dev_can.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974
  1. /*
  2. * Copyright (c) 2006-2024 RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2015-05-14 aubrcool@qq.com first version
  9. * 2015-07-06 Bernard code cleanup and remove RT_CAN_USING_LED;
  10. */
  11. #include <rthw.h>
  12. #include <rtthread.h>
  13. #include <rtdevice.h>
  14. #define CAN_LOCK(can) rt_mutex_take(&(can->lock), RT_WAITING_FOREVER)
  15. #define CAN_UNLOCK(can) rt_mutex_release(&(can->lock))
  16. static rt_err_t rt_can_init(struct rt_device *dev)
  17. {
  18. rt_err_t result = RT_EOK;
  19. struct rt_can_device *can;
  20. RT_ASSERT(dev != RT_NULL);
  21. can = (struct rt_can_device *)dev;
  22. /* initialize rx/tx */
  23. can->can_rx = RT_NULL;
  24. can->can_tx = RT_NULL;
  25. #ifdef RT_CAN_USING_HDR
  26. can->hdr = RT_NULL;
  27. #endif
  28. /* apply configuration */
  29. if (can->ops->configure)
  30. result = can->ops->configure(can, &can->config);
  31. else
  32. result = -RT_ENOSYS;
  33. return result;
  34. }
  35. /*
  36. * can interrupt routines
  37. */
  38. rt_inline rt_ssize_t _can_int_rx(struct rt_can_device *can, struct rt_can_msg *data, rt_ssize_t msgs)
  39. {
  40. rt_ssize_t size;
  41. struct rt_can_rx_fifo *rx_fifo;
  42. RT_ASSERT(can != RT_NULL);
  43. size = msgs;
  44. rx_fifo = (struct rt_can_rx_fifo *) can->can_rx;
  45. RT_ASSERT(rx_fifo != RT_NULL);
  46. /* read from software FIFO */
  47. while (msgs / sizeof(struct rt_can_msg) > 0)
  48. {
  49. rt_base_t level;
  50. #ifdef RT_CAN_USING_HDR
  51. rt_int8_t hdr;
  52. #endif /*RT_CAN_USING_HDR*/
  53. struct rt_can_msg_list *listmsg = RT_NULL;
  54. /* disable interrupt */
  55. level = rt_hw_interrupt_disable();
  56. #ifdef RT_CAN_USING_HDR
  57. hdr = data->hdr_index;
  58. if (hdr >= 0 && can->hdr && hdr < can->config.maxhdr && !rt_list_isempty(&can->hdr[hdr].list))
  59. {
  60. listmsg = rt_list_entry(can->hdr[hdr].list.next, struct rt_can_msg_list, hdrlist);
  61. rt_list_remove(&listmsg->list);
  62. rt_list_remove(&listmsg->hdrlist);
  63. if (can->hdr[hdr].msgs)
  64. {
  65. can->hdr[hdr].msgs--;
  66. }
  67. listmsg->owner = RT_NULL;
  68. }
  69. else if (hdr == -1)
  70. #endif /*RT_CAN_USING_HDR*/
  71. {
  72. if (!rt_list_isempty(&rx_fifo->uselist))
  73. {
  74. listmsg = rt_list_entry(rx_fifo->uselist.next, struct rt_can_msg_list, list);
  75. rt_list_remove(&listmsg->list);
  76. #ifdef RT_CAN_USING_HDR
  77. rt_list_remove(&listmsg->hdrlist);
  78. if (listmsg->owner != RT_NULL && listmsg->owner->msgs)
  79. {
  80. listmsg->owner->msgs--;
  81. }
  82. listmsg->owner = RT_NULL;
  83. #endif /*RT_CAN_USING_HDR*/
  84. }
  85. else
  86. {
  87. /* no data, enable interrupt and break out */
  88. rt_hw_interrupt_enable(level);
  89. break;
  90. }
  91. }
  92. /* enable interrupt */
  93. rt_hw_interrupt_enable(level);
  94. if (listmsg != RT_NULL)
  95. {
  96. rt_memcpy(data, &listmsg->data, sizeof(struct rt_can_msg));
  97. level = rt_hw_interrupt_disable();
  98. rt_list_insert_before(&rx_fifo->freelist, &listmsg->list);
  99. rx_fifo->freenumbers++;
  100. RT_ASSERT(rx_fifo->freenumbers <= can->config.msgboxsz);
  101. rt_hw_interrupt_enable(level);
  102. listmsg = RT_NULL;
  103. }
  104. else
  105. {
  106. break;
  107. }
  108. data ++;
  109. msgs -= sizeof(struct rt_can_msg);
  110. }
  111. return (size - msgs);
  112. }
  113. rt_inline int _can_int_tx(struct rt_can_device *can, const struct rt_can_msg *data, int msgs)
  114. {
  115. int size;
  116. struct rt_can_tx_fifo *tx_fifo;
  117. RT_ASSERT(can != RT_NULL);
  118. size = msgs;
  119. tx_fifo = (struct rt_can_tx_fifo *) can->can_tx;
  120. RT_ASSERT(tx_fifo != RT_NULL);
  121. while (msgs)
  122. {
  123. rt_base_t level;
  124. rt_uint32_t no;
  125. rt_uint32_t result;
  126. struct rt_can_sndbxinx_list *tx_tosnd = RT_NULL;
  127. rt_sem_take(&(tx_fifo->sem), RT_WAITING_FOREVER);
  128. level = rt_hw_interrupt_disable();
  129. tx_tosnd = rt_list_entry(tx_fifo->freelist.next, struct rt_can_sndbxinx_list, list);
  130. RT_ASSERT(tx_tosnd != RT_NULL);
  131. rt_list_remove(&tx_tosnd->list);
  132. rt_hw_interrupt_enable(level);
  133. no = ((rt_ubase_t)tx_tosnd - (rt_ubase_t)tx_fifo->buffer) / sizeof(struct rt_can_sndbxinx_list);
  134. tx_tosnd->result = RT_CAN_SND_RESULT_WAIT;
  135. rt_completion_init(&tx_tosnd->completion);
  136. if (can->ops->sendmsg(can, data, no) != RT_EOK)
  137. {
  138. /* send failed. */
  139. level = rt_hw_interrupt_disable();
  140. rt_list_insert_before(&tx_fifo->freelist, &tx_tosnd->list);
  141. rt_hw_interrupt_enable(level);
  142. rt_sem_release(&(tx_fifo->sem));
  143. goto err_ret;
  144. }
  145. can->status.sndchange = 1;
  146. rt_completion_wait(&(tx_tosnd->completion), RT_WAITING_FOREVER);
  147. level = rt_hw_interrupt_disable();
  148. result = tx_tosnd->result;
  149. if (!rt_list_isempty(&tx_tosnd->list))
  150. {
  151. rt_list_remove(&tx_tosnd->list);
  152. }
  153. rt_list_insert_before(&tx_fifo->freelist, &tx_tosnd->list);
  154. rt_hw_interrupt_enable(level);
  155. rt_sem_release(&(tx_fifo->sem));
  156. if (result == RT_CAN_SND_RESULT_OK)
  157. {
  158. level = rt_hw_interrupt_disable();
  159. can->status.sndpkg++;
  160. rt_hw_interrupt_enable(level);
  161. data ++;
  162. msgs -= sizeof(struct rt_can_msg);
  163. if (!msgs) break;
  164. }
  165. else
  166. {
  167. err_ret:
  168. level = rt_hw_interrupt_disable();
  169. can->status.dropedsndpkg++;
  170. rt_hw_interrupt_enable(level);
  171. break;
  172. }
  173. }
  174. return (size - msgs);
  175. }
  176. rt_inline int _can_int_tx_priv(struct rt_can_device *can, const struct rt_can_msg *data, int msgs)
  177. {
  178. int size;
  179. rt_base_t level;
  180. rt_uint32_t no, result;
  181. struct rt_can_tx_fifo *tx_fifo;
  182. RT_ASSERT(can != RT_NULL);
  183. size = msgs;
  184. tx_fifo = (struct rt_can_tx_fifo *) can->can_tx;
  185. RT_ASSERT(tx_fifo != RT_NULL);
  186. while (msgs)
  187. {
  188. no = data->priv;
  189. if (no >= can->config.sndboxnumber)
  190. {
  191. break;
  192. }
  193. level = rt_hw_interrupt_disable();
  194. if ((tx_fifo->buffer[no].result != RT_CAN_SND_RESULT_OK))
  195. {
  196. rt_hw_interrupt_enable(level);
  197. rt_completion_wait(&(tx_fifo->buffer[no].completion), RT_WAITING_FOREVER);
  198. continue;
  199. }
  200. tx_fifo->buffer[no].result = RT_CAN_SND_RESULT_WAIT;
  201. rt_hw_interrupt_enable(level);
  202. if (can->ops->sendmsg(can, data, no) != RT_EOK)
  203. {
  204. continue;
  205. }
  206. can->status.sndchange = 1;
  207. rt_completion_wait(&(tx_fifo->buffer[no].completion), RT_WAITING_FOREVER);
  208. result = tx_fifo->buffer[no].result;
  209. if (result == RT_CAN_SND_RESULT_OK)
  210. {
  211. level = rt_hw_interrupt_disable();
  212. can->status.sndpkg++;
  213. rt_hw_interrupt_enable(level);
  214. data ++;
  215. msgs -= sizeof(struct rt_can_msg);
  216. if (!msgs) break;
  217. }
  218. else
  219. {
  220. level = rt_hw_interrupt_disable();
  221. can->status.dropedsndpkg++;
  222. rt_hw_interrupt_enable(level);
  223. break;
  224. }
  225. }
  226. return (size - msgs);
  227. }
  228. static rt_err_t rt_can_open(struct rt_device *dev, rt_uint16_t oflag)
  229. {
  230. struct rt_can_device *can;
  231. char tmpname[16];
  232. RT_ASSERT(dev != RT_NULL);
  233. can = (struct rt_can_device *)dev;
  234. CAN_LOCK(can);
  235. /* get open flags */
  236. dev->open_flag = oflag & 0xff;
  237. if (can->can_rx == RT_NULL)
  238. {
  239. if (oflag & RT_DEVICE_FLAG_INT_RX)
  240. {
  241. int i = 0;
  242. struct rt_can_rx_fifo *rx_fifo;
  243. rx_fifo = (struct rt_can_rx_fifo *) rt_malloc(sizeof(struct rt_can_rx_fifo) +
  244. can->config.msgboxsz * sizeof(struct rt_can_msg_list));
  245. RT_ASSERT(rx_fifo != RT_NULL);
  246. rx_fifo->buffer = (struct rt_can_msg_list *)(rx_fifo + 1);
  247. rt_memset(rx_fifo->buffer, 0, can->config.msgboxsz * sizeof(struct rt_can_msg_list));
  248. rt_list_init(&rx_fifo->freelist);
  249. rt_list_init(&rx_fifo->uselist);
  250. rx_fifo->freenumbers = can->config.msgboxsz;
  251. for (i = 0; i < can->config.msgboxsz; i++)
  252. {
  253. rt_list_insert_before(&rx_fifo->freelist, &rx_fifo->buffer[i].list);
  254. #ifdef RT_CAN_USING_HDR
  255. rt_list_init(&rx_fifo->buffer[i].hdrlist);
  256. rx_fifo->buffer[i].owner = RT_NULL;
  257. #endif
  258. }
  259. can->can_rx = rx_fifo;
  260. dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
  261. /* open can rx interrupt */
  262. can->ops->control(can, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX);
  263. }
  264. }
  265. if (can->can_tx == RT_NULL)
  266. {
  267. if (oflag & RT_DEVICE_FLAG_INT_TX)
  268. {
  269. int i = 0;
  270. struct rt_can_tx_fifo *tx_fifo;
  271. tx_fifo = (struct rt_can_tx_fifo *) rt_malloc(sizeof(struct rt_can_tx_fifo) +
  272. can->config.sndboxnumber * sizeof(struct rt_can_sndbxinx_list));
  273. RT_ASSERT(tx_fifo != RT_NULL);
  274. tx_fifo->buffer = (struct rt_can_sndbxinx_list *)(tx_fifo + 1);
  275. rt_memset(tx_fifo->buffer, 0,
  276. can->config.sndboxnumber * sizeof(struct rt_can_sndbxinx_list));
  277. rt_list_init(&tx_fifo->freelist);
  278. for (i = 0; i < can->config.sndboxnumber; i++)
  279. {
  280. rt_list_insert_before(&tx_fifo->freelist, &tx_fifo->buffer[i].list);
  281. rt_completion_init(&(tx_fifo->buffer[i].completion));
  282. tx_fifo->buffer[i].result = RT_CAN_SND_RESULT_OK;
  283. }
  284. rt_sprintf(tmpname, "%stl", dev->parent.name);
  285. rt_sem_init(&(tx_fifo->sem), tmpname, can->config.sndboxnumber, RT_IPC_FLAG_FIFO);
  286. can->can_tx = tx_fifo;
  287. dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
  288. /* open can tx interrupt */
  289. can->ops->control(can, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_TX);
  290. }
  291. }
  292. can->ops->control(can, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_CAN_INT_ERR);
  293. #ifdef RT_CAN_USING_HDR
  294. if (can->hdr == RT_NULL)
  295. {
  296. int i = 0;
  297. struct rt_can_hdr *phdr;
  298. phdr = (struct rt_can_hdr *) rt_malloc(can->config.maxhdr * sizeof(struct rt_can_hdr));
  299. RT_ASSERT(phdr != RT_NULL);
  300. rt_memset(phdr, 0, can->config.maxhdr * sizeof(struct rt_can_hdr));
  301. for (i = 0; i < can->config.maxhdr; i++)
  302. {
  303. rt_list_init(&phdr[i].list);
  304. }
  305. can->hdr = phdr;
  306. }
  307. #endif
  308. if (!can->timerinitflag)
  309. {
  310. can->timerinitflag = 1;
  311. rt_timer_start(&can->timer);
  312. }
  313. CAN_UNLOCK(can);
  314. return RT_EOK;
  315. }
  316. static rt_err_t rt_can_close(struct rt_device *dev)
  317. {
  318. struct rt_can_device *can;
  319. RT_ASSERT(dev != RT_NULL);
  320. can = (struct rt_can_device *)dev;
  321. CAN_LOCK(can);
  322. /* this device has more reference count */
  323. if (dev->ref_count > 1)
  324. {
  325. CAN_UNLOCK(can);
  326. return RT_EOK;
  327. }
  328. if (can->timerinitflag)
  329. {
  330. can->timerinitflag = 0;
  331. rt_timer_stop(&can->timer);
  332. }
  333. can->status_indicate.ind = RT_NULL;
  334. can->status_indicate.args = RT_NULL;
  335. #ifdef RT_CAN_USING_HDR
  336. if (can->hdr != RT_NULL)
  337. {
  338. rt_free(can->hdr);
  339. can->hdr = RT_NULL;
  340. }
  341. #endif
  342. if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
  343. {
  344. struct rt_can_rx_fifo *rx_fifo;
  345. /* clear can rx interrupt */
  346. can->ops->control(can, RT_DEVICE_CTRL_CLR_INT, (void *)RT_DEVICE_FLAG_INT_RX);
  347. rx_fifo = (struct rt_can_rx_fifo *)can->can_rx;
  348. RT_ASSERT(rx_fifo != RT_NULL);
  349. rt_free(rx_fifo);
  350. dev->open_flag &= ~RT_DEVICE_FLAG_INT_RX;
  351. can->can_rx = RT_NULL;
  352. }
  353. if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
  354. {
  355. struct rt_can_tx_fifo *tx_fifo;
  356. /* clear can tx interrupt */
  357. can->ops->control(can, RT_DEVICE_CTRL_CLR_INT, (void *)RT_DEVICE_FLAG_INT_TX);
  358. tx_fifo = (struct rt_can_tx_fifo *)can->can_tx;
  359. RT_ASSERT(tx_fifo != RT_NULL);
  360. rt_sem_detach(&(tx_fifo->sem));
  361. rt_free(tx_fifo);
  362. dev->open_flag &= ~RT_DEVICE_FLAG_INT_TX;
  363. can->can_tx = RT_NULL;
  364. }
  365. can->ops->control(can, RT_DEVICE_CTRL_CLR_INT, (void *)RT_DEVICE_CAN_INT_ERR);
  366. can->ops->control(can, RT_CAN_CMD_START, RT_FALSE);
  367. CAN_UNLOCK(can);
  368. return RT_EOK;
  369. }
  370. static rt_ssize_t rt_can_read(struct rt_device *dev,
  371. rt_off_t pos,
  372. void *buffer,
  373. rt_size_t size)
  374. {
  375. struct rt_can_device *can;
  376. RT_ASSERT(dev != RT_NULL);
  377. if (size == 0) return 0;
  378. can = (struct rt_can_device *)dev;
  379. if ((dev->open_flag & RT_DEVICE_FLAG_INT_RX) && (dev->ref_count > 0))
  380. {
  381. return _can_int_rx(can, buffer, size);
  382. }
  383. return 0;
  384. }
  385. static rt_ssize_t rt_can_write(struct rt_device *dev,
  386. rt_off_t pos,
  387. const void *buffer,
  388. rt_size_t size)
  389. {
  390. struct rt_can_device *can;
  391. RT_ASSERT(dev != RT_NULL);
  392. if (size == 0) return 0;
  393. can = (struct rt_can_device *)dev;
  394. if ((dev->open_flag & RT_DEVICE_FLAG_INT_TX) && (dev->ref_count > 0))
  395. {
  396. if (can->config.privmode)
  397. {
  398. return _can_int_tx_priv(can, buffer, size);
  399. }
  400. else
  401. {
  402. return _can_int_tx(can, buffer, size);
  403. }
  404. }
  405. return 0;
  406. }
  407. static rt_err_t rt_can_control(struct rt_device *dev,
  408. int cmd,
  409. void *args)
  410. {
  411. struct rt_can_device *can;
  412. rt_err_t res;
  413. res = RT_EOK;
  414. RT_ASSERT(dev != RT_NULL);
  415. can = (struct rt_can_device *)dev;
  416. switch (cmd)
  417. {
  418. case RT_DEVICE_CTRL_SUSPEND:
  419. /* suspend device */
  420. dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
  421. break;
  422. case RT_DEVICE_CTRL_RESUME:
  423. /* resume device */
  424. dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
  425. break;
  426. case RT_DEVICE_CTRL_CONFIG:
  427. /* configure device */
  428. res = can->ops->configure(can, (struct can_configure *)args);
  429. break;
  430. case RT_CAN_CMD_SET_PRIV:
  431. /* configure device */
  432. if ((rt_uint32_t)(rt_ubase_t)args != can->config.privmode)
  433. {
  434. int i;
  435. rt_base_t level;
  436. struct rt_can_tx_fifo *tx_fifo;
  437. res = can->ops->control(can, cmd, args);
  438. if (res != RT_EOK) return res;
  439. tx_fifo = (struct rt_can_tx_fifo *) can->can_tx;
  440. if (can->config.privmode)
  441. {
  442. for (i = 0; i < can->config.sndboxnumber; i++)
  443. {
  444. level = rt_hw_interrupt_disable();
  445. if(rt_list_isempty(&tx_fifo->buffer[i].list))
  446. {
  447. rt_sem_release(&(tx_fifo->sem));
  448. }
  449. else
  450. {
  451. rt_list_remove(&tx_fifo->buffer[i].list);
  452. }
  453. rt_hw_interrupt_enable(level);
  454. }
  455. }
  456. else
  457. {
  458. for (i = 0; i < can->config.sndboxnumber; i++)
  459. {
  460. level = rt_hw_interrupt_disable();
  461. if (tx_fifo->buffer[i].result == RT_CAN_SND_RESULT_OK)
  462. {
  463. rt_list_insert_before(&tx_fifo->freelist, &tx_fifo->buffer[i].list);
  464. }
  465. rt_hw_interrupt_enable(level);
  466. }
  467. }
  468. }
  469. break;
  470. case RT_CAN_CMD_SET_STATUS_IND:
  471. can->status_indicate.ind = ((rt_can_status_ind_type_t)args)->ind;
  472. can->status_indicate.args = ((rt_can_status_ind_type_t)args)->args;
  473. break;
  474. #ifdef RT_CAN_USING_HDR
  475. case RT_CAN_CMD_SET_FILTER:
  476. res = can->ops->control(can, cmd, args);
  477. if (res != RT_EOK || can->hdr == RT_NULL)
  478. {
  479. return res;
  480. }
  481. struct rt_can_filter_config *pfilter;
  482. struct rt_can_filter_item *pitem;
  483. rt_uint32_t count;
  484. rt_base_t level;
  485. pfilter = (struct rt_can_filter_config *)args;
  486. RT_ASSERT(pfilter);
  487. count = pfilter->count;
  488. pitem = pfilter->items;
  489. if (pfilter->actived)
  490. {
  491. while (count)
  492. {
  493. if (pitem->hdr_bank >= can->config.maxhdr || pitem->hdr_bank < 0)
  494. {
  495. count--;
  496. pitem++;
  497. continue;
  498. }
  499. level = rt_hw_interrupt_disable();
  500. if (!can->hdr[pitem->hdr_bank].connected)
  501. {
  502. rt_hw_interrupt_enable(level);
  503. rt_memcpy(&can->hdr[pitem->hdr_bank].filter, pitem,
  504. sizeof(struct rt_can_filter_item));
  505. level = rt_hw_interrupt_disable();
  506. can->hdr[pitem->hdr_bank].connected = 1;
  507. can->hdr[pitem->hdr_bank].msgs = 0;
  508. rt_list_init(&can->hdr[pitem->hdr_bank].list);
  509. }
  510. rt_hw_interrupt_enable(level);
  511. count--;
  512. pitem++;
  513. }
  514. }
  515. else
  516. {
  517. while (count)
  518. {
  519. if (pitem->hdr_bank >= can->config.maxhdr || pitem->hdr_bank < 0)
  520. {
  521. count--;
  522. pitem++;
  523. continue;
  524. }
  525. level = rt_hw_interrupt_disable();
  526. if (can->hdr[pitem->hdr_bank].connected)
  527. {
  528. can->hdr[pitem->hdr_bank].connected = 0;
  529. can->hdr[pitem->hdr_bank].msgs = 0;
  530. if (!rt_list_isempty(&can->hdr[pitem->hdr_bank].list))
  531. {
  532. rt_list_remove(can->hdr[pitem->hdr_bank].list.next);
  533. }
  534. rt_hw_interrupt_enable(level);
  535. rt_memset(&can->hdr[pitem->hdr_bank].filter, 0,
  536. sizeof(struct rt_can_filter_item));
  537. }
  538. else
  539. {
  540. rt_hw_interrupt_enable(level);
  541. }
  542. count--;
  543. pitem++;
  544. }
  545. }
  546. break;
  547. #endif /*RT_CAN_USING_HDR*/
  548. #ifdef RT_CAN_USING_BUS_HOOK
  549. case RT_CAN_CMD_SET_BUS_HOOK:
  550. can->bus_hook = (rt_can_bus_hook) args;
  551. break;
  552. #endif /*RT_CAN_USING_BUS_HOOK*/
  553. default :
  554. /* control device */
  555. if (can->ops->control != RT_NULL)
  556. {
  557. res = can->ops->control(can, cmd, args);
  558. }
  559. else
  560. {
  561. res = -RT_ENOSYS;
  562. }
  563. break;
  564. }
  565. return res;
  566. }
  567. /*
  568. * can timer
  569. */
  570. static void cantimeout(void *arg)
  571. {
  572. rt_can_t can;
  573. can = (rt_can_t)arg;
  574. RT_ASSERT(can);
  575. rt_device_control((rt_device_t)can, RT_CAN_CMD_GET_STATUS, (void *)&can->status);
  576. if (can->status_indicate.ind != RT_NULL)
  577. {
  578. can->status_indicate.ind(can, can->status_indicate.args);
  579. }
  580. #ifdef RT_CAN_USING_BUS_HOOK
  581. if(can->bus_hook)
  582. {
  583. can->bus_hook(can);
  584. }
  585. #endif /*RT_CAN_USING_BUS_HOOK*/
  586. if (can->timerinitflag == 1)
  587. {
  588. can->timerinitflag = 0xFF;
  589. }
  590. }
  591. #ifdef RT_USING_DEVICE_OPS
  592. const static struct rt_device_ops can_device_ops =
  593. {
  594. rt_can_init,
  595. rt_can_open,
  596. rt_can_close,
  597. rt_can_read,
  598. rt_can_write,
  599. rt_can_control
  600. };
  601. #endif
  602. /*
  603. * can register
  604. */
  605. rt_err_t rt_hw_can_register(struct rt_can_device *can,
  606. const char *name,
  607. const struct rt_can_ops *ops,
  608. void *data)
  609. {
  610. struct rt_device *device;
  611. RT_ASSERT(can != RT_NULL);
  612. device = &(can->parent);
  613. device->type = RT_Device_Class_CAN;
  614. device->rx_indicate = RT_NULL;
  615. device->tx_complete = RT_NULL;
  616. #ifdef RT_CAN_USING_HDR
  617. can->hdr = RT_NULL;
  618. #endif
  619. can->can_rx = RT_NULL;
  620. can->can_tx = RT_NULL;
  621. rt_mutex_init(&(can->lock), "can", RT_IPC_FLAG_PRIO);
  622. #ifdef RT_CAN_USING_BUS_HOOK
  623. can->bus_hook = RT_NULL;
  624. #endif /*RT_CAN_USING_BUS_HOOK*/
  625. #ifdef RT_USING_DEVICE_OPS
  626. device->ops = &can_device_ops;
  627. #else
  628. device->init = rt_can_init;
  629. device->open = rt_can_open;
  630. device->close = rt_can_close;
  631. device->read = rt_can_read;
  632. device->write = rt_can_write;
  633. device->control = rt_can_control;
  634. #endif
  635. can->ops = ops;
  636. can->status_indicate.ind = RT_NULL;
  637. can->status_indicate.args = RT_NULL;
  638. rt_memset(&can->status, 0, sizeof(can->status));
  639. device->user_data = data;
  640. can->timerinitflag = 0;
  641. rt_timer_init(&can->timer,
  642. name,
  643. cantimeout,
  644. (void *)can,
  645. can->config.ticks,
  646. RT_TIMER_FLAG_PERIODIC);
  647. /* register a character device */
  648. return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR);
  649. }
  650. /* ISR for can interrupt */
  651. void rt_hw_can_isr(struct rt_can_device *can, int event)
  652. {
  653. switch (event & 0xff)
  654. {
  655. case RT_CAN_EVENT_RXOF_IND:
  656. {
  657. rt_base_t level;
  658. level = rt_hw_interrupt_disable();
  659. can->status.dropedrcvpkg++;
  660. rt_hw_interrupt_enable(level);
  661. }
  662. case RT_CAN_EVENT_RX_IND:
  663. {
  664. struct rt_can_msg tmpmsg;
  665. struct rt_can_rx_fifo *rx_fifo;
  666. struct rt_can_msg_list *listmsg = RT_NULL;
  667. #ifdef RT_CAN_USING_HDR
  668. rt_int8_t hdr;
  669. #endif
  670. int ch = -1;
  671. rt_base_t level;
  672. rt_uint32_t no;
  673. rx_fifo = (struct rt_can_rx_fifo *)can->can_rx;
  674. RT_ASSERT(rx_fifo != RT_NULL);
  675. /* interrupt mode receive */
  676. RT_ASSERT(can->parent.open_flag & RT_DEVICE_FLAG_INT_RX);
  677. no = event >> 8;
  678. ch = can->ops->recvmsg(can, &tmpmsg, no);
  679. if (ch == -1) break;
  680. /* disable interrupt */
  681. level = rt_hw_interrupt_disable();
  682. can->status.rcvpkg++;
  683. can->status.rcvchange = 1;
  684. if (!rt_list_isempty(&rx_fifo->freelist))
  685. {
  686. listmsg = rt_list_entry(rx_fifo->freelist.next, struct rt_can_msg_list, list);
  687. rt_list_remove(&listmsg->list);
  688. #ifdef RT_CAN_USING_HDR
  689. rt_list_remove(&listmsg->hdrlist);
  690. if (listmsg->owner != RT_NULL && listmsg->owner->msgs)
  691. {
  692. listmsg->owner->msgs--;
  693. }
  694. listmsg->owner = RT_NULL;
  695. #endif /*RT_CAN_USING_HDR*/
  696. RT_ASSERT(rx_fifo->freenumbers > 0);
  697. rx_fifo->freenumbers--;
  698. }
  699. else if (!rt_list_isempty(&rx_fifo->uselist))
  700. {
  701. listmsg = rt_list_entry(rx_fifo->uselist.next, struct rt_can_msg_list, list);
  702. can->status.dropedrcvpkg++;
  703. rt_list_remove(&listmsg->list);
  704. #ifdef RT_CAN_USING_HDR
  705. rt_list_remove(&listmsg->hdrlist);
  706. if (listmsg->owner != RT_NULL && listmsg->owner->msgs)
  707. {
  708. listmsg->owner->msgs--;
  709. }
  710. listmsg->owner = RT_NULL;
  711. #endif
  712. }
  713. /* enable interrupt */
  714. rt_hw_interrupt_enable(level);
  715. if (listmsg != RT_NULL)
  716. {
  717. rt_memcpy(&listmsg->data, &tmpmsg, sizeof(struct rt_can_msg));
  718. level = rt_hw_interrupt_disable();
  719. rt_list_insert_before(&rx_fifo->uselist, &listmsg->list);
  720. #ifdef RT_CAN_USING_HDR
  721. hdr = tmpmsg.hdr_index;
  722. if (can->hdr != RT_NULL)
  723. {
  724. RT_ASSERT(hdr < can->config.maxhdr && hdr >= 0);
  725. if (can->hdr[hdr].connected)
  726. {
  727. rt_list_insert_before(&can->hdr[hdr].list, &listmsg->hdrlist);
  728. listmsg->owner = &can->hdr[hdr];
  729. can->hdr[hdr].msgs++;
  730. }
  731. }
  732. #endif
  733. rt_hw_interrupt_enable(level);
  734. }
  735. /* invoke callback */
  736. #ifdef RT_CAN_USING_HDR
  737. if (can->hdr != RT_NULL && can->hdr[hdr].connected && can->hdr[hdr].filter.ind)
  738. {
  739. rt_size_t rx_length;
  740. RT_ASSERT(hdr < can->config.maxhdr && hdr >= 0);
  741. level = rt_hw_interrupt_disable();
  742. rx_length = can->hdr[hdr].msgs * sizeof(struct rt_can_msg);
  743. rt_hw_interrupt_enable(level);
  744. if (rx_length)
  745. {
  746. can->hdr[hdr].filter.ind(&can->parent, can->hdr[hdr].filter.args, hdr, rx_length);
  747. }
  748. }
  749. else
  750. #endif
  751. {
  752. if (can->parent.rx_indicate != RT_NULL)
  753. {
  754. rt_size_t rx_length;
  755. level = rt_hw_interrupt_disable();
  756. /* get rx length */
  757. rx_length = rt_list_len(&rx_fifo->uselist)* sizeof(struct rt_can_msg);
  758. rt_hw_interrupt_enable(level);
  759. if (rx_length)
  760. {
  761. can->parent.rx_indicate(&can->parent, rx_length);
  762. }
  763. }
  764. }
  765. break;
  766. }
  767. case RT_CAN_EVENT_TX_DONE:
  768. case RT_CAN_EVENT_TX_FAIL:
  769. {
  770. struct rt_can_tx_fifo *tx_fifo;
  771. rt_uint32_t no;
  772. no = event >> 8;
  773. tx_fifo = (struct rt_can_tx_fifo *) can->can_tx;
  774. RT_ASSERT(tx_fifo != RT_NULL);
  775. if ((event & 0xff) == RT_CAN_EVENT_TX_DONE)
  776. {
  777. tx_fifo->buffer[no].result = RT_CAN_SND_RESULT_OK;
  778. }
  779. else
  780. {
  781. tx_fifo->buffer[no].result = RT_CAN_SND_RESULT_ERR;
  782. }
  783. rt_completion_done(&(tx_fifo->buffer[no].completion));
  784. break;
  785. }
  786. }
  787. }
  788. #ifdef RT_USING_FINSH
  789. #include <finsh.h>
  790. int cmd_canstat(int argc, void **argv)
  791. {
  792. static const char *ErrCode[] =
  793. {
  794. "No Error!",
  795. "Warning !",
  796. "Passive !",
  797. "Bus Off !"
  798. };
  799. if (argc >= 2)
  800. {
  801. struct rt_can_status status;
  802. rt_device_t candev = rt_device_find(argv[1]);
  803. if (!candev)
  804. {
  805. rt_kprintf(" Can't find can device %s\n", argv[1]);
  806. return -1;
  807. }
  808. rt_kprintf(" Found can device: %s...", argv[1]);
  809. rt_device_control(candev, RT_CAN_CMD_GET_STATUS, &status);
  810. rt_kprintf("\n Receive...error..count: %010ld. Send.....error....count: %010ld.",
  811. status.rcverrcnt, status.snderrcnt);
  812. rt_kprintf("\n Bit..pad..error..count: %010ld. Format...error....count: %010ld",
  813. status.bitpaderrcnt, status.formaterrcnt);
  814. rt_kprintf("\n Ack.......error..count: %010ld. Bit......error....count: %010ld.",
  815. status.ackerrcnt, status.biterrcnt);
  816. rt_kprintf("\n CRC.......error..count: %010ld. Error.code.[%010ld]: ",
  817. status.crcerrcnt, status.errcode);
  818. switch (status.errcode)
  819. {
  820. case 0:
  821. rt_kprintf("%s.", ErrCode[0]);
  822. break;
  823. case 1:
  824. rt_kprintf("%s.", ErrCode[1]);
  825. break;
  826. case 2:
  827. case 3:
  828. rt_kprintf("%s.", ErrCode[2]);
  829. break;
  830. case 4:
  831. case 5:
  832. case 6:
  833. case 7:
  834. rt_kprintf("%s.", ErrCode[3]);
  835. break;
  836. }
  837. rt_kprintf("\n Total.receive.packages: %010ld. Dropped.receive.packages: %010ld.",
  838. status.rcvpkg, status.dropedrcvpkg);
  839. rt_kprintf("\n Total..send...packages: %010ld. Dropped...send..packages: %010ld.\n",
  840. status.sndpkg + status.dropedsndpkg, status.dropedsndpkg);
  841. }
  842. else
  843. {
  844. rt_kprintf(" Invalid Call %s\n", argv[0]);
  845. rt_kprintf(" Please using %s cannamex .Here canname is driver name and x is candrive number.\n", argv[0]);
  846. }
  847. return 0;
  848. }
  849. MSH_CMD_EXPORT_ALIAS(cmd_canstat, canstat, stat can device status);
  850. #endif