dma_pool.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2023-02-25 GuEe-GUI the first version
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <rtdevice.h>
  13. #define DBG_TAG "dma.pool"
  14. #define DBG_LVL DBG_INFO
  15. #include <rtdbg.h>
  16. #include <mm_aspace.h>
  17. #include <dt-bindings/size.h>
  18. static RT_DEFINE_SPINLOCK(dma_pools_lock);
  19. static rt_list_t dma_pool_nodes = RT_LIST_OBJECT_INIT(dma_pool_nodes);
  20. static struct rt_dma_pool *dma_pool_install(rt_region_t *region);
  21. static void *dma_alloc(struct rt_device *dev, rt_size_t size,
  22. rt_ubase_t *dma_handle, rt_ubase_t flags);
  23. static void dma_free(struct rt_device *dev, rt_size_t size,
  24. void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags);
  25. rt_inline void region_pool_lock(void)
  26. {
  27. rt_hw_spin_lock(&dma_pools_lock.lock);
  28. }
  29. rt_inline void region_pool_unlock(void)
  30. {
  31. rt_hw_spin_unlock(&dma_pools_lock.lock);
  32. }
  33. static rt_err_t dma_map_coherent_sync_out_data(struct rt_device *dev,
  34. void *data, rt_size_t size, rt_ubase_t *dma_handle, rt_ubase_t flags)
  35. {
  36. if (dma_handle)
  37. {
  38. *dma_handle = (rt_ubase_t)rt_kmem_v2p(data);
  39. }
  40. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, data, size);
  41. return RT_EOK;
  42. }
  43. static rt_err_t dma_map_coherent_sync_in_data(struct rt_device *dev,
  44. void *out_data, rt_size_t size, rt_ubase_t dma_handle, rt_ubase_t flags)
  45. {
  46. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, out_data, size);
  47. return RT_EOK;
  48. }
  49. static const struct rt_dma_map_ops dma_map_coherent_ops =
  50. {
  51. .sync_out_data = dma_map_coherent_sync_out_data,
  52. .sync_in_data = dma_map_coherent_sync_in_data,
  53. };
  54. static rt_err_t dma_map_nocoherent_sync_out_data(struct rt_device *dev,
  55. void *data, rt_size_t size, rt_ubase_t *dma_handle, rt_ubase_t flags)
  56. {
  57. if (dma_handle)
  58. {
  59. *dma_handle = (rt_ubase_t)rt_kmem_v2p(data);
  60. }
  61. return RT_EOK;
  62. }
  63. static rt_err_t dma_map_nocoherent_sync_in_data(struct rt_device *dev,
  64. void *out_data, rt_size_t size, rt_ubase_t dma_handle, rt_ubase_t flags)
  65. {
  66. return RT_EOK;
  67. }
  68. static const struct rt_dma_map_ops dma_map_nocoherent_ops =
  69. {
  70. .sync_out_data = dma_map_nocoherent_sync_out_data,
  71. .sync_in_data = dma_map_nocoherent_sync_in_data,
  72. };
  73. #ifdef RT_USING_OFW
  74. rt_inline rt_ubase_t ofw_addr_cpu2dma(struct rt_device *dev, rt_ubase_t addr)
  75. {
  76. return (rt_ubase_t)rt_ofw_translate_cpu2dma(dev->ofw_node, addr);
  77. }
  78. rt_inline rt_ubase_t ofw_addr_dma2cpu(struct rt_device *dev, rt_ubase_t addr)
  79. {
  80. return (rt_ubase_t)rt_ofw_translate_dma2cpu(dev->ofw_node, addr);
  81. }
  82. static void *ofw_dma_map_alloc(struct rt_device *dev, rt_size_t size,
  83. rt_ubase_t *dma_handle, rt_ubase_t flags)
  84. {
  85. void *cpu_addr = dma_alloc(dev, size, dma_handle, flags);
  86. if (cpu_addr && dma_handle)
  87. {
  88. *dma_handle = ofw_addr_cpu2dma(dev, *dma_handle);
  89. }
  90. return cpu_addr;
  91. }
  92. static void ofw_dma_map_free(struct rt_device *dev, rt_size_t size,
  93. void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
  94. {
  95. dma_handle = ofw_addr_dma2cpu(dev, dma_handle);
  96. dma_free(dev, size, cpu_addr, dma_handle, flags);
  97. }
  98. static rt_err_t ofw_dma_map_sync_out_data(struct rt_device *dev,
  99. void *data, rt_size_t size,
  100. rt_ubase_t *dma_handle, rt_ubase_t flags)
  101. {
  102. rt_err_t err;
  103. if (flags & RT_DMA_F_NOCACHE)
  104. {
  105. err = dma_map_nocoherent_sync_out_data(dev, data, size, dma_handle, flags);
  106. }
  107. else
  108. {
  109. err = dma_map_coherent_sync_out_data(dev, data, size, dma_handle, flags);
  110. }
  111. if (!err && dma_handle)
  112. {
  113. *dma_handle = ofw_addr_cpu2dma(dev, *dma_handle);
  114. }
  115. return err;
  116. }
  117. static rt_err_t ofw_dma_map_sync_in_data(struct rt_device *dev,
  118. void *out_data, rt_size_t size,
  119. rt_ubase_t dma_handle, rt_ubase_t flags)
  120. {
  121. dma_handle = ofw_addr_dma2cpu(dev, dma_handle);
  122. if (flags & RT_DMA_F_NOCACHE)
  123. {
  124. return dma_map_nocoherent_sync_in_data(dev, out_data, size, dma_handle, flags);
  125. }
  126. return dma_map_coherent_sync_in_data(dev, out_data, size, dma_handle, flags);
  127. }
  128. static const struct rt_dma_map_ops ofw_dma_map_ops =
  129. {
  130. .alloc = ofw_dma_map_alloc,
  131. .free = ofw_dma_map_free,
  132. .sync_out_data = ofw_dma_map_sync_out_data,
  133. .sync_in_data = ofw_dma_map_sync_in_data,
  134. };
  135. static const struct rt_dma_map_ops *ofw_device_dma_ops(struct rt_device *dev)
  136. {
  137. rt_err_t err;
  138. int region_nr = 0;
  139. const fdt32_t *cell;
  140. rt_phandle phandle;
  141. rt_region_t region;
  142. struct rt_ofw_prop *prop;
  143. struct rt_dma_pool *dma_pool;
  144. const struct rt_dma_map_ops *ops = RT_NULL;
  145. struct rt_ofw_node *mem_np, *np = dev->ofw_node;
  146. rt_ofw_foreach_prop_u32(np, "memory-region", prop, cell, phandle)
  147. {
  148. rt_uint64_t addr, size;
  149. if (!(mem_np = rt_ofw_find_node_by_phandle(phandle)))
  150. {
  151. if (region_nr == 0)
  152. {
  153. return RT_NULL;
  154. }
  155. break;
  156. }
  157. if ((err = rt_ofw_get_address(mem_np, 0, &addr, &size)))
  158. {
  159. LOG_E("%s: Read '%s' error = %s", rt_ofw_node_full_name(mem_np),
  160. "memory-region", rt_strerror(err));
  161. rt_ofw_node_put(mem_np);
  162. continue;
  163. }
  164. region.start = addr;
  165. region.end = addr + size;
  166. region.name = rt_dm_dev_get_name(dev);
  167. rt_ofw_node_put(mem_np);
  168. if (!(dma_pool = dma_pool_install(&region)))
  169. {
  170. return RT_NULL;
  171. }
  172. if (rt_ofw_prop_read_bool(mem_np, "no-map"))
  173. {
  174. dma_pool->flags |= RT_DMA_F_NOMAP;
  175. }
  176. if (!rt_dma_device_is_coherent(dev))
  177. {
  178. dma_pool->flags |= RT_DMA_F_NOCACHE;
  179. }
  180. dma_pool->dev = dev;
  181. ++region_nr;
  182. }
  183. if (region_nr)
  184. {
  185. ops = &ofw_dma_map_ops;
  186. }
  187. return ops;
  188. }
  189. #endif /* RT_USING_OFW */
  190. static const struct rt_dma_map_ops *device_dma_ops(struct rt_device *dev)
  191. {
  192. const struct rt_dma_map_ops *ops = dev->dma_ops;
  193. if (ops)
  194. {
  195. return ops;
  196. }
  197. #ifdef RT_USING_OFW
  198. if (dev->ofw_node && (ops = ofw_device_dma_ops(dev)))
  199. {
  200. return ops;
  201. }
  202. #endif
  203. if (rt_dma_device_is_coherent(dev))
  204. {
  205. ops = &dma_map_coherent_ops;
  206. }
  207. else
  208. {
  209. ops = &dma_map_nocoherent_ops;
  210. }
  211. dev->dma_ops = ops;
  212. return ops;
  213. }
  214. static rt_ubase_t dma_pool_alloc(struct rt_dma_pool *pool, rt_size_t size)
  215. {
  216. rt_size_t bit, next_bit, end_bit, max_bits;
  217. size = RT_DIV_ROUND_UP(size, ARCH_PAGE_SIZE);
  218. max_bits = pool->bits - size;
  219. rt_bitmap_for_each_clear_bit(pool->map, bit, max_bits)
  220. {
  221. end_bit = bit + size;
  222. for (next_bit = bit + 1; next_bit < end_bit; ++next_bit)
  223. {
  224. if (rt_bitmap_test_bit(pool->map, next_bit))
  225. {
  226. bit = next_bit;
  227. goto _next;
  228. }
  229. }
  230. if (next_bit == end_bit)
  231. {
  232. while (next_bit --> bit)
  233. {
  234. rt_bitmap_set_bit(pool->map, next_bit);
  235. }
  236. return pool->start + bit * ARCH_PAGE_SIZE;
  237. }
  238. _next:
  239. }
  240. return RT_NULL;
  241. }
  242. static void dma_pool_free(struct rt_dma_pool *pool, rt_ubase_t offset, rt_size_t size)
  243. {
  244. rt_size_t bit = (offset - pool->start) / ARCH_PAGE_SIZE, end_bit;
  245. size = RT_DIV_ROUND_UP(size, ARCH_PAGE_SIZE);
  246. end_bit = bit + size;
  247. for (; bit < end_bit; ++bit)
  248. {
  249. rt_bitmap_clear_bit(pool->map, bit);
  250. }
  251. }
  252. static void *dma_alloc(struct rt_device *dev, rt_size_t size,
  253. rt_ubase_t *dma_handle, rt_ubase_t flags)
  254. {
  255. void *dma_buffer = RT_NULL;
  256. struct rt_dma_pool *pool;
  257. region_pool_lock();
  258. rt_list_for_each_entry(pool, &dma_pool_nodes, list)
  259. {
  260. if (pool->flags & RT_DMA_F_DEVICE)
  261. {
  262. if (!(flags & RT_DMA_F_DEVICE) || pool->dev != dev)
  263. {
  264. continue;
  265. }
  266. }
  267. else if ((flags & RT_DMA_F_DEVICE))
  268. {
  269. continue;
  270. }
  271. if ((flags & RT_DMA_F_NOMAP) && !((pool->flags & RT_DMA_F_NOMAP)))
  272. {
  273. continue;
  274. }
  275. if ((flags & RT_DMA_F_32BITS) && !((pool->flags & RT_DMA_F_32BITS)))
  276. {
  277. continue;
  278. }
  279. if ((flags & RT_DMA_F_LINEAR) && !((pool->flags & RT_DMA_F_LINEAR)))
  280. {
  281. continue;
  282. }
  283. *dma_handle = dma_pool_alloc(pool, size);
  284. if (*dma_handle && !(flags & RT_DMA_F_NOMAP))
  285. {
  286. if (flags & RT_DMA_F_NOCACHE)
  287. {
  288. dma_buffer = rt_ioremap_nocache((void *)*dma_handle, size);
  289. }
  290. else
  291. {
  292. dma_buffer = rt_ioremap_cached((void *)*dma_handle, size);
  293. }
  294. if (!dma_buffer)
  295. {
  296. dma_pool_free(pool, *dma_handle, size);
  297. continue;
  298. }
  299. break;
  300. }
  301. else if (*dma_handle)
  302. {
  303. dma_buffer = (void *)*dma_handle;
  304. break;
  305. }
  306. }
  307. region_pool_unlock();
  308. return dma_buffer;
  309. }
  310. static void dma_free(struct rt_device *dev, rt_size_t size,
  311. void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
  312. {
  313. struct rt_dma_pool *pool;
  314. region_pool_lock();
  315. rt_list_for_each_entry(pool, &dma_pool_nodes, list)
  316. {
  317. if (dma_handle >= pool->region.start &&
  318. dma_handle <= pool->region.end)
  319. {
  320. rt_iounmap(cpu_addr);
  321. dma_pool_free(pool, dma_handle, size);
  322. break;
  323. }
  324. }
  325. region_pool_unlock();
  326. }
  327. void *rt_dma_alloc(struct rt_device *dev, rt_size_t size,
  328. rt_ubase_t *dma_handle, rt_ubase_t flags)
  329. {
  330. void *dma_buffer = RT_NULL;
  331. rt_ubase_t dma_handle_s = 0;
  332. const struct rt_dma_map_ops *ops;
  333. if (!dev || !size)
  334. {
  335. return RT_NULL;
  336. }
  337. ops = device_dma_ops(dev);
  338. if (ops->alloc)
  339. {
  340. dma_buffer = ops->alloc(dev, size, &dma_handle_s, flags);
  341. }
  342. else
  343. {
  344. dma_buffer = dma_alloc(dev, size, &dma_handle_s, flags);
  345. }
  346. if (!dma_buffer)
  347. {
  348. return dma_buffer;
  349. }
  350. if (dma_handle)
  351. {
  352. *dma_handle = dma_handle_s;
  353. }
  354. return dma_buffer;
  355. }
  356. void rt_dma_free(struct rt_device *dev, rt_size_t size,
  357. void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
  358. {
  359. const struct rt_dma_map_ops *ops;
  360. if (!dev || !size || !cpu_addr)
  361. {
  362. return;
  363. }
  364. ops = device_dma_ops(dev);
  365. if (ops->free)
  366. {
  367. ops->free(dev, size, cpu_addr, dma_handle, flags);
  368. }
  369. else
  370. {
  371. dma_free(dev, size, cpu_addr, dma_handle, flags);
  372. }
  373. }
  374. rt_err_t rt_dma_sync_out_data(struct rt_device *dev, void *data, rt_size_t size,
  375. rt_ubase_t *dma_handle, rt_ubase_t flags)
  376. {
  377. rt_err_t err;
  378. rt_ubase_t dma_handle_s = 0;
  379. const struct rt_dma_map_ops *ops;
  380. if (!data || !size)
  381. {
  382. return -RT_EINVAL;
  383. }
  384. ops = device_dma_ops(dev);
  385. err = ops->sync_out_data(dev, data, size, &dma_handle_s, flags);
  386. if (dma_handle)
  387. {
  388. *dma_handle = dma_handle_s;
  389. }
  390. return err;
  391. }
  392. rt_err_t rt_dma_sync_in_data(struct rt_device *dev, void *out_data, rt_size_t size,
  393. rt_ubase_t dma_handle, rt_ubase_t flags)
  394. {
  395. rt_err_t err;
  396. const struct rt_dma_map_ops *ops;
  397. if (!out_data || !size)
  398. {
  399. return -RT_EINVAL;
  400. }
  401. ops = device_dma_ops(dev);
  402. err = ops->sync_in_data(dev, out_data, size, dma_handle, flags);
  403. return err;
  404. }
  405. static struct rt_dma_pool *dma_pool_install(rt_region_t *region)
  406. {
  407. rt_err_t err;
  408. struct rt_dma_pool *pool;
  409. if (!(pool = rt_calloc(1, sizeof(*pool))))
  410. {
  411. LOG_E("Install pool[%p, %p] error = %s",
  412. region->start, region->end, rt_strerror(-RT_ENOMEM));
  413. return RT_NULL;
  414. }
  415. rt_memcpy(&pool->region, region, sizeof(*region));
  416. pool->flags |= RT_DMA_F_LINEAR;
  417. if (region->end < 4UL * SIZE_GB)
  418. {
  419. pool->flags |= RT_DMA_F_32BITS;
  420. }
  421. pool->start = RT_ALIGN(pool->region.start, ARCH_PAGE_SIZE);
  422. pool->bits = (pool->region.end - pool->start) / ARCH_PAGE_SIZE;
  423. if (!pool->bits)
  424. {
  425. err = -RT_EINVAL;
  426. goto _fail;
  427. }
  428. pool->map = rt_calloc(RT_BITMAP_LEN(pool->bits), sizeof(*pool->map));
  429. if (!pool->map)
  430. {
  431. err = -RT_ENOMEM;
  432. goto _fail;
  433. }
  434. rt_list_init(&pool->list);
  435. region_pool_lock();
  436. rt_list_insert_before(&dma_pool_nodes, &pool->list);
  437. region_pool_unlock();
  438. return pool;
  439. _fail:
  440. rt_free(pool);
  441. LOG_E("Install pool[%p, %p] error = %s",
  442. region->start, region->end, rt_strerror(err));
  443. return RT_NULL;
  444. }
  445. struct rt_dma_pool *rt_dma_pool_install(rt_region_t *region)
  446. {
  447. struct rt_dma_pool *pool;
  448. if (!region)
  449. {
  450. return RT_NULL;
  451. }
  452. if ((pool = dma_pool_install(region)))
  453. {
  454. region = &pool->region;
  455. LOG_I("%s: Reserved %u.%u MiB at %p",
  456. region->name,
  457. (region->end - region->start) / SIZE_MB,
  458. (region->end - region->start) / SIZE_KB & (SIZE_KB - 1),
  459. region->start);
  460. }
  461. return pool;
  462. }
  463. rt_err_t rt_dma_pool_extract(rt_region_t *region_list, rt_size_t list_len,
  464. rt_size_t cma_size, rt_size_t coherent_pool_size)
  465. {
  466. struct rt_dma_pool *pool;
  467. rt_region_t *region = region_list, *region_high = RT_NULL, cma, coherent_pool;
  468. if (!region_list || !list_len || cma_size < coherent_pool_size)
  469. {
  470. return -RT_EINVAL;
  471. }
  472. for (rt_size_t i = 0; i < list_len; ++i, ++region)
  473. {
  474. if (!region->name)
  475. {
  476. continue;
  477. }
  478. /* Always use low address in 4G */
  479. if (region->end - region->start >= cma_size)
  480. {
  481. if ((rt_ssize_t)((4UL * SIZE_GB) - region->start) < cma_size)
  482. {
  483. region_high = region;
  484. continue;
  485. }
  486. goto _found;
  487. }
  488. }
  489. if (region_high)
  490. {
  491. region = region_high;
  492. LOG_W("No available DMA zone in 4G");
  493. goto _found;
  494. }
  495. return -RT_EEMPTY;
  496. _found:
  497. if (region->end - region->start != cma_size)
  498. {
  499. cma.start = region->start;
  500. cma.end = cma.start + cma_size;
  501. /* Update input region */
  502. region->start += cma_size;
  503. }
  504. else
  505. {
  506. rt_memcpy(&cma, region, sizeof(cma));
  507. }
  508. coherent_pool.name = "coherent-pool";
  509. coherent_pool.start = cma.start;
  510. coherent_pool.end = coherent_pool.start + coherent_pool_size;
  511. cma.name = "cma";
  512. cma.start += coherent_pool_size;
  513. if (!(pool = rt_dma_pool_install(&coherent_pool)))
  514. {
  515. return -RT_ENOMEM;
  516. }
  517. /* Use: CMA > coherent-pool */
  518. if (!(pool = rt_dma_pool_install(&cma)))
  519. {
  520. return -RT_ENOMEM;
  521. }
  522. return RT_EOK;
  523. }
  524. #if defined(RT_USING_CONSOLE) && defined(RT_USING_MSH)
  525. static int list_dma_pool(int argc, char**argv)
  526. {
  527. int count = 0;
  528. rt_region_t *region;
  529. struct rt_dma_pool *pool;
  530. rt_kprintf("%-*.s Region\n", RT_NAME_MAX, "Name");
  531. region_pool_lock();
  532. rt_list_for_each_entry(pool, &dma_pool_nodes, list)
  533. {
  534. region = &pool->region;
  535. rt_kprintf("%-*.s [%p, %p]\n", RT_NAME_MAX, region->name,
  536. region->start, region->end);
  537. ++count;
  538. }
  539. rt_kprintf("%d DMA memory found\n", count);
  540. region_pool_unlock();
  541. return 0;
  542. }
  543. MSH_CMD_EXPORT(list_dma_pool, dump all dma memory pool);
  544. #endif /* RT_USING_CONSOLE && RT_USING_MSH */