trap.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2013-07-20 Bernard first version
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <board.h>
  13. #include <backtrace.h>
  14. #include "interrupt.h"
  15. #include "mm_fault.h"
  16. #include <rtdbg.h>
  17. #ifdef RT_USING_FINSH
  18. extern long list_thread(void);
  19. #endif
  20. #ifdef RT_USING_SMART
  21. #include <lwp.h>
  22. #include <lwp_arch.h>
  23. #ifdef LWP_USING_CORE_DUMP
  24. #include <lwp_core_dump.h>
  25. #endif
  26. void check_user_fault(struct rt_hw_exp_stack *regs, uint32_t pc_adj, char *info)
  27. {
  28. uint32_t mode = regs->cpsr;
  29. if ((mode & 0x1f) == 0x10)
  30. {
  31. rt_kprintf("%s! pc = 0x%08x\n", info, regs->pc - pc_adj);
  32. #ifdef LWP_USING_CORE_DUMP
  33. lwp_core_dump(regs, pc_adj);
  34. #endif
  35. sys_exit_group(-1);
  36. }
  37. }
  38. int check_data_abort(struct rt_hw_exp_stack *regs)
  39. {
  40. struct rt_lwp *lwp;
  41. void *dfar = RT_NULL;
  42. rt_base_t dfsr = RT_NULL;
  43. __asm__ volatile("mrc p15, 0, %0, c6, c0, 0" : "=r"(dfar));
  44. __asm__ volatile("mrc p15, 0, %0, c5, c0, 0" : "=r"(dfsr));
  45. struct rt_aspace_fault_msg msg = {
  46. .fault_op = MM_FAULT_OP_WRITE,
  47. .fault_type = MM_FAULT_TYPE_PAGE_FAULT,
  48. .fault_vaddr = dfar,
  49. };
  50. lwp = lwp_self();
  51. if (lwp && rt_aspace_fault_try_fix(lwp->aspace, &msg))
  52. {
  53. regs->pc -= 8;
  54. return 1;
  55. }
  56. return 0;
  57. }
  58. int check_prefetch_abort(struct rt_hw_exp_stack *regs)
  59. {
  60. struct rt_lwp *lwp;
  61. void *ifar = RT_NULL;
  62. rt_base_t ifsr = RT_NULL;
  63. __asm__ volatile("mrc p15, 0, %0, c6, c0, 2" : "=r"(ifar));
  64. __asm__ volatile("mrc p15, 0, %0, c5, c0, 1" : "=r"(ifsr));
  65. struct rt_aspace_fault_msg msg = {
  66. .fault_op = MM_FAULT_OP_READ,
  67. .fault_type = MM_FAULT_TYPE_PAGE_FAULT,
  68. .fault_vaddr = ifar,
  69. };
  70. lwp = lwp_self();
  71. if (lwp && rt_aspace_fault_try_fix(lwp->aspace, &msg))
  72. {
  73. regs->pc -= 4;
  74. return 1;
  75. }
  76. return 0;
  77. }
  78. #endif
  79. /**
  80. * this function will show registers of CPU
  81. *
  82. * @param regs the registers point
  83. */
  84. void rt_hw_show_register(struct rt_hw_exp_stack *regs)
  85. {
  86. rt_kprintf("Execption:\n");
  87. rt_kprintf("r00:0x%08x r01:0x%08x r02:0x%08x r03:0x%08x\n", regs->r0, regs->r1, regs->r2, regs->r3);
  88. rt_kprintf("r04:0x%08x r05:0x%08x r06:0x%08x r07:0x%08x\n", regs->r4, regs->r5, regs->r6, regs->r7);
  89. rt_kprintf("r08:0x%08x r09:0x%08x r10:0x%08x\n", regs->r8, regs->r9, regs->r10);
  90. rt_kprintf("fp :0x%08x ip :0x%08x\n", regs->fp, regs->ip);
  91. rt_kprintf("sp :0x%08x lr :0x%08x pc :0x%08x\n", regs->sp, regs->lr, regs->pc);
  92. rt_kprintf("cpsr:0x%08x\n", regs->cpsr);
  93. #ifdef RT_USING_SMART
  94. {
  95. uint32_t v;
  96. asm volatile ("MRC p15, 0, %0, c5, c0, 0":"=r"(v));
  97. rt_kprintf("dfsr:0x%08x\n", v);
  98. asm volatile ("MRC p15, 0, %0, c2, c0, 0":"=r"(v));
  99. rt_kprintf("ttbr0:0x%08x\n", v);
  100. asm volatile ("MRC p15, 0, %0, c6, c0, 0":"=r"(v));
  101. rt_kprintf("dfar:0x%08x\n", v);
  102. rt_kprintf("0x%08x -> 0x%08x\n", v, rt_kmem_v2p((void *)v));
  103. }
  104. #endif
  105. }
  106. /**
  107. * When comes across an instruction which it cannot handle,
  108. * it takes the undefined instruction trap.
  109. *
  110. * @param regs system registers
  111. *
  112. * @note never invoke this function in application
  113. */
  114. #ifdef RT_USING_FPU
  115. void set_fpexc(rt_uint32_t val);
  116. #endif
  117. void rt_hw_trap_undef(struct rt_hw_exp_stack *regs)
  118. {
  119. #ifdef RT_USING_FPU
  120. {
  121. uint32_t ins;
  122. uint32_t addr;
  123. if (regs->cpsr & (1 << 5))
  124. {
  125. /* thumb mode */
  126. addr = regs->pc - 2;
  127. ins = (uint32_t)*(uint16_t *)addr;
  128. if ((ins & (3 << 11)) != 0)
  129. {
  130. /* 32 bit ins */
  131. ins <<= 16;
  132. ins += *(uint16_t *)(addr + 2);
  133. }
  134. }
  135. else
  136. {
  137. addr = regs->pc - 4;
  138. ins = *(uint32_t *)addr;
  139. }
  140. if ((ins & 0xe00) == 0xa00)
  141. {
  142. /* float ins */
  143. set_fpexc(1U << 30);
  144. regs->pc = addr;
  145. return;
  146. }
  147. }
  148. #endif
  149. #ifdef RT_USING_SMART
  150. check_user_fault(regs, 4, "User undefined instruction");
  151. #endif
  152. rt_unwind(regs, 4);
  153. rt_kprintf("undefined instruction:\n");
  154. rt_hw_show_register(regs);
  155. #ifdef RT_USING_FINSH
  156. list_thread();
  157. #endif
  158. rt_hw_cpu_shutdown();
  159. }
  160. /**
  161. * The software interrupt instruction (SWI) is used for entering
  162. * Supervisor mode, usually to request a particular supervisor
  163. * function.
  164. *
  165. * @param regs system registers
  166. *
  167. * @note never invoke this function in application
  168. */
  169. void rt_hw_trap_swi(struct rt_hw_exp_stack *regs)
  170. {
  171. rt_kprintf("software interrupt:\n");
  172. rt_hw_show_register(regs);
  173. #ifdef RT_USING_FINSH
  174. list_thread();
  175. #endif
  176. rt_hw_cpu_shutdown();
  177. }
  178. /**
  179. * An abort indicates that the current memory access cannot be completed,
  180. * which occurs during an instruction prefetch.
  181. *
  182. * @param regs system registers
  183. *
  184. * @note never invoke this function in application
  185. */
  186. void rt_hw_trap_pabt(struct rt_hw_exp_stack *regs)
  187. {
  188. #ifdef RT_USING_SMART
  189. if (dbg_check_event(regs, 4))
  190. {
  191. return;
  192. }
  193. if (check_prefetch_abort(regs))
  194. {
  195. return;
  196. }
  197. check_user_fault(regs, 4, "User prefetch abort");
  198. #endif
  199. rt_unwind(regs, 4);
  200. rt_kprintf("prefetch abort:\n");
  201. rt_hw_show_register(regs);
  202. #ifdef RT_USING_FINSH
  203. list_thread();
  204. #endif
  205. rt_hw_cpu_shutdown();
  206. }
  207. /**
  208. * An abort indicates that the current memory access cannot be completed,
  209. * which occurs during a data access.
  210. *
  211. * @param regs system registers
  212. *
  213. * @note never invoke this function in application
  214. */
  215. void rt_hw_trap_dabt(struct rt_hw_exp_stack *regs)
  216. {
  217. #ifdef RT_USING_SMART
  218. if (dbg_check_event(regs, 8))
  219. {
  220. return;
  221. }
  222. if (check_data_abort(regs))
  223. {
  224. return;
  225. }
  226. check_user_fault(regs, 8, "User data abort");
  227. #endif
  228. rt_unwind(regs, 8);
  229. rt_kprintf("data abort:");
  230. rt_hw_show_register(regs);
  231. #ifdef RT_USING_FINSH
  232. list_thread();
  233. #endif
  234. rt_hw_cpu_shutdown();
  235. }
  236. /**
  237. * Normally, system will never reach here
  238. *
  239. * @param regs system registers
  240. *
  241. * @note never invoke this function in application
  242. */
  243. void rt_hw_trap_resv(struct rt_hw_exp_stack *regs)
  244. {
  245. rt_kprintf("reserved trap:\n");
  246. rt_hw_show_register(regs);
  247. #ifdef RT_USING_FINSH
  248. list_thread();
  249. #endif
  250. rt_hw_cpu_shutdown();
  251. }
  252. void rt_hw_trap_irq(void)
  253. {
  254. #ifdef SOC_BCM283x
  255. extern rt_uint8_t core_timer_flag;
  256. void *param;
  257. uint32_t irq;
  258. rt_isr_handler_t isr_func;
  259. extern struct rt_irq_desc isr_table[];
  260. uint32_t value = 0;
  261. value = IRQ_PEND_BASIC & 0x3ff;
  262. if(core_timer_flag != 0)
  263. {
  264. uint32_t cpu_id = rt_hw_cpu_id();
  265. uint32_t int_source = CORE_IRQSOURCE(cpu_id);
  266. if (int_source & 0x0f)
  267. {
  268. if (int_source & 0x08)
  269. {
  270. isr_func = isr_table[IRQ_ARM_TIMER].handler;
  271. #ifdef RT_USING_INTERRUPT_INFO
  272. isr_table[IRQ_ARM_TIMER].counter++;
  273. #endif
  274. if (isr_func)
  275. {
  276. param = isr_table[IRQ_ARM_TIMER].param;
  277. isr_func(IRQ_ARM_TIMER, param);
  278. }
  279. }
  280. }
  281. }
  282. /* local interrupt*/
  283. if (value)
  284. {
  285. if (value & (1 << 8))
  286. {
  287. value = IRQ_PEND1;
  288. irq = __rt_ffs(value) - 1;
  289. }
  290. else if (value & (1 << 9))
  291. {
  292. value = IRQ_PEND2;
  293. irq = __rt_ffs(value) + 31;
  294. }
  295. else
  296. {
  297. value &= 0x0f;
  298. irq = __rt_ffs(value) + 63;
  299. }
  300. /* get interrupt service routine */
  301. isr_func = isr_table[irq].handler;
  302. #ifdef RT_USING_INTERRUPT_INFO
  303. isr_table[irq].counter++;
  304. #endif
  305. if (isr_func)
  306. {
  307. /* Interrupt for myself. */
  308. param = isr_table[irq].param;
  309. /* turn to interrupt service routine */
  310. isr_func(irq, param);
  311. }
  312. }
  313. #else
  314. void *param;
  315. int ir, ir_real;
  316. rt_isr_handler_t isr_func;
  317. extern struct rt_irq_desc isr_table[];
  318. ir = rt_hw_interrupt_get_irq();
  319. ir_real = ir & 0x3ff;
  320. if (ir == 1023)
  321. {
  322. /* Spurious interrupt */
  323. return;
  324. }
  325. /* get interrupt service routine */
  326. isr_func = isr_table[ir_real].handler;
  327. #ifdef RT_USING_INTERRUPT_INFO
  328. isr_table[ir_real].counter++;
  329. #endif
  330. if (isr_func)
  331. {
  332. /* Interrupt for myself. */
  333. param = isr_table[ir_real].param;
  334. /* turn to interrupt service routine */
  335. isr_func(ir, param);
  336. }
  337. /* end of interrupt */
  338. rt_hw_interrupt_ack(ir);
  339. #endif
  340. }
  341. void rt_hw_trap_fiq(void)
  342. {
  343. void *param;
  344. int ir;
  345. rt_isr_handler_t isr_func;
  346. extern struct rt_irq_desc isr_table[];
  347. ir = rt_hw_interrupt_get_irq();
  348. /* get interrupt service routine */
  349. isr_func = isr_table[ir].handler;
  350. param = isr_table[ir].param;
  351. /* turn to interrupt service routine */
  352. isr_func(ir, param);
  353. /* end of interrupt */
  354. rt_hw_interrupt_ack(ir);
  355. }