1
0

board.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132
  1. /*
  2. * Copyright (c) 2023-2024 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. *
  6. */
  7. #include "board.h"
  8. #include "hpm_uart_drv.h"
  9. #include "hpm_gptmr_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "pinmux.h"
  13. #include "hpm_pmp_drv.h"
  14. #include "hpm_clock_drv.h"
  15. #include "hpm_sysctl_drv.h"
  16. #include "hpm_pllctlv2_drv.h"
  17. #include "hpm_pcfg_drv.h"
  18. #include "hpm_enet_drv.h"
  19. #include "hpm_usb_drv.h"
  20. #include "hpm_femc_drv.h"
  21. #include "hpm_pwmv2_drv.h"
  22. #include "hpm_esc_drv.h"
  23. static board_timer_cb timer_cb;
  24. /**
  25. * @brief FLASH configuration option definitions:
  26. * option[0]:
  27. * [31:16] 0xfcf9 - FLASH configuration option tag
  28. * [15:4] 0 - Reserved
  29. * [3:0] option words (exclude option[0])
  30. * option[1]:
  31. * [31:28] Flash probe type
  32. * 0 - SFDP SDR / 1 - SFDP DDR
  33. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  34. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  35. * 6 - OctaBus DDR (SPI -> OPI DDR)
  36. * 8 - Xccela DDR (SPI -> OPI DDR)
  37. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  38. * [27:24] Command Pads after Power-on Reset
  39. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  40. * [23:20] Command Pads after Configuring FLASH
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  43. * 0 - Not needed
  44. * 1 - QE bit is at bit 6 in Status Register 1
  45. * 2 - QE bit is at bit1 in Status Register 2
  46. * 3 - QE bit is at bit7 in Status Register 2
  47. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  48. * [15:8] Dummy cycles
  49. * 0 - Auto-probed / detected / default value
  50. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  51. * [7:4] Misc.
  52. * 0 - Not used
  53. * 1 - SPI mode
  54. * 2 - Internal loopback
  55. * 3 - External DQS
  56. * [3:0] Frequency option
  57. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  58. *
  59. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  60. * [31:20] Reserved
  61. * [19:16] IO voltage
  62. * 0 - 3V / 1 - 1.8V
  63. * [15:12] Pin group
  64. * 0 - 1st group / 1 - 2nd group
  65. * [11:8] Connection selection
  66. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  67. * [7:0] Drive Strength
  68. * 0 - Default value
  69. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  70. * JESD216)
  71. * [31:16] reserved
  72. * [15:12] Sector Erase Command Option, not required here
  73. * [11:8] Sector Size Option, not required here
  74. * [7:0] Flash Size Option
  75. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  76. */
  77. #if defined(FLASH_XIP) && FLASH_XIP
  78. __attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
  79. #endif
  80. #if defined(FLASH_UF2) && FLASH_UF2
  81. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  82. #endif
  83. void board_init_console(void)
  84. {
  85. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  86. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  87. console_config_t cfg;
  88. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  89. * uart rx pin when configuring pin function will cause a wrong data to be received.
  90. * And a uart rx dma request will be generated by default uart fifo dma trigger level.
  91. */
  92. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  93. /* Configure the UART clock to 24MHz */
  94. clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
  95. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  96. cfg.type = BOARD_CONSOLE_TYPE;
  97. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  98. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  99. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  100. if (status_success != console_init(&cfg)) {
  101. /* failed to initialize debug console */
  102. while (1) {
  103. }
  104. }
  105. #else
  106. while (1)
  107. ;
  108. #endif
  109. #endif
  110. }
  111. void board_print_clock_freq(void)
  112. {
  113. printf("==============================\n");
  114. printf(" %s clock summary\n", BOARD_NAME);
  115. printf("==============================\n");
  116. printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
  117. printf("cpu1:\t\t %dHz\n", clock_get_frequency(clock_cpu1));
  118. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb0));
  119. printf("axif:\t\t %dHz\n", clock_get_frequency(clock_axif));
  120. printf("axis:\t\t %dHz\n", clock_get_frequency(clock_axis));
  121. printf("axic:\t\t %dHz\n", clock_get_frequency(clock_axic));
  122. printf("axin:\t\t %dHz\n", clock_get_frequency(clock_axin));
  123. printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
  124. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  125. printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
  126. printf("mchtmr1:\t %dHz\n", clock_get_frequency(clock_mchtmr1));
  127. printf("==============================\n");
  128. }
  129. void board_init_uart(UART_Type *ptr)
  130. {
  131. /* configure uart's pin before opening uart's clock */
  132. init_uart_pins(ptr);
  133. board_init_uart_clock(ptr);
  134. }
  135. void board_print_banner(void)
  136. {
  137. const uint8_t banner[] = { "\n\
  138. ----------------------------------------------------------------------\n\
  139. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  140. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  141. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  142. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  143. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  144. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  145. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  146. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  147. ----------------------------------------------------------------------\n" };
  148. #ifdef SDK_VERSION_STRING
  149. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  150. #endif
  151. printf("%s", banner);
  152. }
  153. void board_ungate_mchtmr_at_lp_mode(void)
  154. {
  155. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  156. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  157. }
  158. static void board_turnoff_rgb_led(void)
  159. {
  160. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PE_SET(BOARD_LED_OFF_LEVEL);
  161. HPM_IOC->PAD[IOC_PAD_PE14].FUNC_CTL = IOC_PE14_FUNC_CTL_GPIO_E_14;
  162. HPM_IOC->PAD[IOC_PAD_PE15].FUNC_CTL = IOC_PE15_FUNC_CTL_GPIO_E_15;
  163. HPM_IOC->PAD[IOC_PAD_PE04].FUNC_CTL = IOC_PE04_FUNC_CTL_GPIO_E_04;
  164. HPM_IOC->PAD[IOC_PAD_PE14].PAD_CTL = pad_ctl;
  165. HPM_IOC->PAD[IOC_PAD_PE15].PAD_CTL = pad_ctl;
  166. HPM_IOC->PAD[IOC_PAD_PE04].PAD_CTL = pad_ctl;
  167. }
  168. void board_init(void)
  169. {
  170. board_turnoff_rgb_led();
  171. board_init_clock();
  172. board_init_console();
  173. board_init_pmp();
  174. #if BOARD_SHOW_CLOCK
  175. board_print_clock_freq();
  176. #endif
  177. #if BOARD_SHOW_BANNER
  178. board_print_banner();
  179. #endif
  180. }
  181. void board_init_core1(void)
  182. {
  183. board_init_console();
  184. board_init_pmp();
  185. }
  186. void board_init_sdram_pins(void)
  187. {
  188. init_femc_pins();
  189. }
  190. uint32_t board_init_femc_clock(void)
  191. {
  192. clock_add_to_group(clock_femc, 0);
  193. /* Default FEMC clock is 166MHz */
  194. /* Configure the FEMC to 133MHz */
  195. /* clock_set_source_divider(clock_femc, clk_src_pll1_clk0, 6U); */
  196. return clock_get_frequency(clock_femc);
  197. }
  198. void board_delay_us(uint32_t us)
  199. {
  200. clock_cpu_delay_us(us);
  201. }
  202. void board_delay_ms(uint32_t ms)
  203. {
  204. clock_cpu_delay_ms(ms);
  205. }
  206. void board_timer_isr(void)
  207. {
  208. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  209. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  210. timer_cb();
  211. }
  212. }
  213. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  214. void board_timer_create(uint32_t ms, board_timer_cb cb)
  215. {
  216. uint32_t gptmr_freq;
  217. gptmr_channel_config_t config;
  218. timer_cb = cb;
  219. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  220. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  221. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  222. config.reload = gptmr_freq / 1000 * ms;
  223. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  224. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  225. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  226. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  227. }
  228. void board_i2c_bus_clear(I2C_Type *ptr)
  229. {
  230. if (i2c_get_line_scl_status(ptr) == false) {
  231. printf("CLK is low, please power cycle the board\n");
  232. while (1) {
  233. }
  234. }
  235. if (i2c_get_line_sda_status(ptr) == false) {
  236. printf("SDA is low, try to issue I2C bus clear\n");
  237. } else {
  238. printf("I2C bus is ready\n");
  239. return;
  240. }
  241. i2s_gen_reset_signal(ptr, 9);
  242. board_delay_ms(100);
  243. printf("I2C bus is cleared\n");
  244. }
  245. void board_init_i2c(I2C_Type *ptr)
  246. {
  247. i2c_config_t config;
  248. hpm_stat_t stat;
  249. uint32_t freq;
  250. if (ptr == NULL) {
  251. return;
  252. }
  253. init_i2c_pins(ptr);
  254. board_i2c_bus_clear(ptr);
  255. if (ptr == HPM_I2C0) {
  256. clock_add_to_group(clock_i2c0, 0);
  257. } else if (ptr == HPM_I2C1) {
  258. clock_add_to_group(clock_i2c1, 0);
  259. } else if (ptr == HPM_I2C2) {
  260. clock_add_to_group(clock_i2c2, 0);
  261. } else if (ptr == HPM_I2C3) {
  262. clock_add_to_group(clock_i2c3, 0);
  263. } else if (ptr == HPM_I2C4) {
  264. clock_add_to_group(clock_i2c4, 0);
  265. } else if (ptr == HPM_I2C5) {
  266. clock_add_to_group(clock_i2c5, 0);
  267. } else if (ptr == HPM_I2C6) {
  268. clock_add_to_group(clock_i2c6, 0);
  269. } else if (ptr == HPM_I2C7) {
  270. clock_add_to_group(clock_i2c7, 0);
  271. } else {
  272. ;
  273. }
  274. /* Configure the I2C clock to 24MHz */
  275. /* clock_set_source_divider(BOARD_APP_I2C_CLK_NAME, clk_src_osc24m, 1U); */
  276. config.i2c_mode = i2c_mode_normal;
  277. config.is_10bit_addressing = false;
  278. freq = clock_get_frequency(BOARD_APP_I2C_CLK_NAME);
  279. stat = i2c_init_master(ptr, freq, &config);
  280. if (stat != status_success) {
  281. printf("failed to initialize i2c 0x%lx\n", (uint32_t) ptr);
  282. while (1) {
  283. }
  284. }
  285. }
  286. uint32_t board_init_spi_clock(SPI_Type *ptr)
  287. {
  288. if (ptr == HPM_SPI1) {
  289. /* SPI1 clock configure */
  290. clock_add_to_group(clock_spi1, 0);
  291. /* clock_set_source_divider(clock_spi1, clk_src_pll0_clk0, 5U); */
  292. return clock_get_frequency(clock_spi1);
  293. } else if (ptr == HPM_SPI3) {
  294. /* SPI3 clock configure */
  295. clock_add_to_group(clock_spi3, 0);
  296. /* clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); */
  297. return clock_get_frequency(clock_spi3);
  298. } else if (ptr == HPM_SPI6) {
  299. /* SPI6 clock configure */
  300. clock_add_to_group(clock_spi6, 0);
  301. /* clock_set_source_divider(clock_spi6, clk_src_pll0_clk0, 5U); */
  302. return clock_get_frequency(clock_spi6);
  303. } else if (ptr == HPM_SPI7) {
  304. /* SPI6 clock configure */
  305. clock_add_to_group(clock_spi7, 0);
  306. /* clock_set_source_divider(clock_spi6, clk_src_pll0_clk0, 5U); */
  307. return clock_get_frequency(clock_spi7);
  308. }
  309. return 0;
  310. }
  311. void board_init_gpio_pins(void)
  312. {
  313. init_gpio_pins();
  314. /* Key A*/
  315. gpio_set_pin_input(BOARD_APP_GPIO_CTRL, BOARD_APP_GPIO_INDEX, BOARD_APP_GPIO_PIN);
  316. /* Key B*/
  317. gpio_set_pin_input(BOARD_APP_GPIO_CTRL2, BOARD_APP_GPIO_INDEX2, BOARD_APP_GPIO_PIN2);
  318. }
  319. void board_init_spi_pins(SPI_Type *ptr)
  320. {
  321. init_spi_pins(ptr);
  322. }
  323. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  324. {
  325. init_spi_pins_with_gpio_as_cs(ptr);
  326. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  327. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  328. }
  329. void board_write_spi_cs(uint32_t pin, uint8_t state)
  330. {
  331. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  332. }
  333. uint8_t board_get_led_pwm_off_level(void)
  334. {
  335. return BOARD_LED_OFF_LEVEL;
  336. }
  337. uint8_t board_get_led_gpio_off_level(void)
  338. {
  339. return BOARD_LED_OFF_LEVEL;
  340. }
  341. void board_init_led_pins(void)
  342. {
  343. board_turnoff_rgb_led();
  344. init_led_pins_as_gpio();
  345. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  346. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  347. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  348. }
  349. void board_led_toggle(void)
  350. {
  351. #ifdef BOARD_LED_TOGGLE_RGB
  352. static uint8_t i;
  353. switch (i) {
  354. case 1:
  355. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  356. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
  357. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  358. break;
  359. case 2:
  360. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  361. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  362. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
  363. break;
  364. case 0:
  365. default:
  366. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
  367. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  368. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  369. break;
  370. }
  371. i++;
  372. i = i % 3;
  373. #else
  374. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  375. #endif
  376. }
  377. void board_led_write(uint8_t state)
  378. {
  379. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  380. }
  381. static void set_rgb_output_off(PWMV2_Type *ptr, uint8_t counter, uint8_t channel, uint8_t shadow_id, uint8_t cmp_id)
  382. {
  383. }
  384. void board_init_rgb_pwm_pins(void)
  385. {
  386. board_turnoff_rgb_led();
  387. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_COUNTER_INDEX, BOARD_RED_PWM_OUT_CH, BOARD_RED_PWM_SHADOW_ID, BOARD_RED_PWM_CMP_ID);
  388. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_COUNTER_INDEX, BOARD_GREEN_PWM_OUT_CH, BOARD_GREEN_PWM_SHADOW_ID, BOARD_GREEN_PWM_CMP_ID);
  389. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_COUNTER_INDEX, BOARD_BLUE_PWM_OUT_CH, BOARD_BLUE_PWM_SHADOW_ID, BOARD_BLUE_PWM_CMP_ID);
  390. init_led_pins_as_pwm();
  391. }
  392. void board_disable_output_rgb_led(uint8_t color)
  393. {
  394. switch (color) {
  395. case BOARD_RGB_RED:
  396. pwmv2_channel_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT_CH);
  397. break;
  398. case BOARD_RGB_GREEN:
  399. pwmv2_channel_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT_CH);
  400. break;
  401. case BOARD_RGB_BLUE:
  402. pwmv2_channel_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT_CH);
  403. break;
  404. default:
  405. while (1) {
  406. ;
  407. }
  408. }
  409. }
  410. void board_enable_output_rgb_led(uint8_t color)
  411. {
  412. switch (color) {
  413. case BOARD_RGB_RED:
  414. pwmv2_channel_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT_CH);
  415. break;
  416. case BOARD_RGB_GREEN:
  417. pwmv2_channel_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT_CH);
  418. break;
  419. case BOARD_RGB_BLUE:
  420. pwmv2_channel_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT_CH);
  421. break;
  422. default:
  423. while (1) {
  424. ;
  425. }
  426. }
  427. }
  428. void board_init_pmp(void)
  429. {
  430. uint32_t start_addr;
  431. uint32_t end_addr;
  432. uint32_t length;
  433. pmp_entry_t pmp_entry[16];
  434. uint8_t index = 0;
  435. /* Init noncachable memory */
  436. extern uint32_t __noncacheable_start__[];
  437. extern uint32_t __noncacheable_end__[];
  438. start_addr = (uint32_t) __noncacheable_start__;
  439. end_addr = (uint32_t) __noncacheable_end__;
  440. length = end_addr - start_addr;
  441. if (length > 0) {
  442. /* Ensure the address and the length are power of 2 aligned */
  443. assert((length & (length - 1U)) == 0U);
  444. assert((start_addr & (length - 1U)) == 0U);
  445. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  446. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  447. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  448. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  449. index++;
  450. }
  451. pmp_config(&pmp_entry[0], index);
  452. }
  453. void board_init_clock(void)
  454. {
  455. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  456. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  457. /* Configure the External OSC ramp-up time: ~9ms */
  458. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32ul * 1000ul * 9u);
  459. /* select clock setting preset1 */
  460. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  461. }
  462. /* Add most Clocks to group 0 */
  463. /* not open uart clock in this API, uart should configure pin function before opening clock */
  464. clock_add_to_group(clock_cpu0, 0);
  465. clock_add_to_group(clock_mchtmr0, 0);
  466. clock_add_to_group(clock_ahb0, 0);
  467. clock_add_to_group(clock_axif, 0);
  468. clock_add_to_group(clock_axis, 0);
  469. clock_add_to_group(clock_axic, 0);
  470. clock_add_to_group(clock_axin, 0);
  471. clock_add_to_group(clock_rom0, 0);
  472. clock_add_to_group(clock_xpi0, 0);
  473. clock_add_to_group(clock_lmm0, 0);
  474. clock_add_to_group(clock_lmm1, 0);
  475. clock_add_to_group(clock_ram0, 0);
  476. clock_add_to_group(clock_ram1, 0);
  477. clock_add_to_group(clock_hdma, 0);
  478. clock_add_to_group(clock_xdma, 0);
  479. clock_add_to_group(clock_femc, 0);
  480. clock_add_to_group(clock_gptmr0, 0);
  481. clock_add_to_group(clock_gptmr1, 0);
  482. clock_add_to_group(clock_gptmr2, 0);
  483. clock_add_to_group(clock_gptmr3, 0);
  484. clock_add_to_group(clock_gptmr4, 0);
  485. clock_add_to_group(clock_gptmr5, 0);
  486. clock_add_to_group(clock_gptmr6, 0);
  487. clock_add_to_group(clock_gptmr7, 0);
  488. clock_add_to_group(clock_ptpc, 0);
  489. clock_add_to_group(clock_puart, 0);
  490. clock_add_to_group(clock_watchdog0, 0);
  491. clock_add_to_group(clock_watchdog1, 0);
  492. clock_add_to_group(clock_watchdog2, 0);
  493. clock_add_to_group(clock_watchdog3, 0);
  494. clock_add_to_group(clock_pwdg, 0);
  495. clock_add_to_group(clock_qei0, 0);
  496. clock_add_to_group(clock_qei1, 0);
  497. clock_add_to_group(clock_qei2, 0);
  498. clock_add_to_group(clock_qei3, 0);
  499. clock_add_to_group(clock_qeo0, 0);
  500. clock_add_to_group(clock_qeo1, 0);
  501. clock_add_to_group(clock_qeo2, 0);
  502. clock_add_to_group(clock_qeo3, 0);
  503. clock_add_to_group(clock_pwm0, 0);
  504. clock_add_to_group(clock_pwm1, 0);
  505. clock_add_to_group(clock_pwm2, 0);
  506. clock_add_to_group(clock_pwm3, 0);
  507. clock_add_to_group(clock_rdc0, 0);
  508. clock_add_to_group(clock_rdc1, 0);
  509. clock_add_to_group(clock_sdm0, 0);
  510. clock_add_to_group(clock_sdm1, 0);
  511. clock_add_to_group(clock_plb0, 0);
  512. clock_add_to_group(clock_sei0, 0);
  513. clock_add_to_group(clock_mtg0, 0);
  514. clock_add_to_group(clock_mtg1, 0);
  515. clock_add_to_group(clock_vsc0, 0);
  516. clock_add_to_group(clock_vsc1, 0);
  517. clock_add_to_group(clock_clc0, 0);
  518. clock_add_to_group(clock_clc1, 0);
  519. clock_add_to_group(clock_emds, 0);
  520. clock_add_to_group(clock_cmp0, 0);
  521. clock_add_to_group(clock_cmp1, 0);
  522. clock_add_to_group(clock_cmp2, 0);
  523. clock_add_to_group(clock_cmp3, 0);
  524. clock_add_to_group(clock_crc0, 0);
  525. clock_add_to_group(clock_tsns, 0);
  526. clock_add_to_group(clock_mbx0, 0);
  527. clock_add_to_group(clock_mbx1, 0);
  528. clock_add_to_group(clock_gpio, 0);
  529. clock_add_to_group(clock_ppi0, 0);
  530. clock_add_to_group(clock_lobs, 0);
  531. clock_add_to_group(clock_rng, 0);
  532. clock_add_to_group(clock_sdp, 0);
  533. clock_add_to_group(clock_pka, 0);
  534. clock_add_to_group(clock_kman, 0);
  535. clock_add_to_group(clock_ffa0, 0);
  536. clock_add_to_group(clock_usb0, 0);
  537. clock_add_to_group(clock_esc0, 0);
  538. clock_add_to_group(clock_eth0, 0);
  539. clock_add_to_group(clock_ptp0, 0);
  540. clock_add_to_group(clock_ntmr0, 0);
  541. clock_add_to_group(clock_ref0, 0);
  542. clock_add_to_group(clock_ref1, 0);
  543. clock_add_to_group(clock_tsn1, 0);
  544. clock_add_to_group(clock_tsn2, 0);
  545. clock_add_to_group(clock_tsn3, 0);
  546. clock_add_to_group(clock_i2c0, 0);
  547. clock_add_to_group(clock_i2c1, 0);
  548. clock_add_to_group(clock_i2c2, 0);
  549. clock_add_to_group(clock_i2c3, 0);
  550. clock_add_to_group(clock_adc0, 0);
  551. clock_add_to_group(clock_adc1, 0);
  552. clock_add_to_group(clock_adc2, 0);
  553. clock_add_to_group(clock_adc3, 0);
  554. /* Connect Group0 to CPU0 */
  555. clock_connect_group_to_cpu(0, 0);
  556. /* Add the CPU1 clock to Group1 */
  557. clock_add_to_group(clock_cpu1, 0);
  558. clock_add_to_group(clock_mchtmr1, 1);
  559. /* Connect Group1 to CPU1 */
  560. clock_connect_group_to_cpu(1, 1);
  561. /* Bump up DCDC voltage to 1200mv */
  562. pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
  563. /* Configure mchtmr to 24MHz */
  564. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  565. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  566. clock_update_core_clock();
  567. }
  568. uint32_t board_init_uart_clock(UART_Type *ptr)
  569. {
  570. uint32_t freq = 0U;
  571. if (ptr == HPM_UART0) {
  572. clock_set_source_divider(clock_uart0, clk_src_pll1_clk0, 10);
  573. clock_add_to_group(clock_uart0, 0);
  574. freq = clock_get_frequency(clock_uart0);
  575. } else if (ptr == HPM_UART1) {
  576. clock_set_source_divider(clock_uart1, clk_src_pll1_clk0, 10);
  577. clock_add_to_group(clock_uart1, 0);
  578. freq = clock_get_frequency(clock_uart1);
  579. } else if (ptr == HPM_UART2) {
  580. clock_set_source_divider(clock_uart2, clk_src_pll1_clk0, 10);
  581. clock_add_to_group(clock_uart2, 0);
  582. freq = clock_get_frequency(clock_uart2);
  583. } else if (ptr == HPM_UART6) {
  584. clock_set_source_divider(clock_uart6, clk_src_pll1_clk0, 10);
  585. clock_add_to_group(clock_uart6, 0);
  586. freq = clock_get_frequency(clock_uart6);
  587. } else {
  588. /* Not supported */
  589. }
  590. return freq;
  591. }
  592. #ifdef INIT_EXT_RAM_FOR_DATA
  593. /*
  594. * this function will be called during startup to initialize external memory for data use
  595. */
  596. void _init_ext_ram(void)
  597. {
  598. uint32_t femc_clk_in_hz;
  599. board_init_sdram_pins();
  600. femc_clk_in_hz = board_init_femc_clock();
  601. femc_config_t config = {0};
  602. femc_sdram_config_t sdram_config = {0};
  603. femc_default_config(HPM_FEMC, &config);
  604. femc_init(HPM_FEMC, &config);
  605. femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
  606. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  607. sdram_config.prescaler = 0x3;
  608. sdram_config.burst_len_in_byte = 8;
  609. sdram_config.auto_refresh_count_in_one_burst = 1;
  610. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  611. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  612. sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
  613. sdram_config.refresh_recover_in_ns = 60; /* Trc */
  614. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  615. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  616. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  617. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  618. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  619. sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
  620. sdram_config.cs = BOARD_SDRAM_CS;
  621. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  622. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  623. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  624. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  625. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  626. sdram_config.delay_cell_disable = true;
  627. sdram_config.delay_cell_value = 0;
  628. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  629. HPM_FEMC->SDRCTRL0 |= FEMC_SDRCTRL0_HIGHBAND_MASK; /* use data[31:16] for 16bit SDRAM */
  630. }
  631. #endif
  632. void board_init_usb_pins(void)
  633. {
  634. init_usb_pins();
  635. usb_hcd_set_power_ctrl_polarity(BOARD_USB, true);
  636. /* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */
  637. board_delay_ms(100);
  638. }
  639. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  640. {
  641. (void) usb_index;
  642. (void) level;
  643. }
  644. uint32_t board_init_dao_clock(void)
  645. {
  646. clock_add_to_group(clock_dao, 0);
  647. board_config_i2s_clock(DAO_I2S, 48000);
  648. return clock_get_frequency(clock_dao);
  649. }
  650. uint32_t board_init_pdm_clock(void)
  651. {
  652. clock_add_to_group(clock_pdm, 0);
  653. board_config_i2s_clock(PDM_I2S, 16000);
  654. return clock_get_frequency(clock_pdm);
  655. }
  656. void board_init_i2s_pins(I2S_Type *ptr)
  657. {
  658. init_i2s_pins(ptr);
  659. }
  660. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  661. {
  662. uint32_t freq = 0;
  663. if (ptr == HPM_I2S0) {
  664. clock_add_to_group(clock_i2s0, 0);
  665. if ((sample_rate % 22050) == 0) {
  666. clock_set_source_divider(clock_aud0, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  667. } else {
  668. clock_set_source_divider(clock_aud0, clk_src_pll2_clk0, 21); /* default 24576000Hz */
  669. }
  670. clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
  671. freq = clock_get_frequency(clock_i2s0);
  672. } else if (ptr == HPM_I2S1) {
  673. clock_add_to_group(clock_i2s1, 0);
  674. if ((sample_rate % 22050) == 0) {
  675. clock_set_source_divider(clock_aud1, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  676. } else {
  677. clock_set_source_divider(clock_aud1, clk_src_pll2_clk0, 21); /* default 24576000Hz */
  678. }
  679. clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
  680. freq = clock_get_frequency(clock_i2s1);
  681. } else {
  682. ;
  683. }
  684. return freq;
  685. }
  686. void board_init_adc16_pins(void)
  687. {
  688. init_adc16_pins();
  689. }
  690. uint32_t board_init_adc16_clock(void *ptr, bool clk_src_ahb) /* motor system should be use clk_adc_src_ahb0 */
  691. {
  692. uint32_t freq = 0;
  693. if (ptr == (void *)HPM_ADC0) {
  694. if (clk_src_ahb) {
  695. /* Configure the ADC clock from AHB (@200MHz by default)*/
  696. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  697. } else {
  698. /* Configure the ADC clock from ANA (@200MHz by default)*/
  699. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  700. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  701. }
  702. freq = clock_get_frequency(clock_adc0);
  703. } else if (ptr == (void *)HPM_ADC1) {
  704. if (clk_src_ahb) {
  705. /* Configure the ADC clock from AHB (@200MHz by default)*/
  706. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  707. } else {
  708. /* Configure the ADC clock from ANA (@200MHz by default)*/
  709. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  710. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  711. }
  712. freq = clock_get_frequency(clock_adc1);
  713. } else if (ptr == (void *)HPM_ADC2) {
  714. if (clk_src_ahb) {
  715. /* Configure the ADC clock from AHB (@200MHz by default)*/
  716. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  717. } else {
  718. /* Configure the ADC clock from ANA (@200MHz by default)*/
  719. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  720. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  721. }
  722. freq = clock_get_frequency(clock_adc2);
  723. } else if (ptr == (void *)HPM_ADC3) {
  724. if (clk_src_ahb) {
  725. /* Configure the ADC clock from AHB (@200MHz by default)*/
  726. clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
  727. } else {
  728. /* Configure the ADC clock from ANA (@200MHz by default)*/
  729. clock_set_adc_source(clock_adc3, clk_adc_src_ana3);
  730. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  731. }
  732. freq = clock_get_frequency(clock_adc3);
  733. }
  734. return freq;
  735. }
  736. void board_init_can(MCAN_Type *ptr)
  737. {
  738. init_can_pins(ptr);
  739. }
  740. uint32_t board_init_can_clock(MCAN_Type *ptr)
  741. {
  742. uint32_t freq = 0;
  743. if (ptr == HPM_MCAN0) {
  744. /* Set the CAN0 peripheral clock to 80MHz */
  745. clock_add_to_group(clock_can0, 0);
  746. clock_set_source_divider(clock_can0, clk_src_pll1_clk0, 10);
  747. freq = clock_get_frequency(clock_can0);
  748. } else if (ptr == HPM_MCAN1) {
  749. /* Set the CAN1 peripheral clock to 80MHz */
  750. clock_add_to_group(clock_can1, 0);
  751. clock_set_source_divider(clock_can1, clk_src_pll1_clk0, 10);
  752. freq = clock_get_frequency(clock_can1);
  753. } else if (ptr == HPM_MCAN2) {
  754. /* Set the CAN2 peripheral clock to 80MHz */
  755. clock_add_to_group(clock_can2, 0);
  756. clock_set_source_divider(clock_can2, clk_src_pll1_clk0, 10);
  757. freq = clock_get_frequency(clock_can2);
  758. } else if (ptr == HPM_MCAN3) {
  759. /* Set the CAN3 peripheral clock to 80MHz */
  760. clock_add_to_group(clock_can3, 0);
  761. clock_set_source_divider(clock_can3, clk_src_pll1_clk0, 10);
  762. freq = clock_get_frequency(clock_can3);
  763. } else if (ptr == HPM_MCAN4) {
  764. /* Set the CAN4 peripheral clock to 80MHz */
  765. clock_add_to_group(clock_can4, 0);
  766. clock_set_source_divider(clock_can4, clk_src_pll1_clk0, 10);
  767. freq = clock_get_frequency(clock_can4);
  768. } else if (ptr == HPM_MCAN5) {
  769. /* Set the CAN5 peripheral clock to 80MHz */
  770. clock_add_to_group(clock_can5, 0);
  771. clock_set_source_divider(clock_can5, clk_src_pll1_clk0, 10);
  772. freq = clock_get_frequency(clock_can5);
  773. } else if (ptr == HPM_MCAN6) {
  774. /* Set the CAN6 peripheral clock to 80MHz */
  775. clock_add_to_group(clock_can6, 0);
  776. clock_set_source_divider(clock_can6, clk_src_pll1_clk0, 10);
  777. freq = clock_get_frequency(clock_can6);
  778. } else if (ptr == HPM_MCAN7) {
  779. /* Set the CAN7 peripheral clock to 80MHz */
  780. clock_add_to_group(clock_can7, 0);
  781. clock_set_source_divider(clock_can7, clk_src_pll1_clk0, 10);
  782. freq = clock_get_frequency(clock_can3);
  783. } else {
  784. /* Invalid CAN instance */
  785. }
  786. return freq;
  787. }
  788. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  789. {
  790. /* set clock source */
  791. if (ptr == HPM_ENET0) {
  792. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  793. /* clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); */ /* 100MHz */
  794. } else if (ptr == HPM_ENET1) {
  795. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
  796. /* clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); */ /* 100MHz */
  797. } else {
  798. return status_invalid_argument;
  799. }
  800. return status_success;
  801. }
  802. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  803. {
  804. init_enet_pins(ptr);
  805. if (ptr == HPM_ENET0) {
  806. gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  807. } else {
  808. return status_invalid_argument;
  809. }
  810. return status_success;
  811. }
  812. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  813. {
  814. if (ptr == HPM_ENET0) {
  815. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  816. board_delay_ms(1);
  817. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
  818. } else {
  819. return status_invalid_argument;
  820. }
  821. return status_success;
  822. }
  823. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  824. {
  825. (void) ptr;
  826. return enet_pbl_32;
  827. }
  828. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  829. {
  830. if (ptr == HPM_ENET0) {
  831. intc_m_enable_irq(IRQn_ENET0);
  832. } else {
  833. return status_invalid_argument;
  834. }
  835. return status_success;
  836. }
  837. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  838. {
  839. if (ptr == HPM_ENET0) {
  840. intc_m_disable_irq(IRQn_ENET0);
  841. } else {
  842. return status_invalid_argument;
  843. }
  844. return status_success;
  845. }
  846. void board_init_enet_pps_pins(ENET_Type *ptr)
  847. {
  848. (void) ptr;
  849. init_enet_pps_pins();
  850. }
  851. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  852. {
  853. /* Configure Enet clock to output reference clock */
  854. if (ptr == HPM_ENET0) {
  855. if (internal) {
  856. /* set pll output frequency at 1GHz */
  857. if (pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1000000000UL) == status_success) {
  858. /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 (1 + 15 / 5) */
  859. pllctlv2_set_postdiv(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1, 15);
  860. /* set eth clock frequency at 50MHz for enet0 */
  861. /* clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5); */
  862. } else {
  863. return status_fail;
  864. }
  865. }
  866. } else {
  867. return status_invalid_argument;
  868. }
  869. enet_rmii_enable_clock(ptr, internal); /* defined in hpm_enet_soc_drv.h, not sure */
  870. return status_success;
  871. }
  872. hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
  873. {
  874. if (ptr == HPM_ENET0) {
  875. return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY); /* defined in hpm_enet_soc_drv.h, not sure */
  876. }
  877. return status_invalid_argument;
  878. }
  879. void board_init_dao_pins(void)
  880. {
  881. init_dao_pins();
  882. }
  883. void board_init_ethercat(ESC_Type *ptr)
  884. {
  885. (void)ptr;
  886. init_esc_pins();
  887. /* keep ECAT PHY reset */
  888. gpio_set_pin_output_with_initial(BOARD_ECAT_PHY0_RESET_GPIO, BOARD_ECAT_PHY0_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY0_RESET_PIN_INDEX, BOARD_ECAT_PHY_RESET_LEVEL);
  889. gpio_set_pin_output_with_initial(BOARD_ECAT_PHY1_RESET_GPIO, BOARD_ECAT_PHY1_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY1_RESET_PIN_INDEX, BOARD_ECAT_PHY_RESET_LEVEL);
  890. }
  891. /* input and output pin for ethercat io test */
  892. void board_init_switch_led(void)
  893. {
  894. init_esc_in_out_pin();
  895. gpio_set_pin_input(BOARD_ECAT_IN1_GPIO, BOARD_ECAT_IN1_GPIO_PORT_INDEX, BOARD_ECAT_IN1_GPIO_PIN_INDEX);
  896. gpio_set_pin_input(BOARD_ECAT_IN2_GPIO, BOARD_ECAT_IN2_GPIO_PORT_INDEX, BOARD_ECAT_IN2_GPIO_PIN_INDEX);
  897. gpio_set_pin_output_with_initial(BOARD_ECAT_OUT1_GPIO, BOARD_ECAT_OUT1_GPIO_PORT_INDEX, BOARD_ECAT_OUT1_GPIO_PIN_INDEX, 0);
  898. gpio_set_pin_output_with_initial(BOARD_ECAT_OUT2_GPIO, BOARD_ECAT_OUT2_GPIO_PORT_INDEX, BOARD_ECAT_OUT2_GPIO_PIN_INDEX, 0);
  899. }
  900. void board_init_tsw(TSW_Type *ptr)
  901. {
  902. (void)ptr;
  903. init_tsw_pins();
  904. /* PORT1/PORT2: JL1111 RST(PA10) */
  905. gpio_set_pin_output_with_initial(HPM_GPIO0, GPIO_DO_GPIOA, 10, 0);
  906. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 10, 0);
  907. board_delay_ms(100);
  908. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 10, 1);
  909. /* PORT3: RTL8211 RST(PA10) */
  910. gpio_set_pin_output_with_initial(HPM_GPIO0, GPIO_DO_GPIOA, 14, 0);
  911. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 14, 0);
  912. board_delay_ms(100);
  913. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 14, 1);
  914. /* Enable XI clock for JL1111 */
  915. esc_core_enable_clock(HPM_ESC, true);
  916. esc_phy_enable_clock(HPM_ESC, true);
  917. }
  918. void board_init_sei_pins(SEI_Type *ptr, uint8_t sei_ctrl_idx)
  919. {
  920. init_sei_pins(ptr, sei_ctrl_idx);
  921. }
  922. void board_init_adc_qeiv2_pins(void)
  923. {
  924. init_adc_qeiv2_pins();
  925. }
  926. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  927. {
  928. uint32_t freq = 0;
  929. if (ptr == HPM_GPTMR0) {
  930. clock_add_to_group(clock_gptmr0, 0);
  931. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk0, 8);
  932. freq = clock_get_frequency(clock_gptmr0);
  933. }
  934. else if (ptr == HPM_GPTMR1) {
  935. clock_add_to_group(clock_gptmr1, 0);
  936. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk0, 8);
  937. freq = clock_get_frequency(clock_gptmr1);
  938. }
  939. else if (ptr == HPM_GPTMR2) {
  940. clock_add_to_group(clock_gptmr2, 0);
  941. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk0, 8);
  942. freq = clock_get_frequency(clock_gptmr2);
  943. }
  944. else if (ptr == HPM_GPTMR3) {
  945. clock_add_to_group(clock_gptmr3, 0);
  946. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk0, 8);
  947. freq = clock_get_frequency(clock_gptmr3);
  948. }
  949. else if (ptr == HPM_GPTMR4) {
  950. clock_add_to_group(clock_gptmr4, 0);
  951. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk0, 8);
  952. freq = clock_get_frequency(clock_gptmr4);
  953. }
  954. else if (ptr == HPM_GPTMR5) {
  955. clock_add_to_group(clock_gptmr5, 0);
  956. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk0, 8);
  957. freq = clock_get_frequency(clock_gptmr5);
  958. }
  959. else if (ptr == HPM_GPTMR6) {
  960. clock_add_to_group(clock_gptmr6, 0);
  961. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk0, 8);
  962. freq = clock_get_frequency(clock_gptmr6);
  963. }
  964. else if (ptr == HPM_GPTMR7) {
  965. clock_add_to_group(clock_gptmr7, 0);
  966. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk0, 8);
  967. freq = clock_get_frequency(clock_gptmr7);
  968. }
  969. else {
  970. /* Invalid instance */
  971. }
  972. }
  973. uint32_t board_init_pwm_clock(PWMV2_Type *ptr)
  974. {
  975. uint32_t freq = 0;
  976. if (ptr == HPM_PWM0) {
  977. clock_add_to_group(clock_pwm0, 0);
  978. freq = clock_get_frequency(clock_pwm0);
  979. } else if (ptr == HPM_PWM1) {
  980. clock_add_to_group(clock_pwm1, 0);
  981. freq = clock_get_frequency(clock_pwm1);
  982. } else if (ptr == HPM_PWM2) {
  983. clock_add_to_group(clock_pwm2, 0);
  984. freq = clock_get_frequency(clock_pwm2);
  985. } else if (ptr == HPM_PWM3) {
  986. clock_add_to_group(clock_pwm3, 0);
  987. freq = clock_get_frequency(clock_pwm3);
  988. } else {
  989. }
  990. return freq;
  991. }