1
0

drv_can.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977
  1. /*
  2. * Copyright (c) 2006-2024 RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-08-05 Xeon Xu the first version
  9. * 2019-01-22 YLZ port from stm324xx-HAL to bsp stm3210x-HAL
  10. * 2019-02-19 YLZ add support EXTID RTR Frame. modify send, recv functions.
  11. * fix bug.port to BSP [stm32]
  12. * 2019-03-27 YLZ support double can channels, support stm32F4xx (only Legacy mode).
  13. * 2019-06-17 YLZ port to new STM32F1xx HAL V1.1.3.
  14. * 2021-02-02 YuZhe XU fix bug in filter config
  15. * 2021-8-25 SVCHAO The baud rate is configured according to the different APB1 frequencies.
  16. f4-series only.
  17. */
  18. #include "drv_can.h"
  19. #ifdef BSP_USING_CAN
  20. #define LOG_TAG "drv_can"
  21. #include <drv_log.h>
  22. /* attention !!! baud calculation example: Tclk / ((ss + bs1 + bs2) * brp) = 36 / ((1 + 8 + 3) * 3) = 1MHz*/
  23. #if defined (SOC_SERIES_STM32F1)/* APB1 36MHz(max) */
  24. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  25. {
  26. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 3)},
  27. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_3TQ | 5)},
  28. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 6)},
  29. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 12)},
  30. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 24)},
  31. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 30)},
  32. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 60)},
  33. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 150)},
  34. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 300)}
  35. };
  36. #elif defined (SOC_SERIES_STM32F4) /* 42MHz or 45MHz */
  37. #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)|| defined(STM32F417xx) ||\
  38. defined(STM32F401xC) || defined(STM32F401xE) /* 42MHz(max) */
  39. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  40. {
  41. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 3)},
  42. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_4TQ | 4)},
  43. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 6)},
  44. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 12)},
  45. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 24)},
  46. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 30)},
  47. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 60)},
  48. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 150)},
  49. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 300)}
  50. };
  51. #else /* APB1 45MHz(max) */
  52. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  53. {
  54. #ifdef BSP_USING_CAN168M
  55. {CAN1MBaud, (CAN_SJW_1TQ | CAN_BS1_3TQ | CAN_BS2_3TQ | 6)},
  56. #else
  57. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 3)},
  58. #endif
  59. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_5TQ | 4)},
  60. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 6)},
  61. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 12)},
  62. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 24)},
  63. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 30)},
  64. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 60)},
  65. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 150)},
  66. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 300)}
  67. };
  68. #endif
  69. #elif defined (SOC_SERIES_STM32F7)/* APB1 54MHz(max) */
  70. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  71. {
  72. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 3)},
  73. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_7TQ | 4)},
  74. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 6)},
  75. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 12)},
  76. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 24)},
  77. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 30)},
  78. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 60)},
  79. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 150)},
  80. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 300)}
  81. };
  82. #elif defined (SOC_SERIES_STM32L4)/* APB1 80MHz(max) */
  83. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  84. {
  85. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_2TQ | 10)},
  86. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_14TQ | CAN_BS2_5TQ | 5)},
  87. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_7TQ | CAN_BS2_2TQ | 16)},
  88. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 20)},
  89. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 40)},
  90. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 50)},
  91. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 100)},
  92. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 250)},
  93. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 500)}
  94. };
  95. #endif
  96. #ifdef BSP_USING_CAN1
  97. static struct stm32_can drv_can1 =
  98. {
  99. .name = "can1",
  100. .CanHandle.Instance = CAN1,
  101. };
  102. #endif
  103. #ifdef BSP_USING_CAN2
  104. static struct stm32_can drv_can2 =
  105. {
  106. "can2",
  107. .CanHandle.Instance = CAN2,
  108. };
  109. #endif
  110. static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
  111. {
  112. rt_uint32_t len, index;
  113. len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
  114. for (index = 0; index < len; index++)
  115. {
  116. if (can_baud_rate_tab[index].baud_rate == baud)
  117. return index;
  118. }
  119. return 0; /* default baud is CAN1MBaud */
  120. }
  121. static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
  122. {
  123. struct stm32_can *drv_can;
  124. rt_uint32_t baud_index;
  125. RT_ASSERT(can);
  126. RT_ASSERT(cfg);
  127. drv_can = (struct stm32_can *)can->parent.user_data;
  128. RT_ASSERT(drv_can);
  129. drv_can->CanHandle.Init.TimeTriggeredMode = DISABLE;
  130. drv_can->CanHandle.Init.AutoBusOff = ENABLE;
  131. drv_can->CanHandle.Init.AutoWakeUp = DISABLE;
  132. drv_can->CanHandle.Init.AutoRetransmission = DISABLE;
  133. drv_can->CanHandle.Init.ReceiveFifoLocked = DISABLE;
  134. drv_can->CanHandle.Init.TransmitFifoPriority = ENABLE;
  135. switch (cfg->mode)
  136. {
  137. case RT_CAN_MODE_NORMAL:
  138. drv_can->CanHandle.Init.Mode = CAN_MODE_NORMAL;
  139. break;
  140. case RT_CAN_MODE_LISTEN:
  141. drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT;
  142. break;
  143. case RT_CAN_MODE_LOOPBACK:
  144. drv_can->CanHandle.Init.Mode = CAN_MODE_LOOPBACK;
  145. break;
  146. case RT_CAN_MODE_LOOPBACKANLISTEN:
  147. drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK;
  148. break;
  149. }
  150. baud_index = get_can_baud_index(cfg->baud_rate);
  151. drv_can->CanHandle.Init.SyncJumpWidth = BAUD_DATA(SJW, baud_index);
  152. drv_can->CanHandle.Init.TimeSeg1 = BAUD_DATA(BS1, baud_index);
  153. drv_can->CanHandle.Init.TimeSeg2 = BAUD_DATA(BS2, baud_index);
  154. drv_can->CanHandle.Init.Prescaler = BAUD_DATA(RRESCL, baud_index);
  155. /* init can */
  156. if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
  157. {
  158. return -RT_ERROR;
  159. }
  160. /* default filter config */
  161. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  162. return RT_EOK;
  163. }
  164. static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
  165. {
  166. rt_uint32_t argval;
  167. struct stm32_can *drv_can;
  168. struct rt_can_filter_config *filter_cfg;
  169. RT_ASSERT(can != RT_NULL);
  170. drv_can = (struct stm32_can *)can->parent.user_data;
  171. RT_ASSERT(drv_can != RT_NULL);
  172. switch (cmd)
  173. {
  174. case RT_DEVICE_CTRL_CLR_INT:
  175. argval = (rt_uint32_t) arg;
  176. if (argval == RT_DEVICE_FLAG_INT_RX)
  177. {
  178. if (CAN1 == drv_can->CanHandle.Instance)
  179. {
  180. HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
  181. HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
  182. }
  183. #ifdef CAN2
  184. if (CAN2 == drv_can->CanHandle.Instance)
  185. {
  186. HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
  187. HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
  188. }
  189. #endif
  190. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  191. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
  192. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
  193. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  194. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
  195. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
  196. }
  197. else if (argval == RT_DEVICE_FLAG_INT_TX)
  198. {
  199. if (CAN1 == drv_can->CanHandle.Instance)
  200. {
  201. HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
  202. }
  203. #ifdef CAN2
  204. if (CAN2 == drv_can->CanHandle.Instance)
  205. {
  206. HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
  207. }
  208. #endif
  209. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
  210. }
  211. else if (argval == RT_DEVICE_CAN_INT_ERR)
  212. {
  213. if (CAN1 == drv_can->CanHandle.Instance)
  214. {
  215. NVIC_DisableIRQ(CAN1_SCE_IRQn);
  216. }
  217. #ifdef CAN2
  218. if (CAN2 == drv_can->CanHandle.Instance)
  219. {
  220. NVIC_DisableIRQ(CAN2_SCE_IRQn);
  221. }
  222. #endif
  223. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
  224. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
  225. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
  226. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
  227. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
  228. }
  229. break;
  230. case RT_DEVICE_CTRL_SET_INT:
  231. argval = (rt_uint32_t) arg;
  232. if (argval == RT_DEVICE_FLAG_INT_RX)
  233. {
  234. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  235. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
  236. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
  237. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  238. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
  239. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
  240. if (CAN1 == drv_can->CanHandle.Instance)
  241. {
  242. HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 1, 0);
  243. HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
  244. HAL_NVIC_SetPriority(CAN1_RX1_IRQn, 1, 0);
  245. HAL_NVIC_EnableIRQ(CAN1_RX1_IRQn);
  246. }
  247. #ifdef CAN2
  248. if (CAN2 == drv_can->CanHandle.Instance)
  249. {
  250. HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 1, 0);
  251. HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
  252. HAL_NVIC_SetPriority(CAN2_RX1_IRQn, 1, 0);
  253. HAL_NVIC_EnableIRQ(CAN2_RX1_IRQn);
  254. }
  255. #endif
  256. }
  257. else if (argval == RT_DEVICE_FLAG_INT_TX)
  258. {
  259. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
  260. if (CAN1 == drv_can->CanHandle.Instance)
  261. {
  262. HAL_NVIC_SetPriority(CAN1_TX_IRQn, 1, 0);
  263. HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
  264. }
  265. #ifdef CAN2
  266. if (CAN2 == drv_can->CanHandle.Instance)
  267. {
  268. HAL_NVIC_SetPriority(CAN2_TX_IRQn, 1, 0);
  269. HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
  270. }
  271. #endif
  272. }
  273. else if (argval == RT_DEVICE_CAN_INT_ERR)
  274. {
  275. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
  276. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
  277. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
  278. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
  279. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
  280. if (CAN1 == drv_can->CanHandle.Instance)
  281. {
  282. HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 1, 0);
  283. HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
  284. }
  285. #ifdef CAN2
  286. if (CAN2 == drv_can->CanHandle.Instance)
  287. {
  288. HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 1, 0);
  289. HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
  290. }
  291. #endif
  292. }
  293. break;
  294. case RT_CAN_CMD_SET_FILTER:
  295. {
  296. rt_uint32_t id_h = 0;
  297. rt_uint32_t id_l = 0;
  298. rt_uint32_t mask_h = 0;
  299. rt_uint32_t mask_l = 0;
  300. rt_uint32_t mask_l_tail = 0; /*CAN_FxR2 bit [2:0]*/
  301. if (RT_NULL == arg)
  302. {
  303. /* default filter config */
  304. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  305. }
  306. else
  307. {
  308. filter_cfg = (struct rt_can_filter_config *)arg;
  309. /* get default filter */
  310. for (int i = 0; i < filter_cfg->count; i++)
  311. {
  312. if (filter_cfg->items[i].hdr_bank == -1)
  313. {
  314. /* use default filter bank settings */
  315. if (rt_strcmp(drv_can->name, "can1") == 0)
  316. {
  317. /* can1 banks 0~13 */
  318. drv_can->FilterConfig.FilterBank = i;
  319. }
  320. else if (rt_strcmp(drv_can->name, "can2") == 0)
  321. {
  322. /* can2 banks 14~27 */
  323. drv_can->FilterConfig.FilterBank = i + 14;
  324. }
  325. }
  326. else
  327. {
  328. /* use user-defined filter bank settings */
  329. drv_can->FilterConfig.FilterBank = filter_cfg->items[i].hdr_bank;
  330. }
  331. /**
  332. * ID | CAN_FxR1[31:24] | CAN_FxR1[23:16] | CAN_FxR1[15:8] | CAN_FxR1[7:0] |
  333. * MASK | CAN_FxR2[31:24] | CAN_FxR2[23:16] | CAN_FxR2[15:8] | CAN_FxR2[7:0] |
  334. * STD ID | STID[10:3] | STDID[2:0] |<- 21bit ->|
  335. * EXT ID | EXTID[28:21] | EXTID[20:13] | EXTID[12:5] | EXTID[4:0] IDE RTR 0|
  336. * @note the 32bit STD ID must << 21 to fill CAN_FxR1[31:21] and EXT ID must << 3,
  337. * -> but the id bit of struct rt_can_filter_item is 29,
  338. * -> so STD id << 18 and EXT id Don't need << 3, when get the high 16bit.
  339. * -> FilterIdHigh : (((STDid << 18) or (EXT id)) >> 13) & 0xFFFF,
  340. * -> FilterIdLow: ((STDid << 18) or (EXT id << 3)) & 0xFFFF.
  341. * @note the mask bit of struct rt_can_filter_item is 32,
  342. * -> FilterMaskIdHigh: (((STD mask << 21) or (EXT mask <<3)) >> 16) & 0xFFFF
  343. * -> FilterMaskIdLow: ((STD mask << 21) or (EXT mask <<3)) & 0xFFFF
  344. */
  345. if (filter_cfg->items[i].mode == CAN_FILTERMODE_IDMASK)
  346. {
  347. /* make sure the CAN_FxR1[2:0](IDE RTR) work */
  348. mask_l_tail = 0x06;
  349. }
  350. else if (filter_cfg->items[i].mode == CAN_FILTERMODE_IDLIST)
  351. {
  352. /* same as CAN_FxR1 */
  353. mask_l_tail = (filter_cfg->items[i].ide << 2) |
  354. (filter_cfg->items[i].rtr << 1);
  355. }
  356. if (filter_cfg->items[i].ide == RT_CAN_STDID)
  357. {
  358. id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF;
  359. id_l = ((filter_cfg->items[i].id << 18) |
  360. (filter_cfg->items[i].ide << 2) |
  361. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  362. mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF;
  363. mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF;
  364. }
  365. else if (filter_cfg->items[i].ide == RT_CAN_EXTID)
  366. {
  367. id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF;
  368. id_l = ((filter_cfg->items[i].id << 3) |
  369. (filter_cfg->items[i].ide << 2) |
  370. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  371. mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF;
  372. mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF;
  373. }
  374. drv_can->FilterConfig.FilterIdHigh = id_h;
  375. drv_can->FilterConfig.FilterIdLow = id_l;
  376. drv_can->FilterConfig.FilterMaskIdHigh = mask_h;
  377. drv_can->FilterConfig.FilterMaskIdLow = mask_l;
  378. drv_can->FilterConfig.FilterMode = filter_cfg->items[i].mode;
  379. drv_can->FilterConfig.FilterFIFOAssignment = filter_cfg->items[i].rxfifo;/*rxfifo = CAN_RX_FIFO0/CAN_RX_FIFO1*/
  380. /* Filter conf */
  381. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  382. }
  383. }
  384. break;
  385. }
  386. case RT_CAN_CMD_SET_MODE:
  387. argval = (rt_uint32_t) arg;
  388. if (argval != RT_CAN_MODE_NORMAL &&
  389. argval != RT_CAN_MODE_LISTEN &&
  390. argval != RT_CAN_MODE_LOOPBACK &&
  391. argval != RT_CAN_MODE_LOOPBACKANLISTEN)
  392. {
  393. return -RT_ERROR;
  394. }
  395. if (argval != drv_can->device.config.mode)
  396. {
  397. drv_can->device.config.mode = argval;
  398. return _can_config(&drv_can->device, &drv_can->device.config);
  399. }
  400. break;
  401. case RT_CAN_CMD_SET_BAUD:
  402. argval = (rt_uint32_t) arg;
  403. if (argval != CAN1MBaud &&
  404. argval != CAN800kBaud &&
  405. argval != CAN500kBaud &&
  406. argval != CAN250kBaud &&
  407. argval != CAN125kBaud &&
  408. argval != CAN100kBaud &&
  409. argval != CAN50kBaud &&
  410. argval != CAN20kBaud &&
  411. argval != CAN10kBaud)
  412. {
  413. return -RT_ERROR;
  414. }
  415. if (argval != drv_can->device.config.baud_rate)
  416. {
  417. drv_can->device.config.baud_rate = argval;
  418. return _can_config(&drv_can->device, &drv_can->device.config);
  419. }
  420. break;
  421. case RT_CAN_CMD_SET_PRIV:
  422. argval = (rt_uint32_t) arg;
  423. if (argval != RT_CAN_MODE_PRIV &&
  424. argval != RT_CAN_MODE_NOPRIV)
  425. {
  426. return -RT_ERROR;
  427. }
  428. if (argval != drv_can->device.config.privmode)
  429. {
  430. drv_can->device.config.privmode = argval;
  431. return _can_config(&drv_can->device, &drv_can->device.config);
  432. }
  433. break;
  434. case RT_CAN_CMD_GET_STATUS:
  435. {
  436. rt_uint32_t errtype;
  437. errtype = drv_can->CanHandle.Instance->ESR;
  438. drv_can->device.status.rcverrcnt = errtype >> 24;
  439. drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
  440. drv_can->device.status.lasterrtype = errtype & 0x70;
  441. drv_can->device.status.errcode = errtype & 0x07;
  442. rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
  443. break;
  444. }
  445. case RT_CAN_CMD_START:
  446. argval = (rt_uint32_t) arg;
  447. if (argval == 0)
  448. {
  449. HAL_CAN_Stop(&drv_can->CanHandle);
  450. }
  451. else
  452. {
  453. HAL_CAN_Start(&drv_can->CanHandle);
  454. }
  455. break;
  456. }
  457. return RT_EOK;
  458. }
  459. static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  460. {
  461. CAN_HandleTypeDef *hcan;
  462. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  463. struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
  464. CAN_TxHeaderTypeDef txheader = {0};
  465. HAL_CAN_StateTypeDef state = hcan->State;
  466. /* Check the parameters */
  467. RT_ASSERT(IS_CAN_DLC(pmsg->len));
  468. if ((state == HAL_CAN_STATE_READY) ||
  469. (state == HAL_CAN_STATE_LISTENING))
  470. {
  471. /*check select mailbox is empty */
  472. switch (1 << box_num)
  473. {
  474. case CAN_TX_MAILBOX0:
  475. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME0) != SET)
  476. {
  477. /* Return function status */
  478. return -RT_ERROR;
  479. }
  480. break;
  481. case CAN_TX_MAILBOX1:
  482. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME1) != SET)
  483. {
  484. /* Return function status */
  485. return -RT_ERROR;
  486. }
  487. break;
  488. case CAN_TX_MAILBOX2:
  489. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME2) != SET)
  490. {
  491. /* Return function status */
  492. return -RT_ERROR;
  493. }
  494. break;
  495. default:
  496. RT_ASSERT(0);
  497. break;
  498. }
  499. if (RT_CAN_STDID == pmsg->ide)
  500. {
  501. txheader.IDE = CAN_ID_STD;
  502. RT_ASSERT(IS_CAN_STDID(pmsg->id));
  503. txheader.StdId = pmsg->id;
  504. }
  505. else
  506. {
  507. txheader.IDE = CAN_ID_EXT;
  508. RT_ASSERT(IS_CAN_EXTID(pmsg->id));
  509. txheader.ExtId = pmsg->id;
  510. }
  511. if (RT_CAN_DTR == pmsg->rtr)
  512. {
  513. txheader.RTR = CAN_RTR_DATA;
  514. }
  515. else
  516. {
  517. txheader.RTR = CAN_RTR_REMOTE;
  518. }
  519. /* clear TIR */
  520. hcan->Instance->sTxMailBox[box_num].TIR &= CAN_TI0R_TXRQ;
  521. /* Set up the Id */
  522. if (RT_CAN_STDID == pmsg->ide)
  523. {
  524. hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.StdId << CAN_TI0R_STID_Pos) | txheader.RTR;
  525. }
  526. else
  527. {
  528. hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.ExtId << CAN_TI0R_EXID_Pos) | txheader.IDE | txheader.RTR;
  529. }
  530. /* Set up the DLC */
  531. hcan->Instance->sTxMailBox[box_num].TDTR = pmsg->len & 0x0FU;
  532. /* Set up the data field */
  533. WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDHR,
  534. ((uint32_t)pmsg->data[7] << CAN_TDH0R_DATA7_Pos) |
  535. ((uint32_t)pmsg->data[6] << CAN_TDH0R_DATA6_Pos) |
  536. ((uint32_t)pmsg->data[5] << CAN_TDH0R_DATA5_Pos) |
  537. ((uint32_t)pmsg->data[4] << CAN_TDH0R_DATA4_Pos));
  538. WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDLR,
  539. ((uint32_t)pmsg->data[3] << CAN_TDL0R_DATA3_Pos) |
  540. ((uint32_t)pmsg->data[2] << CAN_TDL0R_DATA2_Pos) |
  541. ((uint32_t)pmsg->data[1] << CAN_TDL0R_DATA1_Pos) |
  542. ((uint32_t)pmsg->data[0] << CAN_TDL0R_DATA0_Pos));
  543. /* Request transmission */
  544. SET_BIT(hcan->Instance->sTxMailBox[box_num].TIR, CAN_TI0R_TXRQ);
  545. return RT_EOK;
  546. }
  547. else
  548. {
  549. /* Update error code */
  550. hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
  551. return -RT_ERROR;
  552. }
  553. }
  554. static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  555. {
  556. HAL_StatusTypeDef status;
  557. CAN_HandleTypeDef *hcan;
  558. struct rt_can_msg *pmsg;
  559. CAN_RxHeaderTypeDef rxheader = {0};
  560. RT_ASSERT(can);
  561. hcan = &((struct stm32_can *)can->parent.user_data)->CanHandle;
  562. pmsg = (struct rt_can_msg *) buf;
  563. /* get data */
  564. status = HAL_CAN_GetRxMessage(hcan, fifo, &rxheader, pmsg->data);
  565. if (HAL_OK != status)
  566. return -RT_ERROR;
  567. /* get id */
  568. if (CAN_ID_STD == rxheader.IDE)
  569. {
  570. pmsg->ide = RT_CAN_STDID;
  571. pmsg->id = rxheader.StdId;
  572. }
  573. else
  574. {
  575. pmsg->ide = RT_CAN_EXTID;
  576. pmsg->id = rxheader.ExtId;
  577. }
  578. /* get type */
  579. if (CAN_RTR_DATA == rxheader.RTR)
  580. {
  581. pmsg->rtr = RT_CAN_DTR;
  582. }
  583. else
  584. {
  585. pmsg->rtr = RT_CAN_RTR;
  586. }
  587. /*get rxfifo = CAN_RX_FIFO0/CAN_RX_FIFO1*/
  588. pmsg->rxfifo = fifo;
  589. /* get len */
  590. pmsg->len = rxheader.DLC;
  591. /* get hdr_index */
  592. if (hcan->Instance == CAN1)
  593. {
  594. pmsg->hdr_index = rxheader.FilterMatchIndex;
  595. }
  596. #ifdef CAN2
  597. else if (hcan->Instance == CAN2)
  598. {
  599. pmsg->hdr_index = rxheader.FilterMatchIndex;
  600. }
  601. #endif
  602. return RT_EOK;
  603. }
  604. static const struct rt_can_ops _can_ops =
  605. {
  606. _can_config,
  607. _can_control,
  608. _can_sendmsg,
  609. _can_recvmsg,
  610. };
  611. static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
  612. {
  613. CAN_HandleTypeDef *hcan;
  614. RT_ASSERT(can);
  615. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  616. switch (fifo)
  617. {
  618. case CAN_RX_FIFO0:
  619. /* save to user list */
  620. if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_MSG_PENDING))
  621. {
  622. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  623. }
  624. /* Check FULL flag for FIFO0 */
  625. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_FULL))
  626. {
  627. /* Clear FIFO0 FULL Flag */
  628. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
  629. }
  630. /* Check Overrun flag for FIFO0 */
  631. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_OVERRUN))
  632. {
  633. /* Clear FIFO0 Overrun Flag */
  634. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
  635. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  636. }
  637. break;
  638. case CAN_RX_FIFO1:
  639. /* save to user list */
  640. if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_MSG_PENDING))
  641. {
  642. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  643. }
  644. /* Check FULL flag for FIFO1 */
  645. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_FULL))
  646. {
  647. /* Clear FIFO1 FULL Flag */
  648. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
  649. }
  650. /* Check Overrun flag for FIFO1 */
  651. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_OVERRUN))
  652. {
  653. /* Clear FIFO1 Overrun Flag */
  654. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
  655. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  656. }
  657. break;
  658. }
  659. }
  660. static void _can_check_tx_complete(struct rt_can_device *can)
  661. {
  662. CAN_HandleTypeDef *hcan;
  663. RT_ASSERT(can);
  664. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  665. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
  666. {
  667. if (!__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
  668. {
  669. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  670. }
  671. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
  672. }
  673. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
  674. {
  675. if (!__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
  676. {
  677. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  678. }
  679. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
  680. }
  681. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
  682. {
  683. if (!__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
  684. {
  685. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  686. }
  687. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
  688. }
  689. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TERR0))/*IF AutoRetransmission = ENABLE,ACK ERR handler*/
  690. {
  691. SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ0);/*Abort the send request, trigger the TX interrupt,release completion quantity*/
  692. }
  693. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TERR1))
  694. {
  695. SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ1);
  696. }
  697. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TERR2))
  698. {
  699. SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ2);
  700. }
  701. }
  702. static void _can_sce_isr(struct rt_can_device *can)
  703. {
  704. CAN_HandleTypeDef *hcan;
  705. RT_ASSERT(can);
  706. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  707. rt_uint32_t errtype = hcan->Instance->ESR;
  708. switch ((errtype & 0x70) >> 4)
  709. {
  710. case RT_CAN_BUS_BIT_PAD_ERR:
  711. can->status.bitpaderrcnt++;
  712. break;
  713. case RT_CAN_BUS_FORMAT_ERR:
  714. can->status.formaterrcnt++;
  715. break;
  716. case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
  717. can->status.ackerrcnt++;
  718. break;
  719. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  720. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  721. can->status.biterrcnt++;
  722. break;
  723. case RT_CAN_BUS_CRC_ERR:
  724. can->status.crcerrcnt++;
  725. break;
  726. }
  727. _can_check_tx_complete(can);
  728. can->status.lasterrtype = errtype & 0x70;
  729. can->status.rcverrcnt = errtype >> 24;
  730. can->status.snderrcnt = (errtype >> 16 & 0xFF);
  731. can->status.errcode = errtype & 0x07;
  732. hcan->Instance->MSR |= CAN_MSR_ERRI;
  733. }
  734. static void _can_tx_isr(struct rt_can_device *can)
  735. {
  736. CAN_HandleTypeDef *hcan;
  737. RT_ASSERT(can);
  738. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  739. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
  740. {
  741. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
  742. {
  743. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 0 << 8);
  744. }
  745. else
  746. {
  747. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  748. }
  749. /* Write 0 to Clear transmission status flag RQCPx */
  750. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
  751. }
  752. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
  753. {
  754. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
  755. {
  756. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 1 << 8);
  757. }
  758. else
  759. {
  760. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  761. }
  762. /* Write 0 to Clear transmission status flag RQCPx */
  763. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
  764. }
  765. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
  766. {
  767. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
  768. {
  769. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 2 << 8);
  770. }
  771. else
  772. {
  773. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  774. }
  775. /* Write 0 to Clear transmission status flag RQCPx */
  776. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
  777. }
  778. }
  779. #ifdef BSP_USING_CAN1
  780. /**
  781. * @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
  782. */
  783. void CAN1_TX_IRQHandler(void)
  784. {
  785. rt_interrupt_enter();
  786. _can_tx_isr(&drv_can1.device);
  787. rt_interrupt_leave();
  788. }
  789. /**
  790. * @brief This function handles CAN1 RX0 interrupts.
  791. */
  792. void CAN1_RX0_IRQHandler(void)
  793. {
  794. rt_interrupt_enter();
  795. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
  796. rt_interrupt_leave();
  797. }
  798. /**
  799. * @brief This function handles CAN1 RX1 interrupts.
  800. */
  801. void CAN1_RX1_IRQHandler(void)
  802. {
  803. rt_interrupt_enter();
  804. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
  805. rt_interrupt_leave();
  806. }
  807. /**
  808. * @brief This function handles CAN1 SCE interrupts.
  809. */
  810. void CAN1_SCE_IRQHandler(void)
  811. {
  812. rt_interrupt_enter();
  813. _can_sce_isr(&drv_can1.device);
  814. rt_interrupt_leave();
  815. }
  816. #endif /* BSP_USING_CAN1 */
  817. #ifdef BSP_USING_CAN2
  818. /**
  819. * @brief This function handles CAN2 TX interrupts.
  820. */
  821. void CAN2_TX_IRQHandler(void)
  822. {
  823. rt_interrupt_enter();
  824. _can_tx_isr(&drv_can2.device);
  825. rt_interrupt_leave();
  826. }
  827. /**
  828. * @brief This function handles CAN2 RX0 interrupts.
  829. */
  830. void CAN2_RX0_IRQHandler(void)
  831. {
  832. rt_interrupt_enter();
  833. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
  834. rt_interrupt_leave();
  835. }
  836. /**
  837. * @brief This function handles CAN2 RX1 interrupts.
  838. */
  839. void CAN2_RX1_IRQHandler(void)
  840. {
  841. rt_interrupt_enter();
  842. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
  843. rt_interrupt_leave();
  844. }
  845. /**
  846. * @brief This function handles CAN2 SCE interrupts.
  847. */
  848. void CAN2_SCE_IRQHandler(void)
  849. {
  850. rt_interrupt_enter();
  851. _can_sce_isr(&drv_can2.device);
  852. rt_interrupt_leave();
  853. }
  854. #endif /* BSP_USING_CAN2 */
  855. int rt_hw_can_init(void)
  856. {
  857. struct can_configure config = CANDEFAULTCONFIG;
  858. config.privmode = RT_CAN_MODE_NOPRIV;
  859. config.ticks = 50;
  860. #ifdef RT_CAN_USING_HDR
  861. config.maxhdr = 14;
  862. #ifdef CAN2
  863. config.maxhdr = 28;
  864. #endif
  865. #endif
  866. /* config default filter */
  867. CAN_FilterTypeDef filterConf = {0};
  868. filterConf.FilterIdHigh = 0x0000;
  869. filterConf.FilterIdLow = 0x0000;
  870. filterConf.FilterMaskIdHigh = 0x0000;
  871. filterConf.FilterMaskIdLow = 0x0000;
  872. filterConf.FilterFIFOAssignment = CAN_FILTER_FIFO0;
  873. filterConf.FilterBank = 0;
  874. filterConf.FilterMode = CAN_FILTERMODE_IDMASK;
  875. filterConf.FilterScale = CAN_FILTERSCALE_32BIT;
  876. filterConf.FilterActivation = ENABLE;
  877. filterConf.SlaveStartFilterBank = 14;
  878. #ifdef BSP_USING_CAN1
  879. filterConf.FilterBank = 0;
  880. drv_can1.FilterConfig = filterConf;
  881. drv_can1.device.config = config;
  882. /* register CAN1 device */
  883. rt_hw_can_register(&drv_can1.device,
  884. drv_can1.name,
  885. &_can_ops,
  886. &drv_can1);
  887. #endif /* BSP_USING_CAN1 */
  888. #ifdef BSP_USING_CAN2
  889. filterConf.FilterBank = filterConf.SlaveStartFilterBank;
  890. drv_can2.FilterConfig = filterConf;
  891. drv_can2.device.config = config;
  892. /* register CAN2 device */
  893. rt_hw_can_register(&drv_can2.device,
  894. drv_can2.name,
  895. &_can_ops,
  896. &drv_can2);
  897. #endif /* BSP_USING_CAN2 */
  898. return 0;
  899. }
  900. INIT_BOARD_EXPORT(rt_hw_can_init);
  901. #endif /* BSP_USING_CAN */
  902. /************************** end of file ******************/