FM25Lx.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. #include "FM25Lx.h"
  2. #include "rtthread.h"
  3. #include "stm32f2xx_rcc.h"
  4. #include <stm32f2xx.h>
  5. #define FLASH_TRACE(...)
  6. //#define FLASH_TRACE rt_kprintf
  7. #define CS_LOW() GPIO_ResetBits(FM25_SPI_NSS_GPIO, FM25_SPI_NSS_PIN)
  8. #define CS_HIGH() GPIO_SetBits(FM25_SPI_NSS_GPIO, FM25_SPI_NSS_PIN)
  9. #define spi_config() rt_hw_spi2_baud_rate(SPI_BaudRatePrescaler_4);/* 72M/4=18M */
  10. #define fram_lock() rt_sem_take(fram_lock, RT_WAITING_FOREVER);
  11. #define fram_unlock() rt_sem_release(fram_lock);
  12. static uint32_t spi_timeout_cnt = 0;
  13. rt_sem_t fram_lock;
  14. void rt_hw_spi2_baud_rate(uint16_t SPI_BaudRatePrescaler)
  15. {
  16. SPI2->CR1 &= ~SPI_BaudRatePrescaler_256;
  17. SPI2->CR1 |= SPI_BaudRatePrescaler;
  18. }
  19. /* FM25L256 using SPI2 */
  20. void fm25_spi_cfg()
  21. {
  22. GPIO_InitTypeDef GPIO_InitStructure;
  23. SPI_InitTypeDef SPI_InitStructure;
  24. /* Enable SPI Periph clock */
  25. RCC_AHB1PeriphClockCmd(FM25_SPI_NSS_GPIO_CLK | FM25_SPI_GPIO_CLK, ENABLE);
  26. RCC_APB1PeriphClockCmd(FM25_SPI_CLK, ENABLE); //enable SPI clock
  27. //Setup GPIO
  28. GPIO_InitStructure.GPIO_Pin = FM25_SPI_SCK | FM25_SPI_MISO | FM25_SPI_MOSI;
  29. /*Connect Pin to AF*/
  30. GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource3, GPIO_AF_SPI3);
  31. GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource4, GPIO_AF_SPI3);
  32. GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource5, GPIO_AF_SPI3);
  33. GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  34. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
  35. GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
  36. GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
  37. GPIO_Init(FM25_SPI_GPIO, &GPIO_InitStructure);
  38. /* CS pin: PB12 */
  39. GPIO_InitStructure.GPIO_Pin = FM25_SPI_NSS_PIN;
  40. GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
  41. GPIO_Init(FM25_SPI_NSS_GPIO, &GPIO_InitStructure);
  42. CS_HIGH();
  43. SPI_Cmd(FM25_SPI, DISABLE);
  44. /*------------------------ SPI configuration ------------------------*/
  45. SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;//SPI_Direction_1Line_Tx;
  46. SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
  47. SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
  48. SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
  49. SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
  50. SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
  51. SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;/* 72M/64=1.125M */
  52. SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
  53. SPI_InitStructure.SPI_CRCPolynomial = 7;
  54. //SPI_I2S_DeInit(FM25_SPI);
  55. SPI_Init(FM25_SPI, &SPI_InitStructure);
  56. /* Enable SPI_MASTER */
  57. SPI_Cmd(FM25_SPI, ENABLE);
  58. //SPI_CalculateCRC(FM25_SPI, DISABLE);
  59. fram_lock = rt_sem_create("framlock", 1, RT_IPC_FLAG_FIFO);
  60. }
  61. static uint8_t spi_readwrite(uint8_t data)
  62. {
  63. int32_t timeout = 0xFFFFF;
  64. //rt_kprintf("State 0x%X\n", SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_TXE));
  65. //Wait until the transmit buffer is empty
  66. while (SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_TXE) == RESET && --timeout >0);
  67. if( timeout <= 0 ){ spi_timeout_cnt++; return 0;}
  68. // Send the byte
  69. SPI_I2S_SendData(FM25_SPI, data);
  70. timeout = 0xFFFFF;
  71. //Wait until a data is received
  72. while (SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_RXNE) == RESET && --timeout >0);
  73. if( timeout <= 0 ){ spi_timeout_cnt++; return 0;}
  74. // Get the received data
  75. data = SPI_I2S_ReceiveData(FM25_SPI);
  76. // Return the shifted data
  77. return data;
  78. }
  79. static uint8_t fm25_read_status(void)
  80. {
  81. uint8_t tmp;
  82. CS_LOW();
  83. spi_readwrite( FM25_RDSR );
  84. tmp=spi_readwrite(0xFF);
  85. CS_HIGH();
  86. return tmp;
  87. }
  88. rt_size_t fm25_read(rt_device_t dev, rt_off_t offset, void * buf, rt_size_t size)
  89. {
  90. uint32_t index;
  91. uint8_t *buffer = (uint8_t*) buf;
  92. fram_lock();
  93. //spi_config();
  94. //rt_kprintf("READ: %d, size=%d\n", offset, size);
  95. CS_LOW();
  96. spi_readwrite( FM25_READ);
  97. spi_readwrite( (offset >> 8)&0xFF );
  98. spi_readwrite( offset & 0xFF );
  99. for(index=0; index<size; index++)
  100. {
  101. *buffer++ = spi_readwrite(0xFF);
  102. if( spi_timeout_cnt > 0 )
  103. {
  104. fram_unlock();
  105. spi_timeout_cnt = 0;
  106. rt_kprintf("Read time out\n");
  107. return -1;
  108. }
  109. offset++;
  110. }
  111. CS_HIGH();
  112. fram_unlock();
  113. return size;
  114. }
  115. rt_size_t fm25_write(rt_device_t dev, rt_off_t offset, const void * buf, rt_size_t size)
  116. {
  117. uint32_t index = size;
  118. uint8_t *buffer = (uint8_t*) buf;
  119. fram_lock();
  120. //spi_config();
  121. //rt_kprintf("WRITE: %d, size=%d\n", offset, size);
  122. CS_LOW();
  123. spi_readwrite( FM25_WREN );
  124. CS_HIGH();
  125. CS_LOW();
  126. spi_readwrite( FM25_WRITE);
  127. spi_readwrite( (offset >> 8)&0xFF );
  128. spi_readwrite( offset & 0xFF );
  129. while( index > 0 )
  130. {
  131. spi_readwrite( *buffer++ );
  132. if( spi_timeout_cnt > 0 )
  133. {
  134. fram_unlock();
  135. rt_kprintf("Write time out\n");
  136. spi_timeout_cnt = 0;
  137. return -1;
  138. }
  139. index--;
  140. offset++;
  141. }
  142. CS_HIGH();
  143. //rt_thread_delay(100);
  144. fram_unlock();
  145. return size;
  146. }
  147. static rt_err_t fm25_init(rt_device_t dev)
  148. {
  149. return RT_EOK;
  150. }
  151. static rt_err_t fm25_open(rt_device_t dev, rt_uint16_t oflag)
  152. {
  153. char i;
  154. SPI_Cmd(FM25_SPI, ENABLE);
  155. if( oflag != RT_DEVICE_FLAG_RDONLY )
  156. {
  157. CS_LOW();
  158. spi_readwrite( FM25_WRSR );
  159. spi_readwrite( FM25_WPEN );
  160. CS_HIGH();
  161. //rt_kprintf("RDSR=0x%X\n", fm25_read_status());
  162. }
  163. return RT_EOK;
  164. }
  165. static rt_err_t fm25_close(rt_device_t dev)
  166. {
  167. CS_LOW();
  168. spi_readwrite( FM25_WRDI );
  169. CS_HIGH();
  170. SPI_Cmd(FM25_SPI, DISABLE);
  171. return RT_EOK;
  172. }
  173. static rt_err_t fm25_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  174. {
  175. RT_ASSERT(dev != RT_NULL);
  176. if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
  177. {
  178. struct rt_device_blk_geometry *geometry;
  179. geometry = (struct rt_device_blk_geometry *)args;
  180. if (geometry == RT_NULL) return -RT_ERROR;
  181. geometry->bytes_per_sector = 1;
  182. geometry->block_size = 1;
  183. geometry->sector_count = 8192;
  184. }
  185. return RT_EOK;
  186. }
  187. static struct rt_device spi_flash_device;
  188. void fm25_hw_init()
  189. {
  190. int i = 0xFFFFF;
  191. fm25_spi_cfg();
  192. while(i--);
  193. //spi_config();
  194. CS_LOW();
  195. spi_readwrite( FM25_WRDI );
  196. CS_HIGH();
  197. spi_flash_device.type = RT_Device_Class_Block;
  198. spi_flash_device.init = fm25_init;
  199. spi_flash_device.open = fm25_open;
  200. spi_flash_device.close = fm25_close;
  201. spi_flash_device.read = fm25_read;
  202. spi_flash_device.write = fm25_write;
  203. spi_flash_device.control = fm25_control;
  204. /* no private */
  205. spi_flash_device.user_data = RT_NULL;
  206. rt_device_register(&spi_flash_device, "fram0",
  207. RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  208. }
  209. int fram_test(int x)
  210. {
  211. //rt_kprintf("SR=0x%X\nCR1=0x%X\nCR2=0x%X\n", FM25_SPI->SR, FM25_SPI->CR1,FM25_SPI->CR2);
  212. rt_device_t device = RT_NULL;
  213. char buf[256];
  214. char read[256];
  215. int i, j;
  216. for(i =0; i< 256; i++ )
  217. {
  218. buf[i] = i;
  219. read[i] = 0;
  220. }
  221. // step 1:find device
  222. device = rt_device_find("fram0");
  223. if( device == RT_NULL)
  224. {
  225. rt_kprintf("device %s: not found!\r\n");
  226. return RT_ERROR;
  227. }
  228. device->open(device,RT_DEVICE_FLAG_RDWR);
  229. for( j = 0; j < FM25_MAXSIZE; j+= 256 )
  230. //j = 256*x;
  231. {
  232. //rt_kprintf("RDSR=0x%X\n", fm25_read_status());
  233. device->write(device,j, buf,256);
  234. device->read(device,j, read,256);
  235. for(i =0; i< 256; i++ )
  236. {
  237. if( buf[i] != read[i] )
  238. rt_kprintf("error at %d: %d!=%d\n", i, buf[i], read[i]);
  239. }
  240. }
  241. device->close(device);
  242. rt_kprintf("Finsh test\n");
  243. }
  244. #ifdef RT_USING_FINSH
  245. #include <finsh.h>
  246. FINSH_FUNCTION_EXPORT(fram_test, test system);
  247. #endif