mmu.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-01-10 bernard porting to AM1808
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <board.h>
  13. #include "cp15.h"
  14. #include "mmu.h"
  15. #ifdef RT_USING_LWP
  16. #include <lwp_mm.h>
  17. #include "page.h"
  18. #endif
  19. /* level1 page table, each entry for 1MB memory. */
  20. volatile unsigned long MMUTable[4*1024] __attribute__((aligned(16*1024)));
  21. #ifndef RT_USING_LWP
  22. static rt_mutex_t mm_lock = RT_NULL;
  23. void rt_mm_lock(void)
  24. {
  25. if (rt_thread_self())
  26. {
  27. if (!mm_lock)
  28. {
  29. mm_lock = rt_mutex_create("mm_lock", RT_IPC_FLAG_FIFO);
  30. }
  31. if (mm_lock)
  32. {
  33. rt_mutex_take(mm_lock, RT_WAITING_FOREVER);
  34. }
  35. }
  36. }
  37. void rt_mm_unlock(void)
  38. {
  39. if (rt_thread_self())
  40. {
  41. if (mm_lock)
  42. {
  43. rt_mutex_release(mm_lock);
  44. }
  45. }
  46. }
  47. #endif
  48. void rt_hw_cpu_tlb_invalidate(void)
  49. {
  50. asm volatile ("mcr p15, 0, r0, c8, c7, 0\ndsb\nisb" ::: "memory");
  51. }
  52. unsigned long rt_hw_set_domain_register(unsigned long domain_val)
  53. {
  54. unsigned long old_domain;
  55. asm volatile ("mrc p15, 0, %0, c3, c0\n" : "=r" (old_domain));
  56. asm volatile ("mcr p15, 0, %0, c3, c0\n" : :"r" (domain_val) : "memory");
  57. return old_domain;
  58. }
  59. /* dump 2nd level page table */
  60. void rt_hw_cpu_dump_page_table_2nd(rt_uint32_t *ptb)
  61. {
  62. int i;
  63. int fcnt = 0;
  64. for (i = 0; i < 256; i++)
  65. {
  66. rt_uint32_t pte2 = ptb[i];
  67. if ((pte2 & 0x3) == 0)
  68. {
  69. if (fcnt == 0)
  70. rt_kprintf(" ");
  71. rt_kprintf("%04x: ", i);
  72. fcnt++;
  73. if (fcnt == 16)
  74. {
  75. rt_kprintf("fault\n");
  76. fcnt = 0;
  77. }
  78. continue;
  79. }
  80. if (fcnt != 0)
  81. {
  82. rt_kprintf("fault\n");
  83. fcnt = 0;
  84. }
  85. rt_kprintf(" %04x: %x: ", i, pte2);
  86. if ((pte2 & 0x3) == 0x1)
  87. {
  88. rt_kprintf("L,ap:%x,xn:%d,texcb:%02x\n",
  89. ((pte2 >> 7) | (pte2 >> 4))& 0xf,
  90. (pte2 >> 15) & 0x1,
  91. ((pte2 >> 10) | (pte2 >> 2)) & 0x1f);
  92. }
  93. else
  94. {
  95. rt_kprintf("S,ap:%x,xn:%d,texcb:%02x\n",
  96. ((pte2 >> 7) | (pte2 >> 4))& 0xf, pte2 & 0x1,
  97. ((pte2 >> 4) | (pte2 >> 2)) & 0x1f);
  98. }
  99. }
  100. }
  101. void rt_hw_cpu_dump_page_table(rt_uint32_t *ptb)
  102. {
  103. int i;
  104. int fcnt = 0;
  105. rt_kprintf("page table@%p\n", ptb);
  106. for (i = 0; i < 1024*4; i++)
  107. {
  108. rt_uint32_t pte1 = ptb[i];
  109. if ((pte1 & 0x3) == 0)
  110. {
  111. rt_kprintf("%03x: ", i);
  112. fcnt++;
  113. if (fcnt == 16)
  114. {
  115. rt_kprintf("fault\n");
  116. fcnt = 0;
  117. }
  118. continue;
  119. }
  120. if (fcnt != 0)
  121. {
  122. rt_kprintf("fault\n");
  123. fcnt = 0;
  124. }
  125. rt_kprintf("%03x: %08x: ", i, pte1);
  126. if ((pte1 & 0x3) == 0x3)
  127. {
  128. rt_kprintf("LPAE\n");
  129. }
  130. else if ((pte1 & 0x3) == 0x1)
  131. {
  132. rt_kprintf("pte,ns:%d,domain:%d\n",
  133. (pte1 >> 3) & 0x1, (pte1 >> 5) & 0xf);
  134. /*
  135. *rt_hw_cpu_dump_page_table_2nd((void*)((pte1 & 0xfffffc000)
  136. * - 0x80000000 + 0xC0000000));
  137. */
  138. }
  139. else if (pte1 & (1 << 18))
  140. {
  141. rt_kprintf("super section,ns:%d,ap:%x,xn:%d,texcb:%02x\n",
  142. (pte1 >> 19) & 0x1,
  143. ((pte1 >> 13) | (pte1 >> 10))& 0xf,
  144. (pte1 >> 4) & 0x1,
  145. ((pte1 >> 10) | (pte1 >> 2)) & 0x1f);
  146. }
  147. else
  148. {
  149. rt_kprintf("section,ns:%d,ap:%x,"
  150. "xn:%d,texcb:%02x,domain:%d\n",
  151. (pte1 >> 19) & 0x1,
  152. ((pte1 >> 13) | (pte1 >> 10))& 0xf,
  153. (pte1 >> 4) & 0x1,
  154. (((pte1 & (0x7 << 12)) >> 10) | ((pte1 & 0x0c) >> 2)) & 0x1f,
  155. (pte1 >> 5) & 0xf);
  156. }
  157. }
  158. }
  159. void rt_hw_mmu_setmtt(rt_uint32_t vaddrStart, rt_uint32_t vaddrEnd,
  160. rt_uint32_t paddrStart, rt_uint32_t attr)
  161. {
  162. volatile rt_uint32_t *pTT;
  163. volatile int i, nSec;
  164. pTT = (rt_uint32_t *)MMUTable + (vaddrStart >> 20);
  165. nSec = (vaddrEnd >> 20) - (vaddrStart >> 20);
  166. for(i = 0; i <= nSec; i++)
  167. {
  168. *pTT = attr | (((paddrStart >> 20) + i) << 20);
  169. pTT++;
  170. }
  171. }
  172. void rt_hw_init_mmu_table(struct mem_desc *mdesc, rt_uint32_t size)
  173. {
  174. /* set page table */
  175. for(; size > 0; size--)
  176. {
  177. rt_hw_mmu_setmtt(mdesc->vaddr_start, mdesc->vaddr_end,
  178. mdesc->paddr_start, mdesc->attr);
  179. mdesc++;
  180. }
  181. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, (void*)MMUTable, sizeof MMUTable);
  182. }
  183. void rt_hw_mmu_init(void)
  184. {
  185. rt_cpu_dcache_clean_flush();
  186. rt_cpu_icache_flush();
  187. rt_hw_cpu_dcache_disable();
  188. rt_hw_cpu_icache_disable();
  189. rt_cpu_mmu_disable();
  190. /*rt_hw_cpu_dump_page_table(MMUTable);*/
  191. rt_hw_set_domain_register(0x55555555);
  192. rt_cpu_tlb_set(MMUTable);
  193. rt_cpu_mmu_enable();
  194. rt_hw_cpu_icache_enable();
  195. rt_hw_cpu_dcache_enable();
  196. }
  197. int rt_hw_mmu_map_init(rt_mmu_info *mmu_info, void* v_address, size_t size, size_t *vtable, size_t pv_off)
  198. {
  199. size_t l1_off, va_s, va_e;
  200. if (!mmu_info || !vtable)
  201. {
  202. return -1;
  203. }
  204. va_s = (size_t)v_address;
  205. va_e = (size_t)v_address + size - 1;
  206. if ( va_e < va_s)
  207. {
  208. return -1;
  209. }
  210. va_s >>= ARCH_SECTION_SHIFT;
  211. va_e >>= ARCH_SECTION_SHIFT;
  212. if (va_s == 0)
  213. {
  214. return -1;
  215. }
  216. for (l1_off = va_s; l1_off <= va_e; l1_off++)
  217. {
  218. size_t v = vtable[l1_off];
  219. if (v & ARCH_MMU_USED_MASK)
  220. {
  221. return -1;
  222. }
  223. }
  224. mmu_info->vtable = vtable;
  225. mmu_info->vstart = va_s;
  226. mmu_info->vend = va_e;
  227. mmu_info->pv_off = pv_off;
  228. return 0;
  229. }
  230. int rt_hw_mmu_ioremap_init(rt_mmu_info *mmu_info, void* v_address, size_t size)
  231. {
  232. #ifdef RT_IOREMAP_LATE
  233. size_t loop_va;
  234. size_t l1_off;
  235. size_t *mmu_l1, *mmu_l2;
  236. size_t sections;
  237. /* for kernel ioremap */
  238. if ((size_t)v_address < KERNEL_VADDR_START)
  239. {
  240. return -1;
  241. }
  242. /* must align to section */
  243. if ((size_t)v_address & ARCH_SECTION_MASK)
  244. {
  245. return -1;
  246. }
  247. /* must align to section */
  248. if (size & ARCH_SECTION_MASK)
  249. {
  250. return -1;
  251. }
  252. loop_va = (size_t)v_address;
  253. sections = (size >> ARCH_SECTION_SHIFT);
  254. while (sections--)
  255. {
  256. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  257. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  258. RT_ASSERT((*mmu_l1 & ARCH_MMU_USED_MASK) == 0);
  259. mmu_l2 = (size_t*)rt_pages_alloc(0);
  260. if (mmu_l2)
  261. {
  262. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  263. /* cache maintain */
  264. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  265. *mmu_l1 = (((size_t)mmu_l2 + mmu_info->pv_off) | 0x1);
  266. /* cache maintain */
  267. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  268. }
  269. else
  270. {
  271. /* error */
  272. return -1;
  273. }
  274. loop_va += ARCH_SECTION_SIZE;
  275. }
  276. #endif
  277. return 0;
  278. }
  279. #ifdef RT_USING_LWP
  280. static size_t find_vaddr(rt_mmu_info *mmu_info, int pages)
  281. {
  282. size_t l1_off, l2_off;
  283. size_t *mmu_l1, *mmu_l2;
  284. size_t find_off = 0;
  285. size_t find_va = 0;
  286. int n = 0;
  287. if (!pages)
  288. {
  289. return 0;
  290. }
  291. if (!mmu_info)
  292. {
  293. return 0;
  294. }
  295. for (l1_off = mmu_info->vstart; l1_off <= mmu_info->vend; l1_off++)
  296. {
  297. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  298. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  299. {
  300. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  301. for (l2_off = 0; l2_off < (ARCH_SECTION_SIZE/ARCH_PAGE_SIZE); l2_off++)
  302. {
  303. if (*(mmu_l2 + l2_off) & ARCH_MMU_USED_MASK)
  304. {
  305. /* in use */
  306. n = 0;
  307. }
  308. else
  309. {
  310. if (!n)
  311. {
  312. find_va = l1_off;
  313. find_off = l2_off;
  314. }
  315. n++;
  316. if (n >= pages)
  317. {
  318. return (find_va << ARCH_SECTION_SHIFT) + (find_off << ARCH_PAGE_SHIFT);
  319. }
  320. }
  321. }
  322. }
  323. else
  324. {
  325. if (!n)
  326. {
  327. find_va = l1_off;
  328. find_off = 0;
  329. }
  330. n += (ARCH_SECTION_SIZE/ARCH_PAGE_SIZE);
  331. if (n >= pages)
  332. {
  333. return (find_va << ARCH_SECTION_SHIFT) + (find_off << ARCH_PAGE_SHIFT);
  334. }
  335. }
  336. }
  337. return 0;
  338. }
  339. static int check_vaddr(rt_mmu_info *mmu_info, void *va, int pages)
  340. {
  341. size_t loop_va = (size_t)va & ~ARCH_PAGE_MASK;
  342. size_t l1_off, l2_off;
  343. size_t *mmu_l1, *mmu_l2;
  344. if (!pages)
  345. {
  346. return -1;
  347. }
  348. if (!mmu_info)
  349. {
  350. return -1;
  351. }
  352. l1_off = ((size_t)va >> ARCH_SECTION_SHIFT);
  353. if (l1_off < mmu_info->vstart || l1_off > mmu_info->vend)
  354. {
  355. return -1;
  356. }
  357. l1_off += ((pages << ARCH_PAGE_SHIFT) >> ARCH_SECTION_SHIFT);
  358. if (l1_off < mmu_info->vstart || l1_off > mmu_info->vend + 1)
  359. {
  360. return -1;
  361. }
  362. while (pages--)
  363. {
  364. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  365. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  366. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  367. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  368. {
  369. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  370. if (*(mmu_l2 + l2_off) & ARCH_MMU_USED_MASK)
  371. {
  372. return -1;
  373. }
  374. }
  375. loop_va += ARCH_PAGE_SIZE;
  376. }
  377. return 0;
  378. }
  379. static void __rt_hw_mmu_unmap(rt_mmu_info *mmu_info, void* v_addr, size_t npages)
  380. {
  381. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  382. size_t l1_off, l2_off;
  383. size_t *mmu_l1, *mmu_l2;
  384. if (!mmu_info)
  385. {
  386. return;
  387. }
  388. while (npages--)
  389. {
  390. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  391. if (l1_off < mmu_info->vstart || l1_off > mmu_info->vend)
  392. {
  393. return;
  394. }
  395. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  396. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  397. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  398. {
  399. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  400. }
  401. else
  402. {
  403. return;
  404. }
  405. if (*(mmu_l2 + l2_off) & ARCH_MMU_USED_MASK)
  406. {
  407. *(mmu_l2 + l2_off) = 0;
  408. /* cache maintain */
  409. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  410. if (rt_pages_free(mmu_l2, 0))
  411. {
  412. *mmu_l1 = 0;
  413. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  414. }
  415. }
  416. loop_va += ARCH_PAGE_SIZE;
  417. }
  418. }
  419. static int __rt_hw_mmu_map(rt_mmu_info *mmu_info, void* v_addr, void* p_addr, size_t npages, size_t attr)
  420. {
  421. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  422. size_t loop_pa = (size_t)p_addr & ~ARCH_PAGE_MASK;
  423. size_t l1_off, l2_off;
  424. size_t *mmu_l1, *mmu_l2;
  425. if (!mmu_info)
  426. {
  427. return -1;
  428. }
  429. while (npages--)
  430. {
  431. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  432. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  433. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  434. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  435. {
  436. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  437. rt_page_ref_inc(mmu_l2, 0);
  438. }
  439. else
  440. {
  441. mmu_l2 = (size_t*)rt_pages_alloc(0);
  442. if (mmu_l2)
  443. {
  444. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  445. /* cache maintain */
  446. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  447. *mmu_l1 = (((size_t)mmu_l2 + mmu_info->pv_off) | 0x1);
  448. /* cache maintain */
  449. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  450. }
  451. else
  452. {
  453. /* error, unmap and quit */
  454. __rt_hw_mmu_unmap(mmu_info, v_addr, npages);
  455. return -1;
  456. }
  457. }
  458. *(mmu_l2 + l2_off) = (loop_pa | attr);
  459. /* cache maintain */
  460. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  461. loop_va += ARCH_PAGE_SIZE;
  462. loop_pa += ARCH_PAGE_SIZE;
  463. }
  464. return 0;
  465. }
  466. void *_rt_hw_mmu_map(rt_mmu_info *mmu_info, void *v_addr, void* p_addr, size_t size, size_t attr)
  467. {
  468. size_t pa_s, pa_e;
  469. size_t vaddr;
  470. int pages;
  471. int ret;
  472. if (!size)
  473. {
  474. return 0;
  475. }
  476. pa_s = (size_t)p_addr;
  477. pa_e = (size_t)p_addr + size - 1;
  478. pa_s >>= ARCH_PAGE_SHIFT;
  479. pa_e >>= ARCH_PAGE_SHIFT;
  480. pages = pa_e - pa_s + 1;
  481. if (v_addr)
  482. {
  483. vaddr = (size_t)v_addr;
  484. pa_s = (size_t)p_addr;
  485. if ((vaddr & ARCH_PAGE_MASK) != (pa_s & ARCH_PAGE_MASK))
  486. {
  487. return 0;
  488. }
  489. vaddr &= ~ARCH_PAGE_MASK;
  490. if (check_vaddr(mmu_info, (void*)vaddr, pages) != 0)
  491. {
  492. return 0;
  493. }
  494. }
  495. else
  496. {
  497. vaddr = find_vaddr(mmu_info, pages);
  498. }
  499. if (vaddr) {
  500. rt_enter_critical();
  501. ret = __rt_hw_mmu_map(mmu_info, (void*)vaddr, p_addr, pages, attr);
  502. if (ret == 0)
  503. {
  504. rt_hw_cpu_tlb_invalidate();
  505. rt_exit_critical();
  506. return (void*)(vaddr + ((size_t)p_addr & ARCH_PAGE_MASK));
  507. }
  508. rt_exit_critical();
  509. }
  510. return 0;
  511. }
  512. static int __rt_hw_mmu_map_auto(rt_mmu_info *mmu_info, void* v_addr, size_t npages, size_t attr)
  513. {
  514. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  515. size_t loop_pa;
  516. size_t l1_off, l2_off;
  517. size_t *mmu_l1, *mmu_l2;
  518. if (!mmu_info)
  519. {
  520. return -1;
  521. }
  522. while (npages--)
  523. {
  524. loop_pa = (size_t)rt_pages_alloc(0);
  525. if (!loop_pa)
  526. goto err;
  527. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  528. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  529. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  530. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  531. {
  532. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  533. rt_page_ref_inc(mmu_l2, 0);
  534. }
  535. else
  536. {
  537. //mmu_l2 = (size_t*)rt_malloc_align(ARCH_PAGE_TBL_SIZE * 2, ARCH_PAGE_TBL_SIZE);
  538. mmu_l2 = (size_t*)rt_pages_alloc(0);
  539. if (mmu_l2)
  540. {
  541. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  542. /* cache maintain */
  543. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  544. *mmu_l1 = (((size_t)mmu_l2 + mmu_info->pv_off) | 0x1);
  545. /* cache maintain */
  546. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  547. }
  548. else
  549. goto err;
  550. }
  551. loop_pa += mmu_info->pv_off;
  552. *(mmu_l2 + l2_off) = (loop_pa | attr);
  553. /* cache maintain */
  554. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  555. loop_va += ARCH_PAGE_SIZE;
  556. }
  557. return 0;
  558. err:
  559. {
  560. /* error, unmap and quit */
  561. int i;
  562. void *va, *pa;
  563. va = (void*)((size_t)v_addr & ~ARCH_PAGE_MASK);
  564. for (i = 0; i < npages; i++)
  565. {
  566. pa = rt_hw_mmu_v2p(mmu_info, va);
  567. pa = (void*)((char*)pa - mmu_info->pv_off);
  568. rt_pages_free(pa, 0);
  569. va = (void*)((char*)va + ARCH_PAGE_SIZE);
  570. }
  571. __rt_hw_mmu_unmap(mmu_info, v_addr, npages);
  572. return -1;
  573. }
  574. }
  575. void *_rt_hw_mmu_map_auto(rt_mmu_info *mmu_info, void *v_addr, size_t size, size_t attr)
  576. {
  577. size_t vaddr;
  578. size_t offset;
  579. int pages;
  580. int ret;
  581. if (!size)
  582. {
  583. return 0;
  584. }
  585. offset = (size_t)v_addr & ARCH_PAGE_MASK;
  586. size += (offset + ARCH_PAGE_SIZE - 1);
  587. pages = (size >> ARCH_PAGE_SHIFT);
  588. if (v_addr)
  589. {
  590. vaddr = (size_t)v_addr;
  591. vaddr &= ~ARCH_PAGE_MASK;
  592. if (check_vaddr(mmu_info, (void*)vaddr, pages) != 0)
  593. {
  594. return 0;
  595. }
  596. }
  597. else
  598. {
  599. vaddr = find_vaddr(mmu_info, pages);
  600. }
  601. if (vaddr)
  602. {
  603. rt_enter_critical();
  604. ret = __rt_hw_mmu_map_auto(mmu_info, (void*)vaddr, pages, attr);
  605. if (ret == 0)
  606. {
  607. rt_hw_cpu_tlb_invalidate();
  608. rt_exit_critical();
  609. return (void*)((char*)vaddr + offset);
  610. }
  611. rt_exit_critical();
  612. }
  613. return 0;
  614. }
  615. void _rt_hw_mmu_unmap(rt_mmu_info *mmu_info, void* v_addr, size_t size)
  616. {
  617. size_t va_s, va_e;
  618. int pages;
  619. va_s = (size_t)v_addr;
  620. va_e = (size_t)v_addr + size - 1;
  621. va_s >>= ARCH_PAGE_SHIFT;
  622. va_e >>= ARCH_PAGE_SHIFT;
  623. pages = va_e - va_s + 1;
  624. rt_enter_critical();
  625. __rt_hw_mmu_unmap(mmu_info, v_addr, pages);
  626. rt_hw_cpu_tlb_invalidate();
  627. rt_exit_critical();
  628. }
  629. void *rt_hw_mmu_map(rt_mmu_info *mmu_info, void *v_addr, void* p_addr, size_t size, size_t attr)
  630. {
  631. void *ret;
  632. rt_mm_lock();
  633. ret = _rt_hw_mmu_map(mmu_info, v_addr, p_addr, size, attr);
  634. rt_mm_unlock();
  635. return ret;
  636. }
  637. void *rt_hw_mmu_map_auto(rt_mmu_info *mmu_info, void *v_addr, size_t size, size_t attr)
  638. {
  639. void *ret;
  640. rt_mm_lock();
  641. ret = _rt_hw_mmu_map_auto(mmu_info, v_addr, size, attr);
  642. rt_mm_unlock();
  643. return ret;
  644. }
  645. void rt_hw_mmu_unmap(rt_mmu_info *mmu_info, void* v_addr, size_t size)
  646. {
  647. rt_mm_lock();
  648. _rt_hw_mmu_unmap(mmu_info, v_addr, size);
  649. rt_mm_unlock();
  650. }
  651. void *_rt_hw_mmu_v2p(rt_mmu_info *mmu_info, void* v_addr)
  652. {
  653. size_t l1_off, l2_off;
  654. size_t *mmu_l1, *mmu_l2;
  655. size_t tmp;
  656. size_t pa;
  657. l1_off = (size_t)v_addr >> ARCH_SECTION_SHIFT;
  658. if (!mmu_info)
  659. {
  660. return (void*)0;
  661. }
  662. mmu_l1 = (size_t*)mmu_info->vtable + l1_off;
  663. tmp = *mmu_l1;
  664. switch (tmp & ARCH_MMU_USED_MASK)
  665. {
  666. case 0: /* not used */
  667. break;
  668. case 1: /* page table */
  669. mmu_l2 = (size_t *)((tmp & ~ARCH_PAGE_TBL_MASK) - mmu_info->pv_off);
  670. l2_off = (((size_t)v_addr & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  671. pa = *(mmu_l2 + l2_off);
  672. if (pa & ARCH_MMU_USED_MASK)
  673. {
  674. if ((pa & ARCH_MMU_USED_MASK) == 1)
  675. {
  676. /* large page, not support */
  677. break;
  678. }
  679. pa &= ~(ARCH_PAGE_MASK);
  680. pa += ((size_t)v_addr & ARCH_PAGE_MASK);
  681. return (void*)pa;
  682. }
  683. break;
  684. case 2:
  685. case 3:
  686. /* section */
  687. if (tmp & ARCH_TYPE_SUPERSECTION)
  688. {
  689. /* super section, not support */
  690. break;
  691. }
  692. pa = (tmp & ~ARCH_SECTION_MASK);
  693. pa += ((size_t)v_addr & ARCH_SECTION_MASK);
  694. return (void*)pa;
  695. }
  696. return (void*)0;
  697. }
  698. void *rt_hw_mmu_v2p(rt_mmu_info *mmu_info, void* v_addr)
  699. {
  700. void *ret;
  701. rt_mm_lock();
  702. ret = _rt_hw_mmu_v2p(mmu_info, v_addr);
  703. rt_mm_unlock();
  704. return ret;
  705. }
  706. void init_mm_setup(unsigned int *mtbl, unsigned int size, unsigned int pv_off)
  707. {
  708. unsigned int va;
  709. for (va = 0; va < 0x1000; va++)
  710. {
  711. unsigned int vaddr = (va << 20);
  712. if (vaddr >= KERNEL_VADDR_START && vaddr - KERNEL_VADDR_START < size)
  713. {
  714. mtbl[va] = ((va << 20) + pv_off) | NORMAL_MEM;
  715. }
  716. else if (vaddr >= (KERNEL_VADDR_START + pv_off) && vaddr - (KERNEL_VADDR_START + pv_off) < size)
  717. {
  718. mtbl[va] = (va << 20) | NORMAL_MEM;
  719. }
  720. else
  721. {
  722. mtbl[va] = 0;
  723. }
  724. }
  725. }
  726. #endif