 peripheral clock to 80MHz */
  473. clock_set_source_divider(clock_can1, clk_src_pll1_clk0, 10);
  474. freq = clock_get_frequency(clock_can1);
  475. } else if (ptr == HPM_MCAN2) {
  476. /* Set the CAN2 peripheral clock to 8MHz */
  477. clock_set_source_divider(clock_can2, clk_src_pll1_clk0, 10);
  478. freq = clock_get_frequency(clock_can2);
  479. } else if (ptr == HPM_MCAN3) {
  480. /* Set the CAN3 peripheral clock to 80MHz */
  481. clock_set_source_divider(clock_can3, clk_src_pll1_clk0, 10);
  482. freq = clock_get_frequency(clock_can3);
  483. } else if (ptr == HPM_MCAN4) {
  484. /* Set the CAN4 peripheral clock to 80MHz */
  485. clock_set_source_divider(clock_can4, clk_src_pll1_clk0, 10);
  486. freq = clock_get_frequency(clock_can4);
  487. } else if (ptr == HPM_MCAN5) {
  488. /* Set the CAN5 peripheral clock to 80MHz */
  489. clock_set_source_divider(clock_can5, clk_src_pll1_clk0, 10);
  490. freq = clock_get_frequency(clock_can5);
  491. } else if (ptr == HPM_MCAN6) {
  492. /* Set the CAN6 peripheral clock to 80MHz */
  493. clock_set_source_divider(clock_can6, clk_src_pll1_clk0, 10);
  494. freq = clock_get_frequency(clock_can6);
  495. } else if (ptr == HPM_MCAN7) {
  496. /* Set the CAN7 peripheral clock to 80MHz */
  497. clock_set_source_divider(clock_can7, clk_src_pll1_clk0, 10);
  498. freq = clock_get_frequency(clock_can7);
  499. } else {
  500. /* Invalid CAN instance */
  501. }
  502. return freq;
  503. }
  504. uint32_t board_init_uart_clock(UART_Type *ptr)
  505. {
  506. uint32_t freq = 0U;
  507. if (ptr == HPM_UART0) {
  508. clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
  509. clock_add_to_group(clock_uart0, 0);
  510. freq = clock_get_frequency(clock_uart0);
  511. } else if (ptr == HPM_UART1) {
  512. clock_set_source_divider(clock_uart1, clk_src_osc24m, 1);
  513. clock_add_to_group(clock_uart1, 0);
  514. freq = clock_get_frequency(clock_uart1);
  515. } else if (ptr == HPM_UART2) {
  516. clock_set_source_divider(clock_uart2, clk_src_osc24m, 1);
  517. clock_add_to_group(clock_uart2, 0);
  518. freq = clock_get_frequency(clock_uart2);
  519. } else if (ptr == HPM_UART3) {
  520. clock_set_source_divider(clock_uart3, clk_src_osc24m, 1);
  521. clock_add_to_group(clock_uart3, 0);
  522. freq = clock_get_frequency(clock_uart3);
  523. } else {
  524. /* Not supported */
  525. }
  526. return freq;
  527. }
  528. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
  529. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  530. static void set_reset_pin_level_tm070rdh13(uint8_t level)
  531. {
  532. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 14, level);
  533. }
  534. static void set_backlight_tm070rdh13(uint16_t percent)
  535. {
  536. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 9, percent > 0 ? 1 : 0);
  537. }
  538. static void set_video_router_tm070rdh13(void)
  539. {
  540. pixelmux_rgb_data_source_enable(pixelmux_rgb_sel_lcdc0);
  541. }
  542. void board_init_lcd_rgb_tm070rdh13(void)
  543. {
  544. init_lcd_rgb_ctl_pins();
  545. init_lcd_rgb_pins();
  546. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOY, 5);
  547. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOY, 5, 1);
  548. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 9);
  549. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 14);
  550. hpm_panel_hw_interface_t hw_if = {0};
  551. hpm_panel_t *panel = hpm_panel_find_device_default();
  552. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  553. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
  554. hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
  555. hw_if.set_backlight = set_backlight_tm070rdh13;
  556. hw_if.set_video_router = set_video_router_tm070rdh13;
  557. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  558. hpm_panel_register_interface(panel, &hw_if);
  559. printf("name: %s, lcdc_clk: %ukhz\n",
  560. hpm_panel_get_name(panel),
  561. lcdc_pixel_clk_khz);
  562. hpm_panel_reset(panel);
  563. hpm_panel_init(panel);
  564. hpm_panel_power_on(panel);
  565. }
  566. #endif
  567. #if defined(CONFIG_PANEL_LVDS_CC10128007) && CONFIG_PANEL_LVDS_CC10128007
  568. static void set_backlight_cc10128007(uint16_t percent)
  569. {
  570. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 31, percent > 0 ? 1 : 0);
  571. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 30, percent > 0 ? 1 : 0);
  572. }
  573. static void set_video_router_cc10128007(void)
  574. {
  575. pixelmux_config_tx_phy1_mode(pixelmux_tx_phy_mode_lvds);
  576. pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc0);
  577. }
  578. void board_init_lcd_lvds_cc10128007(void)
  579. {
  580. init_lcd_lvds_single_ctl_pins();
  581. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 30);
  582. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 31);
  583. init_mipi_lvds_tx_phy1_pin();
  584. hpm_panel_hw_interface_t hw_if = {0};
  585. hpm_panel_t *panel = hpm_panel_find_device_default();
  586. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  587. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
  588. hw_if.set_video_router = set_video_router_cc10128007;
  589. hw_if.set_backlight = set_backlight_cc10128007;
  590. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  591. hw_if.video.lvds.channel_di_index = 0;
  592. hw_if.video.lvds.channel_index = 1; /* ch1 -> phy1*/
  593. hw_if.video.lvds.lvb_base = HPM_LVB;
  594. hpm_panel_register_interface(panel, &hw_if);
  595. printf("name: %s, lcdc_clk: %ukhz\n",
  596. hpm_panel_get_name(panel),
  597. lcdc_pixel_clk_khz);
  598. hpm_panel_reset(panel);
  599. hpm_panel_init(panel);
  600. hpm_panel_power_on(panel);
  601. }
  602. #endif
  603. #if defined(CONFIG_PANEL_MIPI_MC10128007_31B) && CONFIG_PANEL_MIPI_MC10128007_31B
  604. static void set_reset_pin_level_mc10128007_31b(uint8_t level)
  605. {
  606. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOB, 1, level);
  607. }
  608. static void set_video_router_mc10128007_31b(void)
  609. {
  610. pixelmux_mipi_dsi0_data_source_enable(pixelmux_mipi_dsi0_sel_lcdc0);
  611. pixelmux_config_tx_phy0_mode(pixelmux_tx_phy_mode_mipi);
  612. }
  613. void board_init_lcd_mipi_mc10128007_31b(void)
  614. {
  615. /* RESET */
  616. init_lcd_mipi_ctl_pins();
  617. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOB, 1);
  618. init_mipi_lvds_tx_phy0_pin();
  619. hpm_panel_hw_interface_t hw_if = {0};
  620. hpm_panel_t *panel = hpm_panel_find_device_default();
  621. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  622. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
  623. hw_if.set_reset_pin_level = set_reset_pin_level_mc10128007_31b;
  624. hw_if.set_video_router = set_video_router_mc10128007_31b;
  625. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  626. hw_if.video.mipi.format = HPM_PANEL_MIPI_FORMAT_RGB888;
  627. hw_if.video.mipi.mipi_host_base = HPM_MIPI_DSI0;
  628. hw_if.video.mipi.mipi_phy_base = HPM_MIPI_DSI_PHY0;
  629. hpm_panel_register_interface(panel, &hw_if);
  630. printf("name: %s, lcdc_clk: %ukhz\n",
  631. hpm_panel_get_name(panel),
  632. lcdc_pixel_clk_khz);
  633. hpm_panel_reset(panel);
  634. hpm_panel_init(panel);
  635. hpm_panel_power_on(panel);
  636. }
  637. #endif
  638. #if defined(CONFIG_PANEL_LVDS_TM103XDGP01) && CONFIG_PANEL_LVDS_TM103XDGP01
  639. static void set_reset_pin_level_tm103xdgp01(uint8_t level)
  640. {
  641. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 31, level);
  642. }
  643. static void set_video_router_tm103xdgp01(void)
  644. {
  645. pixelmux_config_tx_phy0_mode(pixelmux_tx_phy_mode_lvds);
  646. pixelmux_config_tx_phy1_mode(pixelmux_tx_phy_mode_lvds);
  647. pixelmux_lvb_di1_data_source_enable(pixelmux_lvb_di1_sel_lcdc0);
  648. pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc0);
  649. }
  650. void board_init_lcd_lvds_tm103xdgp01(void)
  651. {
  652. init_lcd_lvds_double_ctl_pins();
  653. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 31);
  654. init_mipi_lvds_tx_phy0_pin();
  655. init_mipi_lvds_tx_phy1_pin();
  656. hpm_panel_hw_interface_t hw_if = {0};
  657. hpm_panel_t *panel = hpm_panel_find_device_default();
  658. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  659. /* In split mode: lcdc_pixel_clk = 2 * panel_pixel_clk */
  660. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz * 2);
  661. hw_if.set_reset_pin_level = set_reset_pin_level_tm103xdgp01;
  662. hw_if.set_video_router = set_video_router_tm103xdgp01;
  663. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  664. hw_if.video.lvds.channel_di_index = 0;
  665. hw_if.video.lvds.lvb_base = HPM_LVB;
  666. hpm_panel_register_interface(panel, &hw_if);
  667. printf("name: %s, lcdc_clk: %ukhz\n",
  668. hpm_panel_get_name(panel),
  669. lcdc_pixel_clk_khz);
  670. hpm_panel_reset(panel);
  671. hpm_panel_init(panel);
  672. hpm_panel_power_on(panel);
  673. }
  674. #endif
  675. #ifdef CONFIG_HPM_PANEL
  676. void board_lcd_backlight(bool is_on)
  677. {
  678. hpm_panel_t *panel = hpm_panel_find_device_default();
  679. hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
  680. }
  681. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
  682. {
  683. clock_add_to_group(clock_name, 0);
  684. uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
  685. uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
  686. clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
  687. return clock_get_frequency(clock_name) / 1000;
  688. }
  689. void board_init_lcd(void)
  690. {
  691. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  692. board_init_lcd_rgb_tm070rdh13();
  693. #endif
  694. #if defined(CONFIG_PANEL_LVDS_CC10128007) && CONFIG_PANEL_LVDS_CC10128007
  695. board_init_lcd_lvds_cc10128007();
  696. #endif
  697. #if defined(CONFIG_PANEL_MIPI_MC10128007_31B) && CONFIG_PANEL_MIPI_MC10128007_31B
  698. board_init_lcd_mipi_mc10128007_31b();
  699. #endif
  700. #if defined(CONFIG_PANEL_LVDS_TM103XDGP01) && CONFIG_PANEL_LVDS_TM103XDGP01
  701. board_init_lcd_lvds_tm103xdgp01();
  702. #endif
  703. }
  704. void board_panel_para_to_lcdc(lcdc_config_t *config)
  705. {
  706. const hpm_panel_timing_t *timing;
  707. hpm_panel_t *panel = hpm_panel_find_device_default();
  708. timing = hpm_panel_get_timing(panel);
  709. config->resolution_x = timing->hactive;
  710. config->resolution_y = timing->vactive;
  711. config->hsync.pulse_width = timing->hsync_len;
  712. config->hsync.back_porch_pulse = timing->hback_porch;
  713. config->hsync.front_porch_pulse = timing->hfront_porch;
  714. config->vsync.pulse_width = timing->vsync_len;
  715. config->vsync.back_porch_pulse = timing->vback_porch;
  716. config->vsync.front_porch_pulse = timing->vfront_porch;
  717. config->control.invert_hsync = timing->hsync_pol;
  718. config->control.invert_vsync = timing->vsync_pol;
  719. config->control.invert_href = timing->de_pol;
  720. config->control.invert_pixel_data = timing->pixel_data_pol;
  721. config->control.invert_pixel_clock = timing->pixel_clk_pol;
  722. }
  723. #endif
  724. void board_init_gwc(void)
  725. {
  726. clock_add_to_group(clock_gwc0, 0);
  727. clock_add_to_group(clock_gwc1, 0);
  728. clock_add_to_group(clock_lcd0, 0);
  729. }
  730. void board_init_cap_touch(void)
  731. {
  732. init_cap_pins();
  733. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  734. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  735. board_delay_ms(1);
  736. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  737. board_delay_ms(1);
  738. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  739. board_delay_ms(6);
  740. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  741. board_init_i2c(BOARD_CAP_I2C_BASE);
  742. }
  743. void board_init_cam_pins(void)
  744. {
  745. init_cam_pins();
  746. /* enable cam RST pin out with high level */
  747. gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
  748. /* PWDN pin set to low when power up */
  749. gpio_set_pin_output_with_initial(BOARD_CAM_PWDN_GPIO_CTRL, BOARD_CAM_PWDN_GPIO_INDEX, BOARD_CAM_PWDN_GPIO_PIN, 0);
  750. pixelmux_cam0_data_source_enable(pixelmux_cam0_sel_dvp);
  751. }
  752. void board_write_cam_rst(uint8_t state)
  753. {
  754. gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
  755. }
  756. void board_write_cam_pwdn(uint8_t state)
  757. {
  758. gpio_write_pin(BOARD_CAM_PWDN_GPIO_CTRL, BOARD_CAM_PWDN_GPIO_INDEX, BOARD_CAM_PWDN_GPIO_PIN, state);
  759. }
  760. uint32_t board_init_cam_clock(CAM_Type *ptr)
  761. {
  762. uint32_t freq = 0;
  763. if (ptr == HPM_CAM0) {
  764. /* Configure camera clock to 24MHz */
  765. clock_set_source_divider(clock_cam0, clk_src_osc24m, 1U);
  766. freq = clock_get_frequency(clock_cam0);
  767. } else if (ptr == HPM_CAM1) {
  768. /* Configure camera clock to 24MHz */
  769. clock_set_source_divider(clock_cam1, clk_src_osc24m, 1U);
  770. freq = clock_get_frequency(clock_cam1);
  771. } else {
  772. /* Invalid camera instance */
  773. }
  774. return freq;
  775. }
  776. void board_init_mipi_csi_cam_pins(void)
  777. {
  778. init_cam_mipi_csi_pins();
  779. init_mipi_lvds_rx_phy1_pin();
  780. /* enable cam RST pin out with high level */
  781. gpio_set_pin_output_with_initial(HPM_GPIO0, GPIO_DI_GPIOB, 0, 1);
  782. }
  783. void board_write_mipi_csi_cam_rst(uint8_t state)
  784. {
  785. gpio_write_pin(HPM_GPIO0, GPIO_DI_GPIOB, 0, state);
  786. }
  787. static void _cpu_wait_ms(uint32_t cpu_freq, uint32_t ms)
  788. {
  789. uint32_t ticks_per_us = (cpu_freq + 1000000UL - 1UL) / 1000000UL;
  790. uint64_t expected_ticks = hpm_csr_get_core_mcycle() + (uint64_t)ticks_per_us * 1000UL * ms;
  791. while (hpm_csr_get_core_mcycle() < expected_ticks) {
  792. }
  793. }
  794. void init_ddr2_800(void)
  795. {
  796. /* Enable On-chip DCDC 1.8V output */
  797. HPM_PCFG->DCDCM_MODE = PCFG_DCDCM_MODE_VOLT_SET(1800) | PCFG_DCDCM_MODE_MODE_SET(1);
  798. /* Change DDR clock to 200MHz, namely: DDR2-800 */
  799. clock_set_source_divider(clock_axif, clk_src_pll1_clk0, 4);
  800. /* Enable DDR clock first */
  801. clock_add_to_group(clock_ddr0, 0);
  802. /* Wait until the clock is stable */
  803. uint32_t core_clock_freq = clock_get_frequency(clock_cpu0);
  804. _cpu_wait_ms(core_clock_freq, 5);
  805. /* Clear DFI_INIT_COMPLETE_EN bit */
  806. HPM_DDRCTL->DFIMISC &= ~DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
  807. /* Release DDR core reset */
  808. *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 26);
  809. /* Enable PORT */
  810. HPM_DDRCTL->PCFG[0].CTRL = 1;
  811. /* Configure W972GG6KB parameters, configure DDRCTL first */
  812. HPM_DDRCTL->MSTR = DDRCTL_MSTR_ACTIVE_RANKS_SET(1) /* RANK=1 */
  813. | DDRCTL_MSTR_BURST_RDWR_SET(4) /* Burst Length = 8 */
  814. | DDRCTL_MSTR_DATA_BUS_WIDTH_SET(0) /* Full DQ bus width */
  815. | DDRCTL_MSTR_DDR3_SET(0); /* DDR2 Device */
  816. /* Skip SDRAM Initialization in controller, the initialization sequence will be performed by PHY */
  817. HPM_DDRCTL->INIT0 = DDRCTL_INIT0_SKIP_DRAM_INIT_SET(1)
  818. | DDRCTL_INIT0_POST_CKE_X1024_SET(2) /* Default setting */
  819. | DDRCTL_INIT0_PRE_CKE_X1024_SET(0x4e); /* Default setting */
  820. /* Configure DFI timing */
  821. HPM_DDRCTL->DFITMG0 = 0x03010101UL;
  822. HPM_DDRCTL->DFITMG1 = 0x00020101UL;
  823. HPM_DDRCTL->DFIUPD0 = 0x40005UL;
  824. HPM_DDRCTL->DFIUPD1 = 0x00020008UL;
  825. HPM_DDRCTL->ODTCFG = 0x06000600UL; /* BL=8 */
  826. /* Configure ADDRMAP */
  827. HPM_DDRCTL->ADDRMAP0 = 0x001F1F1FUL; /* RANK0 not used */
  828. HPM_DDRCTL->ADDRMAP1 = 0x00121212UL; /* HIF bit[24:22] as BANK[2:0] */
  829. HPM_DDRCTL->ADDRMAP2 = 0; /* HIF bit[6:3] as COL_B[6:3] */
  830. HPM_DDRCTL->ADDRMAP3 = 0; /* HIF bit [10:7] as COL_B[11,9:6:7] */
  831. HPM_DDRCTL->ADDRMAP4 = 0xF0FUL; /* not used */
  832. HPM_DDRCTL->ADDRMAP5 = 0x06030303UL; /* HIF bit[21:11] as ROW[10:0], HIF bit[25] as ROW[11] */
  833. HPM_DDRCTL->ADDRMAP6 = 0x0F0F0606UL; /* HIF bit[27:26] as ROW[13:12] */
  834. /* Release DDR AXI reset */
  835. *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 27);
  836. /* Release DDR PHY */
  837. *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 4);
  838. HPM_DDRPHY->DCR = DDRPHY_DCR_DDRMD_SET(2) /* Set to DDR2 mode */
  839. | DDRPHY_DCR_DDR8BNK_MASK /* BANK = 8 */
  840. | DDRPHY_DCR_BYTEMASK_MASK; /* BYTEMASK = 1 */
  841. HPM_DDRPHY->DSGCR |= DDRPHY_DSGCR_RRMODE_MASK; /* Enable RRMode */
  842. /* Configure DDR2 registers */
  843. HPM_DDRPHY->MR = (3UL << 0) /* BL = 3 */
  844. | (0UL << 3) /* BT = 0 */
  845. | (6UL << 4) /* CL = 6 */
  846. | (0UL << 7) /* Operating mode */
  847. | (0UL << 8) /* DLL Reset = 0 */
  848. | (6UL << 9); /* WR = 6 */
  849. HPM_DDRPHY->EMR = (1UL << 0) /* DLL Enable */
  850. | (0UL << 1) /* Output Driver Impedance Control */
  851. | (0UL << 6) | (1UL << 2) /* On Die Termination */
  852. | (0UL << 3) /* AL(Posted CAS Additive Latency) = 0 */
  853. | (0UL << 7) /* OCD = 0*/
  854. | (0UL << 10) /* DQS */
  855. | (0UL << 11) /* RDQS */
  856. | (0UL << 12); /* QOFF */
  857. HPM_DDRPHY->EMR2 = 0;
  858. HPM_DDRPHY->EMR3 = 0;
  859. HPM_DDRPHY->DTPR0 = (4UL << 0)
  860. | (5UL << 4)
  861. | (14UL << 8)
  862. | (15UL << 12)
  863. | (50UL << 16)
  864. | (10UL << 22)
  865. | (60UL << 26);
  866. HPM_DDRPHY->DTPR1 = (2UL << 0)
  867. | (31UL << 5)
  868. | (80UL << 11)
  869. | (40UL << 20)
  870. | (0x8 << 26);
  871. HPM_DDRPHY->DTPR2 = (256UL << 0)
  872. | (6UL << 10)
  873. | (4UL << 15)
  874. | (512UL << 19);
  875. /* tREFPRD */
  876. HPM_DDRPHY->PGCR2 = 0xF06D50;
  877. /* Set DFI_INIT_COMPLETE_EN bit */
  878. HPM_DDRCTL->DFIMISC |= DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
  879. /* Start PHY Init First */
  880. HPM_DDRPHY->PIR |= DDRPHY_PIR_INIT_MASK;
  881. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
  882. }
  883. /** Data training
  884. * RANKEN = 1, Others: default value
  885. */
  886. HPM_DDRPHY->DTCR = 0x91003587UL;
  887. /* Trigger PHY to do the PHY initialization and DRAM initialization */
  888. HPM_DDRPHY->PIR = 0xF501UL;
  889. /* Wait until the initialization sequence started */
  890. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) != 0) {
  891. }
  892. /* Wait until the initialization sequence completed */
  893. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
  894. }
  895. /* Wait for normal mode */
  896. while ((HPM_DDRCTL->STAT & DDRCTL_STAT_OPERATING_MODE_MASK) != 0x1) {
  897. }
  898. }
  899. void init_ddr3l_1333(void)
  900. {
  901. /* Enable On-chip DCDC 1.4V output */
  902. HPM_PCFG->DCDCM_MODE = PCFG_DCDCM_MODE_VOLT_SET(1400) | PCFG_DCDCM_MODE_MODE_SET(5);
  903. /* Change DDR clock to 333.33MHz, namely: DDR3-1333 */
  904. clock_set_source_divider(clock_axif, clk_src_pll1_clk1, 2);
  905. /* Enable DDR clock first */
  906. clock_add_to_group(clock_ddr0, 0);
  907. /* Wait until the clock is stable */
  908. uint32_t core_clock_freq = clock_get_frequency(clock_cpu0);
  909. _cpu_wait_ms(core_clock_freq, 5);
  910. /* Release DDR PHY */
  911. *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 4);
  912. /* Clear DFI_INIT_COMPLETE_EN bit */
  913. HPM_DDRCTL->DFIMISC &= ~DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
  914. HPM_DDRPHY->DSGCR = 0xf004641f;
  915. *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 0);
  916. /* Release DDR core reset */
  917. *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 26);
  918. /* Configure DDRCTL first */
  919. HPM_DDRCTL->MSTR = DDRCTL_MSTR_ACTIVE_RANKS_SET(1) /* RANK=1 */
  920. | DDRCTL_MSTR_BURST_RDWR_SET(4) /* Burst Length = 8 */
  921. | DDRCTL_MSTR_DATA_BUS_WIDTH_SET(0) /* Full DQ bus width */
  922. | DDRCTL_MSTR_DDR3_SET(1); /* DDR3 Device */
  923. /* Enable PORT */
  924. HPM_DDRCTL->PCFG[0].CTRL = 1;
  925. /* Skip SDRAM Initialization in controller, the initialization sequence will be performed by PHY */
  926. HPM_DDRCTL->INIT0 = DDRCTL_INIT0_SKIP_DRAM_INIT_SET(1)
  927. | DDRCTL_INIT0_POST_CKE_X1024_SET(2) /* Default setting */
  928. | DDRCTL_INIT0_PRE_CKE_X1024_SET(0x4e); /* Default setting */
  929. HPM_DDRCTL->DRAMTMG4 = 0x05010407;
  930. /* Configure DFI timing */
  931. HPM_DDRCTL->DFITMG0 = 0x07040102;
  932. HPM_DDRCTL->DFITMG1 = 0x20404;
  933. HPM_DDRCTL->DFIUPD1 = 0x20008;
  934. HPM_DDRCTL->ODTCFG = 0x06000600UL; /* BL=8 */
  935. HPM_DDRCTL->ODTMAP = 0x11;
  936. /* Configure ADDRMAP */
  937. HPM_DDRCTL->ADDRMAP0 = 0x001F1F1FUL; /* RANK0 not used */
  938. HPM_DDRCTL->ADDRMAP1 = 0x00121212UL; /* HIF bit[24:22] as BANK[2:0] */
  939. HPM_DDRCTL->ADDRMAP2 = 0; /* HIF bit[6:3] as COL_B[6:3] */
  940. HPM_DDRCTL->ADDRMAP3 = 0; /* HIF bit [10:7] as COL_B[11,9:6:7] */
  941. HPM_DDRCTL->ADDRMAP4 = 0xF0FUL; /* not used */
  942. HPM_DDRCTL->ADDRMAP5 = 0x06030303UL; /* HIF bit[21:11] as ROW[10:0], HIF bit[25] as ROW[11] */
  943. HPM_DDRCTL->ADDRMAP6 = 0x0F060606UL; /* HIF bit[27:26] as ROW[13:12] */
  944. /* Release DDR AXI reset */
  945. *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 27);
  946. /* Configure DDR3 registers */
  947. HPM_DDRPHY->MR0 = 0xC70;
  948. HPM_DDRPHY->MR1 = 0x6;
  949. HPM_DDRPHY->MR2 = 0x18;
  950. HPM_DDRPHY->MR3 = 0;
  951. HPM_DDRPHY->ODTCR = 0x84210000;
  952. HPM_DDRPHY->DTPR0 = 0x919c8866;
  953. HPM_DDRPHY->DTPR1 = 0x1a838360;
  954. HPM_DDRPHY->DTPR2 = 0x3002d200;
  955. /* tREFPRD */
  956. HPM_DDRPHY->PGCR2 = 0xf06d28;
  957. /* Set DFI_INIT_COMPLETE_EN bit */
  958. HPM_DDRCTL->DFIMISC |= DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
  959. /* Start PHY Init First */
  960. HPM_DDRPHY->PIR |= DDRPHY_PIR_INIT_MASK;
  961. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
  962. }
  963. /** Data training
  964. * RANKEN = 1, Others: default value
  965. */
  966. HPM_DDRPHY->DTCR = 0x930035D7;
  967. /* Trigger PHY to do the PHY initialization and DRAM initialization */
  968. HPM_DDRPHY->PIR = 0xFF81UL;
  969. /* Wait until the initialization sequence started */
  970. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) != 0) {
  971. }
  972. /* Wait until the initialization sequence completed */
  973. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
  974. }
  975. /* Wait for normal mode */
  976. while ((HPM_DDRCTL->STAT & DDRCTL_STAT_OPERATING_MODE_MASK) != 0x1) {
  977. }
  978. }
  979. void _init_ext_ram(void)
  980. {
  981. #if (BOARD_DDR_TYPE == DDR_TYPE_DDR2)
  982. init_ddr2_800();
  983. #endif
  984. #if (BOARD_DDR_TYPE == DDR_TYPE_DDR3L)
  985. init_ddr3l_1333();
  986. #endif
  987. }
  988. void board_init_usb_pins(void)
  989. {
  990. init_usb_pins();
  991. usb_hcd_set_power_ctrl_polarity(BOARD_USB, true);
  992. /* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */
  993. board_delay_ms(100);
  994. }
  995. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  996. {
  997. (void) usb_index;
  998. (void) level;
  999. }
  1000. void board_sd_power_switch(SDXC_Type *ptr, bool power_on)
  1001. {
  1002. if (ptr == HPM_SDXC1) {
  1003. init_sdxc_pwr_pin(ptr, true);
  1004. uint32_t gpio_index = BOARD_APP_SDCARD_POWER_SWITCH_PIN / 32;
  1005. uint32_t pin_index = BOARD_APP_SDCARD_POWER_SWITCH_PIN % 32;
  1006. if (power_on) {
  1007. HPM_GPIO0->DO[gpio_index].SET = 1UL << pin_index;
  1008. } else {
  1009. HPM_GPIO0->DO[gpio_index].CLEAR = 1UL << pin_index;
  1010. }
  1011. }
  1012. }
  1013. void board_init_sd_pins(SDXC_Type *ptr)
  1014. {
  1015. if (ptr == HPM_SDXC0) {
  1016. init_sdxc_cmd_pin(ptr, false, true);
  1017. init_sdxc_clk_data_pins(ptr, 8, true);
  1018. } else {
  1019. init_sdxc_cmd_pin(ptr, false, false);
  1020. init_sdxc_clk_data_pins(ptr, 4, false);
  1021. }
  1022. }
  1023. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  1024. {
  1025. uint32_t actual_freq = 0;
  1026. do {
  1027. if ((ptr != HPM_SDXC0) && (ptr != HPM_SDXC1)) {
  1028. break;
  1029. }
  1030. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  1031. clock_add_to_group(sdxc_clk, 0);
  1032. sdxc_enable_inverse_clock(ptr, false);
  1033. sdxc_enable_sd_clock(ptr, false);
  1034. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk0, 4U);
  1035. /* Configure the clock below 400KHz for the identification state */
  1036. if (freq <= 400000UL) {
  1037. /* Set clock to 375KHz */
  1038. sdxc_set_clock_divider(ptr, 534U);
  1039. }
  1040. /* configure the clock to 24MHz for the SDR12/Default speed */
  1041. else if (freq <= 26000000UL) {
  1042. /* Set clock to 25MHz */
  1043. sdxc_set_clock_divider(ptr, 8U);
  1044. }
  1045. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  1046. else if (freq <= 52000000UL) {
  1047. /* Set clock to 50MHz */
  1048. sdxc_set_clock_divider(ptr, 4U);
  1049. }
  1050. /* Configure the clock to 100MHz for the SDR50 */
  1051. else if (freq <= 100000000UL) {
  1052. /* Set clock to 100MHz */
  1053. sdxc_set_clock_divider(ptr, 2U);
  1054. }
  1055. /* Configure the clock to 133MHz for SDR104/HS200/HS400 */
  1056. else if (freq <= 208000000UL) {
  1057. /* 166MHz */
  1058. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 5U);
  1059. sdxc_set_clock_divider(ptr, 1U);
  1060. }
  1061. /* For other unsupported clock ranges, configure the clock to 24MHz */
  1062. else {
  1063. /* Set clock to 25MHz */
  1064. sdxc_set_clock_divider(ptr, 5U);
  1065. }
  1066. if (need_inverse) {
  1067. sdxc_enable_inverse_clock(ptr, true);
  1068. }
  1069. sdxc_enable_sd_clock(ptr, true);
  1070. actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr);
  1071. } while (false);
  1072. return actual_freq;
  1073. }
  1074. uint32_t board_init_dao_clock(void)
  1075. {
  1076. return clock_get_frequency(clock_dao);
  1077. }
  1078. uint32_t board_init_pdm_clock(void)
  1079. {
  1080. return clock_get_frequency(clock_pdm);
  1081. }
  1082. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  1083. {
  1084. if (ptr == HPM_I2S0) {
  1085. return clock_get_frequency(clock_i2s0);
  1086. } else if (ptr == HPM_I2S1) {
  1087. return clock_get_frequency(clock_i2s1);
  1088. } else if (ptr == HPM_I2S2) {
  1089. return clock_get_frequency(clock_i2s2);
  1090. } else if (ptr == HPM_I2S3) {
  1091. return clock_get_frequency(clock_i2s3);
  1092. } else {
  1093. return 0;
  1094. }
  1095. }
  1096. /* adjust I2S source clock base on sample rate */
  1097. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  1098. {
  1099. if (ptr == HPM_I2S0) {
  1100. if ((sample_rate % 22050) == 0) {
  1101. clock_set_source_divider(clock_aud0, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  1102. clock_add_to_group(clock_i2s0, 0);
  1103. clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
  1104. } else {
  1105. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 21); /* default 24576000Hz */
  1106. clock_add_to_group(clock_i2s0, 0);
  1107. clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
  1108. }
  1109. return clock_get_frequency(clock_i2s0);
  1110. } else if (ptr == HPM_I2S1) {
  1111. if ((sample_rate % 22050) == 0) {
  1112. clock_set_source_divider(clock_aud1, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  1113. clock_add_to_group(clock_i2s1, 0);
  1114. clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
  1115. } else {
  1116. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 21); /* default 24576000Hz */
  1117. clock_add_to_group(clock_i2s1, 0);
  1118. clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
  1119. }
  1120. return clock_get_frequency(clock_i2s1);
  1121. } else if (ptr == HPM_I2S3) {
  1122. if ((sample_rate % 22050) == 0) {
  1123. clock_set_source_divider(clock_aud3, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  1124. clock_add_to_group(clock_i2s3, 0);
  1125. clock_set_i2s_source(clock_i2s3, clk_i2s_src_aud3);
  1126. } else {
  1127. clock_set_source_divider(clock_aud3, clk_src_pll3_clk0, 21); /* default 24576000Hz */
  1128. clock_add_to_group(clock_i2s3, 0);
  1129. clock_set_i2s_source(clock_i2s3, clk_i2s_src_aud3);
  1130. }
  1131. return clock_get_frequency(clock_i2s3);
  1132. }
  1133. return 0;
  1134. }
  1135. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  1136. {
  1137. init_enet_pins(ptr);
  1138. if (ptr == HPM_ENET0) {
  1139. gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX,
  1140. BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  1141. } else {
  1142. return status_invalid_argument;
  1143. }
  1144. return status_success;
  1145. }
  1146. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  1147. {
  1148. if (ptr == HPM_ENET0) {
  1149. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  1150. board_delay_ms(1);
  1151. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
  1152. } else {
  1153. return status_invalid_argument;
  1154. }
  1155. return status_success;
  1156. }
  1157. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  1158. {
  1159. (void) ptr;
  1160. return enet_pbl_32;
  1161. }
  1162. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  1163. {
  1164. if (ptr == HPM_ENET0) {
  1165. intc_m_enable_irq(IRQn_ENET0);
  1166. } else {
  1167. return status_invalid_argument;
  1168. }
  1169. return status_success;
  1170. }
  1171. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  1172. {
  1173. if (ptr == HPM_ENET0) {
  1174. intc_m_disable_irq(IRQn_ENET0);
  1175. } else {
  1176. return status_invalid_argument;
  1177. }
  1178. return status_success;
  1179. }
  1180. void board_init_enet_pps_pins(ENET_Type *ptr)
  1181. {
  1182. (void) ptr;
  1183. init_enet_pps_pins();
  1184. }
  1185. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  1186. {
  1187. /* set clock source */
  1188. if (ptr == HPM_ENET0) {
  1189. /* make sure pll0_clk0 output clock at 800MHz to get a clock at 100MHz for the enet0 ptp function */
  1190. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk0, 8); /* 100MHz */
  1191. } else {
  1192. return status_invalid_argument;
  1193. }
  1194. return status_success;
  1195. }
  1196. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  1197. {
  1198. (void) ptr;
  1199. (void) internal;
  1200. return status_success;
  1201. }
  1202. hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
  1203. {
  1204. if (ptr == HPM_ENET0) {
  1205. return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
  1206. }
  1207. return status_invalid_argument;
  1208. }
  1209. void board_init_adc16_pins(void)
  1210. {
  1211. init_adc_pins();
  1212. }
  1213. uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb)
  1214. {
  1215. uint32_t freq = 0;
  1216. if (ptr == HPM_ADC0) {
  1217. if (clk_src_ahb) {
  1218. /* Configure the ADC clock from AXI (@200MHz by default)*/
  1219. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  1220. } else {
  1221. /* Configure the ADC clock from pll0_clk1 divided by 4 (@200MHz by default) */
  1222. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  1223. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  1224. }
  1225. freq = clock_get_frequency(clock_adc0);
  1226. }
  1227. return freq;
  1228. }
  1229. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  1230. {
  1231. uint32_t freq = 0;
  1232. if (ptr == HPM_GPTMR0) {
  1233. clock_add_to_group(clock_gptmr0, 0);
  1234. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk0, 10);
  1235. freq = clock_get_frequency(clock_gptmr0);
  1236. }
  1237. else if (ptr == HPM_GPTMR1) {
  1238. clock_add_to_group(clock_gptmr1, 0);
  1239. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk0, 10);
  1240. freq = clock_get_frequency(clock_gptmr1);
  1241. }
  1242. else if (ptr == HPM_GPTMR2) {
  1243. clock_add_to_group(clock_gptmr2, 0);
  1244. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk0, 10);
  1245. freq = clock_get_frequency(clock_gptmr2);
  1246. }
  1247. else if (ptr == HPM_GPTMR3) {
  1248. clock_add_to_group(clock_gptmr3, 0);
  1249. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk0, 10);
  1250. freq = clock_get_frequency(clock_gptmr3);
  1251. }
  1252. else if (ptr == HPM_GPTMR4) {
  1253. clock_add_to_group(clock_gptmr4, 0);
  1254. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk0, 10);
  1255. freq = clock_get_frequency(clock_gptmr4);
  1256. }
  1257. else if (ptr == HPM_GPTMR5) {
  1258. clock_add_to_group(clock_gptmr5, 0);
  1259. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk0, 10);
  1260. freq = clock_get_frequency(clock_gptmr5);
  1261. }
  1262. else if (ptr == HPM_GPTMR6) {
  1263. clock_add_to_group(clock_gptmr6, 0);
  1264. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk0, 10);
  1265. freq = clock_get_frequency(clock_gptmr6);
  1266. }
  1267. else if (ptr == HPM_GPTMR7) {
  1268. clock_add_to_group(clock_gptmr7, 0);
  1269. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk0, 10);
  1270. freq = clock_get_frequency(clock_gptmr7);
  1271. }
  1272. else {
  1273. /* Invalid instance */
  1274. }
  1275. }