enc28j60.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. #include "enc28j60.h"
  2. #define NET_TRACE
  3. #define ETH_RX_DUMP
  4. #define ETH_TX_DUMP
  5. #ifdef NET_TRACE
  6. #define NET_DEBUG rt_kprintf
  7. #else
  8. #define NET_DEBUG(...)
  9. #endif /* #ifdef NET_TRACE */
  10. struct enc28j60_tx_list_typedef
  11. {
  12. struct enc28j60_tx_list_typedef * prev;
  13. struct enc28j60_tx_list_typedef * next;
  14. rt_uint32_t addr; /* pkt addr in buffer */
  15. rt_uint32_t len; /* pkt len */
  16. volatile rt_bool_t free; /* 0:busy, 1:free */
  17. };
  18. static struct enc28j60_tx_list_typedef enc28j60_tx_list[2];
  19. static volatile struct enc28j60_tx_list_typedef * tx_current;
  20. static volatile struct enc28j60_tx_list_typedef * tx_ack;
  21. static struct rt_event tx_event;
  22. /* private enc28j60 define */
  23. /* enc28j60 spi interface function */
  24. static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address);
  25. static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address, uint8_t data);
  26. static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address);
  27. static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_uint8_t data);
  28. static void enc28j60_clkout(struct rt_spi_device * spi_device, rt_uint8_t clk);
  29. static void enc28j60_set_bank(struct rt_spi_device * spi_device, uint8_t address);
  30. static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device);
  31. static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_t level);
  32. static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t address);
  33. static void enc28j60_phy_write(struct rt_spi_device * spi_device, rt_uint8_t address, uint16_t data);
  34. static rt_bool_t enc28j60_check_link_status(struct rt_spi_device * spi_device);
  35. #define enc28j60_lock(dev) rt_mutex_take(&((struct net_device*)dev)->lock, RT_WAITING_FOREVER);
  36. #define enc28j60_unlock(dev) rt_mutex_release(&((struct net_device*)dev)->lock);
  37. static struct net_device enc28j60_dev;
  38. static uint8_t Enc28j60Bank;
  39. //struct rt_spi_device * spi_device;
  40. static uint16_t NextPacketPtr;
  41. static void _delay_us(uint32_t us)
  42. {
  43. volatile uint32_t len;
  44. for (; us > 0; us --)
  45. for (len = 0; len < 20; len++ );
  46. }
  47. /* enc28j60 spi interface function */
  48. static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address)
  49. {
  50. uint8_t send_buffer[2];
  51. uint8_t recv_buffer[1];
  52. uint32_t send_size = 1;
  53. send_buffer[0] = op | (address & ADDR_MASK);
  54. send_buffer[1] = 0xFF;
  55. /* do dummy read if needed (for mac and mii, see datasheet page 29). */
  56. if(address & 0x80)
  57. {
  58. send_size = 2;
  59. }
  60. rt_spi_send_then_recv(spi_device, send_buffer, send_size, recv_buffer, 1);
  61. return (recv_buffer[0]);
  62. }
  63. static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address, uint8_t data)
  64. {
  65. uint32_t level;
  66. uint8_t buffer[2];
  67. level = rt_hw_interrupt_disable();
  68. buffer[0] = op | (address & ADDR_MASK);
  69. buffer[1] = data;
  70. rt_spi_send(spi_device, buffer, 2);
  71. rt_hw_interrupt_enable(level);
  72. }
  73. /* enc28j60 function */
  74. static void enc28j60_clkout(struct rt_spi_device * spi_device, rt_uint8_t clk)
  75. {
  76. /* setup clkout: 2 is 12.5MHz: */
  77. spi_write(spi_device, ECOCON, clk & 0x7);
  78. }
  79. static void enc28j60_set_bank(struct rt_spi_device * spi_device, uint8_t address)
  80. {
  81. /* set the bank (if needed) .*/
  82. if((address & BANK_MASK) != Enc28j60Bank)
  83. {
  84. /* set the bank. */
  85. spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, (ECON1_BSEL1|ECON1_BSEL0));
  86. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, (address & BANK_MASK)>>5);
  87. Enc28j60Bank = (address & BANK_MASK);
  88. }
  89. }
  90. static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address)
  91. {
  92. /* set the bank. */
  93. enc28j60_set_bank(spi_device, address);
  94. /* do the read. */
  95. return spi_read_op(spi_device, ENC28J60_READ_CTRL_REG, address);
  96. }
  97. static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_uint8_t data)
  98. {
  99. /* set the bank. */
  100. enc28j60_set_bank(spi_device, address);
  101. /* do the write. */
  102. spi_write_op(spi_device, ENC28J60_WRITE_CTRL_REG, address, data);
  103. }
  104. static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t address)
  105. {
  106. uint16_t value;
  107. /* Set the right address and start the register read operation. */
  108. spi_write(spi_device, MIREGADR, address);
  109. spi_write(spi_device, MICMD, MICMD_MIIRD);
  110. _delay_us(15);
  111. /* wait until the PHY read completes. */
  112. while(spi_read(spi_device, MISTAT) & MISTAT_BUSY);
  113. /* reset reading bit */
  114. spi_write(spi_device, MICMD, 0x00);
  115. value = spi_read(spi_device, MIRDL) | spi_read(spi_device, MIRDH)<<8;
  116. return (value);
  117. }
  118. static void enc28j60_phy_write(struct rt_spi_device * spi_device, rt_uint8_t address, uint16_t data)
  119. {
  120. /* set the PHY register address. */
  121. spi_write(spi_device, MIREGADR, address);
  122. /* write the PHY data. */
  123. spi_write(spi_device, MIWRL, data);
  124. spi_write(spi_device, MIWRH, data>>8);
  125. /* wait until the PHY write completes. */
  126. while(spi_read(spi_device, MISTAT) & MISTAT_BUSY)
  127. {
  128. _delay_us(15);
  129. }
  130. }
  131. static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device)
  132. {
  133. uint32_t level;
  134. /* switch to bank 0 */
  135. enc28j60_set_bank(spi_device, EIE);
  136. /* get last interrupt level */
  137. level = spi_read(spi_device, EIE);
  138. /* disable interrutps */
  139. spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIE, level);
  140. return level;
  141. }
  142. static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_t level)
  143. {
  144. /* switch to bank 0 */
  145. enc28j60_set_bank(spi_device, EIE);
  146. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, EIE, level);
  147. }
  148. /*
  149. * Access the PHY to determine link status
  150. */
  151. static rt_bool_t enc28j60_check_link_status(struct rt_spi_device * spi_device)
  152. {
  153. uint16_t reg;
  154. int duplex;
  155. reg = enc28j60_phy_read(spi_device, PHSTAT2);
  156. duplex = reg & PHSTAT2_DPXSTAT;
  157. if (reg & PHSTAT2_LSTAT)
  158. {
  159. /* on */
  160. return RT_TRUE;
  161. }
  162. else
  163. {
  164. /* off */
  165. return RT_FALSE;
  166. }
  167. }
  168. /************************* RT-Thread Device Interface *************************/
  169. void enc28j60_isr(void)
  170. {
  171. eth_device_ready(&enc28j60_dev.parent);
  172. NET_DEBUG("enc28j60_isr\r\n");
  173. }
  174. static void _tx_chain_init(void)
  175. {
  176. enc28j60_tx_list[0].next = &enc28j60_tx_list[1];
  177. enc28j60_tx_list[1].next = &enc28j60_tx_list[0];
  178. enc28j60_tx_list[0].prev = &enc28j60_tx_list[1];
  179. enc28j60_tx_list[1].prev = &enc28j60_tx_list[0];
  180. enc28j60_tx_list[0].addr = TXSTART_INIT;
  181. enc28j60_tx_list[1].addr = TXSTART_INIT + MAX_TX_PACKAGE_SIZE;
  182. enc28j60_tx_list[0].free = RT_TRUE;
  183. enc28j60_tx_list[1].free = RT_TRUE;
  184. tx_current = &enc28j60_tx_list[0];
  185. tx_ack = tx_current;
  186. }
  187. /* initialize the interface */
  188. static rt_err_t enc28j60_init(rt_device_t dev)
  189. {
  190. struct net_device * enc28j60 = (struct net_device *)dev;
  191. struct rt_spi_device * spi_device = enc28j60->spi_device;
  192. enc28j60_lock(dev);
  193. _tx_chain_init();
  194. // perform system reset
  195. spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
  196. rt_thread_delay(RT_TICK_PER_SECOND/50); /* delay 20ms */
  197. NextPacketPtr = RXSTART_INIT;
  198. // Rx start
  199. spi_write(spi_device, ERXSTL, RXSTART_INIT&0xFF);
  200. spi_write(spi_device, ERXSTH, RXSTART_INIT>>8);
  201. // set receive pointer address
  202. spi_write(spi_device, ERXRDPTL, RXSTOP_INIT&0xFF);
  203. spi_write(spi_device, ERXRDPTH, RXSTOP_INIT>>8);
  204. // RX end
  205. spi_write(spi_device, ERXNDL, RXSTOP_INIT&0xFF);
  206. spi_write(spi_device, ERXNDH, RXSTOP_INIT>>8);
  207. // TX start
  208. spi_write(spi_device, ETXSTL, TXSTART_INIT&0xFF);
  209. spi_write(spi_device, ETXSTH, TXSTART_INIT>>8);
  210. // set transmission pointer address
  211. spi_write(spi_device, EWRPTL, TXSTART_INIT&0xFF);
  212. spi_write(spi_device, EWRPTH, TXSTART_INIT>>8);
  213. // TX end
  214. spi_write(spi_device, ETXNDL, TXSTOP_INIT&0xFF);
  215. spi_write(spi_device, ETXNDH, TXSTOP_INIT>>8);
  216. // do bank 1 stuff, packet filter:
  217. // For broadcast packets we allow only ARP packtets
  218. // All other packets should be unicast only for our mac (MAADR)
  219. //
  220. // The pattern to match on is therefore
  221. // Type ETH.DST
  222. // ARP BROADCAST
  223. // 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9
  224. // in binary these poitions are:11 0000 0011 1111
  225. // This is hex 303F->EPMM0=0x3f,EPMM1=0x30
  226. spi_write(spi_device, ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_BCEN);
  227. // do bank 2 stuff
  228. // enable MAC receive
  229. spi_write(spi_device, MACON1, MACON1_MARXEN|MACON1_TXPAUS|MACON1_RXPAUS);
  230. // enable automatic padding to 60bytes and CRC operations
  231. // spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN);
  232. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX);
  233. // bring MAC out of reset
  234. // set inter-frame gap (back-to-back)
  235. // spi_write(MABBIPG, 0x12);
  236. spi_write(spi_device, MABBIPG, 0x15);
  237. spi_write(spi_device, MACON4, MACON4_DEFER);
  238. spi_write(spi_device, MACLCON2, 63);
  239. // set inter-frame gap (non-back-to-back)
  240. spi_write(spi_device, MAIPGL, 0x12);
  241. spi_write(spi_device, MAIPGH, 0x0C);
  242. // Set the maximum packet size which the controller will accept
  243. // Do not send packets longer than MAX_FRAMELEN:
  244. spi_write(spi_device, MAMXFLL, MAX_FRAMELEN&0xFF);
  245. spi_write(spi_device, MAMXFLH, MAX_FRAMELEN>>8);
  246. // do bank 3 stuff
  247. // write MAC address
  248. // NOTE: MAC address in ENC28J60 is byte-backward
  249. spi_write(spi_device, MAADR0, enc28j60->dev_addr[5]);
  250. spi_write(spi_device, MAADR1, enc28j60->dev_addr[4]);
  251. spi_write(spi_device, MAADR2, enc28j60->dev_addr[3]);
  252. spi_write(spi_device, MAADR3, enc28j60->dev_addr[2]);
  253. spi_write(spi_device, MAADR4, enc28j60->dev_addr[1]);
  254. spi_write(spi_device, MAADR5, enc28j60->dev_addr[0]);
  255. /* output off */
  256. spi_write(spi_device, ECOCON, 0x00);
  257. // enc28j60_phy_write(PHCON1, 0x00);
  258. enc28j60_phy_write(spi_device, PHCON1, PHCON1_PDPXMD); // full duplex
  259. // no loopback of transmitted frames
  260. enc28j60_phy_write(spi_device, PHCON2, PHCON2_HDLDIS);
  261. enc28j60_set_bank(spi_device, ECON2);
  262. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_AUTOINC);
  263. // switch to bank 0
  264. enc28j60_set_bank(spi_device, ECON1);
  265. // enable all interrutps
  266. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, EIE, 0xFF);
  267. // enable packet reception
  268. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
  269. /* clock out */
  270. enc28j60_clkout(spi_device, 2);
  271. enc28j60_phy_write(spi_device, PHLCON, 0xD76); //0x476
  272. rt_thread_delay(RT_TICK_PER_SECOND/50); /* delay 20ms */
  273. enc28j60_unlock(dev);
  274. return RT_EOK;
  275. }
  276. /* control the interface */
  277. static rt_err_t enc28j60_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  278. {
  279. struct net_device * enc28j60 = (struct net_device *)dev;
  280. switch(cmd)
  281. {
  282. case NIOCTL_GADDR:
  283. /* get mac address */
  284. if(args) rt_memcpy(args, enc28j60->dev_addr, 6);
  285. else return -RT_ERROR;
  286. break;
  287. default :
  288. break;
  289. }
  290. return RT_EOK;
  291. }
  292. /* Open the ethernet interface */
  293. static rt_err_t enc28j60_open(rt_device_t dev, uint16_t oflag)
  294. {
  295. return RT_EOK;
  296. }
  297. /* Close the interface */
  298. static rt_err_t enc28j60_close(rt_device_t dev)
  299. {
  300. return RT_EOK;
  301. }
  302. /* Read */
  303. static rt_size_t enc28j60_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  304. {
  305. rt_set_errno(-RT_ENOSYS);
  306. return RT_EOK;
  307. }
  308. /* Write */
  309. static rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  310. {
  311. rt_set_errno(-RT_ENOSYS);
  312. return 0;
  313. }
  314. /* ethernet device interface */
  315. /* Transmit packet. */
  316. static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p)
  317. {
  318. struct net_device * enc28j60 = (struct net_device *)dev;
  319. struct rt_spi_device * spi_device = enc28j60->spi_device;
  320. struct pbuf* q;
  321. rt_uint32_t level;
  322. #ifdef ETH_TX_DUMP
  323. rt_size_t dump_count = 0;
  324. rt_uint8_t * dump_ptr;
  325. rt_size_t dump_i;
  326. #endif
  327. if(tx_current->free == RT_FALSE)
  328. {
  329. NET_DEBUG("[Tx] no empty buffer!\r\n");
  330. while(tx_current->free == RT_FALSE)
  331. {
  332. rt_err_t result;
  333. rt_uint32_t recved;
  334. /* there is no block yet, wait a flag */
  335. result = rt_event_recv(&tx_event, 0x01,
  336. RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recved);
  337. RT_ASSERT(result == RT_EOK);
  338. }
  339. NET_DEBUG("[Tx] wait empty buffer done!\r\n");
  340. }
  341. enc28j60_lock(dev);
  342. /* disable enc28j60 interrupt */
  343. level = enc28j60_interrupt_disable(spi_device);
  344. // Set the write pointer to start of transmit buffer area
  345. // spi_write(EWRPTL, TXSTART_INIT&0xFF);
  346. // spi_write(EWRPTH, TXSTART_INIT>>8);
  347. spi_write(spi_device, EWRPTL, (tx_current->addr)&0xFF);
  348. spi_write(spi_device, EWRPTH, (tx_current->addr)>>8);
  349. // Set the TXND pointer to correspond to the packet size given
  350. tx_current->len = p->tot_len;
  351. // spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF);
  352. // spi_write(ETXNDH, (TXSTART_INIT+ p->tot_len + 1)>>8);
  353. // write per-packet control byte (0x00 means use macon3 settings)
  354. spi_write_op(spi_device, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
  355. #ifdef ETH_TX_DUMP
  356. NET_DEBUG("tx_dump, size:%d\r\n", p->tot_len);
  357. #endif
  358. for (q = p; q != NULL; q = q->next)
  359. {
  360. uint8_t cmd = ENC28J60_WRITE_BUF_MEM;
  361. rt_spi_send_then_send(enc28j60->spi_device, &cmd, 1, q->payload, q->len);
  362. #ifdef ETH_RX_DUMP
  363. dump_ptr = q->payload;
  364. for(dump_i=0; dump_i<q->len; dump_i++)
  365. {
  366. NET_DEBUG("%02x ", *dump_ptr);
  367. if( ((dump_count+1)%8) == 0 )
  368. {
  369. NET_DEBUG(" ");
  370. }
  371. if( ((dump_count+1)%16) == 0 )
  372. {
  373. NET_DEBUG("\r\n");
  374. }
  375. dump_count++;
  376. dump_ptr++;
  377. }
  378. #endif
  379. }
  380. #ifdef ETH_RX_DUMP
  381. NET_DEBUG("\r\n");
  382. #endif
  383. // send the contents of the transmit buffer onto the network
  384. if(tx_current == tx_ack)
  385. {
  386. NET_DEBUG("[Tx] stop, restart!\r\n");
  387. // TX start
  388. spi_write(spi_device, ETXSTL, (tx_current->addr)&0xFF);
  389. spi_write(spi_device, ETXSTH, (tx_current->addr)>>8);
  390. // TX end
  391. spi_write(spi_device, ETXNDL, (tx_current->addr + tx_current->len)&0xFF);
  392. spi_write(spi_device, ETXNDH, (tx_current->addr + tx_current->len)>>8);
  393. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
  394. }
  395. else
  396. {
  397. NET_DEBUG("[Tx] busy, add to chain!\r\n");
  398. }
  399. tx_current->free = RT_FALSE;
  400. tx_current = tx_current->next;
  401. /* Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12. */
  402. if( (spi_read(spi_device, EIR) & EIR_TXERIF) )
  403. {
  404. spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
  405. }
  406. /* enable enc28j60 interrupt */
  407. enc28j60_interrupt_enable(spi_device, level);
  408. enc28j60_unlock(dev);
  409. return RT_EOK;
  410. }
  411. /* recv packet. */
  412. static struct pbuf *enc28j60_rx(rt_device_t dev)
  413. {
  414. struct net_device * enc28j60 = (struct net_device *)dev;
  415. struct rt_spi_device * spi_device = enc28j60->spi_device;
  416. struct pbuf* p = RT_NULL;
  417. uint8_t eir, eir_clr;
  418. uint32_t pk_counter;
  419. rt_uint32_t level;
  420. rt_uint32_t len;
  421. rt_uint16_t rxstat;
  422. enc28j60_lock(dev);
  423. /* disable enc28j60 interrupt */
  424. level = enc28j60_interrupt_disable(spi_device);
  425. /* get EIR */
  426. eir = spi_read(spi_device, EIR);
  427. while(eir & ~EIR_PKTIF)
  428. {
  429. eir_clr = 0;
  430. /* clear PKTIF */
  431. if (eir & EIR_PKTIF)
  432. {
  433. NET_DEBUG("EIR_PKTIF\r\n");
  434. /* switch to bank 0. */
  435. enc28j60_set_bank(spi_device, EIE);
  436. /* disable rx interrutps. */
  437. spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIE, EIE_PKTIE);
  438. eir_clr |= EIR_PKTIF;
  439. // enc28j60_set_bank(spi_device, EIR);
  440. // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_PKTIF);
  441. }
  442. /* clear DMAIF */
  443. if (eir & EIR_DMAIF)
  444. {
  445. NET_DEBUG("EIR_DMAIF\r\n");
  446. eir_clr |= EIR_DMAIF;
  447. // enc28j60_set_bank(spi_device, EIR);
  448. // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_DMAIF);
  449. }
  450. /* LINK changed handler */
  451. if ( eir & EIR_LINKIF)
  452. {
  453. rt_bool_t link_status;
  454. NET_DEBUG("EIR_LINKIF\r\n");
  455. link_status = enc28j60_check_link_status(spi_device);
  456. /* read PHIR to clear the flag */
  457. enc28j60_phy_read(spi_device, PHIR);
  458. eir_clr |= EIR_LINKIF;
  459. // enc28j60_set_bank(spi_device, EIR);
  460. // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_LINKIF);
  461. eth_device_linkchange(&(enc28j60->parent), link_status);
  462. }
  463. if (eir & EIR_TXIF)
  464. {
  465. /* A frame has been transmitted. */
  466. enc28j60_set_bank(spi_device, EIR);
  467. spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXIF);
  468. tx_ack->free = RT_TRUE;
  469. tx_ack = tx_ack->next;
  470. if(tx_ack->free == RT_FALSE)
  471. {
  472. NET_DEBUG("[tx isr] Tx chain not empty, continue send the next pkt!\r\n");
  473. // TX start
  474. spi_write(spi_device, ETXSTL, (tx_ack->addr)&0xFF);
  475. spi_write(spi_device, ETXSTH, (tx_ack->addr)>>8);
  476. // TX end
  477. spi_write(spi_device, ETXNDL, (tx_ack->addr + tx_ack->len)&0xFF);
  478. spi_write(spi_device, ETXNDH, (tx_ack->addr + tx_ack->len)>>8);
  479. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
  480. }
  481. else
  482. {
  483. NET_DEBUG("[tx isr] Tx chain empty, stop!\r\n");
  484. }
  485. /* set event */
  486. rt_event_send(&tx_event, 0x01);
  487. }
  488. /* wake up handler */
  489. if ( eir & EIR_WOLIF)
  490. {
  491. NET_DEBUG("EIR_WOLIF\r\n");
  492. eir_clr |= EIR_WOLIF;
  493. // enc28j60_set_bank(spi_device, EIR);
  494. // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_WOLIF);
  495. }
  496. /* TX Error handler */
  497. if ((eir & EIR_TXERIF) != 0)
  498. {
  499. NET_DEBUG("EIR_TXERIF re-start tx chain!\r\n");
  500. enc28j60_set_bank(spi_device, ECON1);
  501. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRST);
  502. spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
  503. eir_clr |= EIR_TXERIF;
  504. // enc28j60_set_bank(spi_device, EIR);
  505. // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF);
  506. /* re-init tx chain */
  507. _tx_chain_init();
  508. }
  509. /* RX Error handler */
  510. if ((eir & EIR_RXERIF) != 0)
  511. {
  512. NET_DEBUG("EIR_RXERIF re-start rx!\r\n");
  513. NextPacketPtr = RXSTART_INIT;
  514. enc28j60_set_bank(spi_device, ECON1);
  515. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXRST);
  516. spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_RXRST);
  517. /* switch to bank 0. */
  518. enc28j60_set_bank(spi_device, ECON1);
  519. /* enable packet reception. */
  520. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
  521. eir_clr |= EIR_RXERIF;
  522. // enc28j60_set_bank(spi_device, EIR);
  523. // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_RXERIF);
  524. }
  525. enc28j60_set_bank(spi_device, EIR);
  526. spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, eir_clr);
  527. eir = spi_read(spi_device, EIR);
  528. }
  529. /* read pkt */
  530. pk_counter = spi_read(spi_device, EPKTCNT);
  531. if(pk_counter)
  532. {
  533. /* Set the read pointer to the start of the received packet. */
  534. spi_write(spi_device, ERDPTL, (NextPacketPtr));
  535. spi_write(spi_device, ERDPTH, (NextPacketPtr)>>8);
  536. /* read the next packet pointer. */
  537. NextPacketPtr = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0);
  538. NextPacketPtr |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)<<8;
  539. /* read the packet length (see datasheet page 43). */
  540. len = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); //0x54
  541. len |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)<<8; //5554
  542. len-=4; //remove the CRC count
  543. // read the receive status (see datasheet page 43)
  544. rxstat = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0);
  545. rxstat |= ((rt_uint16_t)spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0))<<8;
  546. // check CRC and symbol errors (see datasheet page 44, table 7-3):
  547. // The ERXFCON.CRCEN is set by default. Normally we should not
  548. // need to check this.
  549. if ((rxstat & 0x80)==0)
  550. {
  551. // invalid
  552. len=0;
  553. }
  554. else
  555. {
  556. /* allocation pbuf */
  557. p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM);
  558. if (p != RT_NULL)
  559. {
  560. struct pbuf* q;
  561. #ifdef ETH_RX_DUMP
  562. rt_size_t dump_count = 0;
  563. rt_uint8_t * dump_ptr;
  564. rt_size_t dump_i;
  565. NET_DEBUG("rx_dump, size:%d\r\n", len);
  566. #endif
  567. for (q = p; q != RT_NULL; q= q->next)
  568. {
  569. uint8_t cmd = ENC28J60_READ_BUF_MEM;
  570. rt_spi_send_then_recv(spi_device, &cmd, 1, q->payload, q->len);
  571. #ifdef ETH_RX_DUMP
  572. dump_ptr = q->payload;
  573. for(dump_i=0; dump_i<q->len; dump_i++)
  574. {
  575. NET_DEBUG("%02x ", *dump_ptr);
  576. if( ((dump_count+1)%8) == 0 )
  577. {
  578. NET_DEBUG(" ");
  579. }
  580. if( ((dump_count+1)%16) == 0 )
  581. {
  582. NET_DEBUG("\r\n");
  583. }
  584. dump_count++;
  585. dump_ptr++;
  586. }
  587. #endif
  588. }
  589. #ifdef ETH_RX_DUMP
  590. NET_DEBUG("\r\n");
  591. #endif
  592. }
  593. }
  594. /* Move the RX read pointer to the start of the next received packet. */
  595. /* This frees the memory we just read out. */
  596. spi_write(spi_device, ERXRDPTL, (NextPacketPtr));
  597. spi_write(spi_device, ERXRDPTH, (NextPacketPtr)>>8);
  598. /* decrement the packet counter indicate we are done with this packet. */
  599. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);
  600. }
  601. else
  602. {
  603. /* switch to bank 0. */
  604. enc28j60_set_bank(spi_device, ECON1);
  605. /* enable packet reception. */
  606. spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
  607. level |= EIE_PKTIE;
  608. }
  609. /* enable enc28j60 interrupt */
  610. enc28j60_interrupt_enable(spi_device, level);
  611. enc28j60_unlock(dev);
  612. return p;
  613. }
  614. rt_err_t enc28j60_attach(const char * spi_device_name)
  615. {
  616. struct rt_spi_device * spi_device;
  617. spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
  618. if(spi_device == RT_NULL)
  619. {
  620. NET_DEBUG("spi device %s not found!\r\n", spi_device_name);
  621. return -RT_ENOSYS;
  622. }
  623. /* config spi */
  624. {
  625. struct rt_spi_configuration cfg;
  626. cfg.data_width = 8;
  627. cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible Modes 0 */
  628. cfg.max_hz = 20 * 1000 * 1000; /* SPI Interface with Clock Speeds Up to 20 MHz */
  629. rt_spi_configure(spi_device, &cfg);
  630. } /* config spi */
  631. memset(&enc28j60_dev, 0, sizeof(enc28j60_dev));
  632. rt_event_init(&tx_event, "eth_tx", RT_IPC_FLAG_FIFO);
  633. enc28j60_dev.spi_device = spi_device;
  634. /* detect device */
  635. {
  636. uint16_t value;
  637. /* perform system reset. */
  638. spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
  639. rt_thread_delay(1); /* delay 20ms */
  640. enc28j60_dev.emac_rev = spi_read(spi_device, EREVID);
  641. value = enc28j60_phy_read(spi_device, PHHID2);
  642. enc28j60_dev.phy_rev = value&0x0F;
  643. enc28j60_dev.phy_pn = (value>>4)&0x3F;
  644. enc28j60_dev.phy_id = (enc28j60_phy_read(spi_device, PHHID1) | ((value>>10)<<16))<<3;
  645. if(enc28j60_dev.phy_id != 0x00280418)
  646. {
  647. NET_DEBUG("ENC28J60 PHY ID not correct!\r\n");
  648. NET_DEBUG("emac_rev:%d\r\n", enc28j60_dev.emac_rev);
  649. NET_DEBUG("phy_rev:%02X\r\n", enc28j60_dev.phy_rev);
  650. NET_DEBUG("phy_pn:%02X\r\n", enc28j60_dev.phy_pn);
  651. NET_DEBUG("phy_id:%08X\r\n", enc28j60_dev.phy_id);
  652. return RT_EIO;
  653. }
  654. }
  655. /* OUI 00-04-A3 (hex): Microchip Technology, Inc. */
  656. enc28j60_dev.dev_addr[0] = 0x00;
  657. enc28j60_dev.dev_addr[1] = 0x04;
  658. enc28j60_dev.dev_addr[2] = 0xA3;
  659. /* set MAC address, only for test */
  660. enc28j60_dev.dev_addr[3] = 0x12;
  661. enc28j60_dev.dev_addr[4] = 0x34;
  662. enc28j60_dev.dev_addr[5] = 0x56;
  663. /* init rt-thread device struct */
  664. enc28j60_dev.parent.parent.type = RT_Device_Class_NetIf;
  665. enc28j60_dev.parent.parent.init = enc28j60_init;
  666. enc28j60_dev.parent.parent.open = enc28j60_open;
  667. enc28j60_dev.parent.parent.close = enc28j60_close;
  668. enc28j60_dev.parent.parent.read = enc28j60_read;
  669. enc28j60_dev.parent.parent.write = enc28j60_write;
  670. enc28j60_dev.parent.parent.control = enc28j60_control;
  671. /* init rt-thread ethernet device struct */
  672. enc28j60_dev.parent.eth_rx = enc28j60_rx;
  673. enc28j60_dev.parent.eth_tx = enc28j60_tx;
  674. rt_mutex_init(&enc28j60_dev.lock, "enc28j60", RT_IPC_FLAG_FIFO);
  675. eth_device_init(&(enc28j60_dev.parent), "e0");
  676. return RT_EOK;
  677. }
  678. #ifdef RT_USING_FINSH
  679. #include <finsh.h>
  680. /*
  681. * Debug routine to dump useful register contents
  682. */
  683. static void enc28j60(void)
  684. {
  685. struct rt_spi_device * spi_device = enc28j60_dev.spi_device;
  686. enc28j60_lock(&enc28j60_dev);
  687. rt_kprintf("-- enc28j60 registers:\n");
  688. rt_kprintf("HwRevID: 0x%02X\n", spi_read(spi_device, EREVID));
  689. rt_kprintf("Cntrl: ECON1 ECON2 ESTAT EIR EIE\n");
  690. rt_kprintf(" 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X\n",
  691. spi_read(spi_device, ECON1),
  692. spi_read(spi_device, ECON2),
  693. spi_read(spi_device, ESTAT),
  694. spi_read(spi_device, EIR),
  695. spi_read(spi_device, EIE));
  696. rt_kprintf("MAC : MACON1 MACON3 MACON4\n");
  697. rt_kprintf(" 0x%02X 0x%02X 0x%02X\n",
  698. spi_read(spi_device, MACON1),
  699. spi_read(spi_device, MACON3),
  700. spi_read(spi_device, MACON4));
  701. rt_kprintf("Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n");
  702. rt_kprintf(" 0x%04X 0x%04X 0x%04X 0x%04X ",
  703. (spi_read(spi_device, ERXSTH) << 8) | spi_read(spi_device, ERXSTL),
  704. (spi_read(spi_device, ERXNDH) << 8) | spi_read(spi_device, ERXNDL),
  705. (spi_read(spi_device, ERXWRPTH) << 8) | spi_read(spi_device, ERXWRPTL),
  706. (spi_read(spi_device, ERXRDPTH) << 8) | spi_read(spi_device, ERXRDPTL));
  707. rt_kprintf("0x%02X 0x%02X 0x%04X\n",
  708. spi_read(spi_device, ERXFCON),
  709. spi_read(spi_device, EPKTCNT),
  710. (spi_read(spi_device, MAMXFLH) << 8) | spi_read(spi_device, MAMXFLL));
  711. rt_kprintf("Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n");
  712. rt_kprintf(" 0x%04X 0x%04X 0x%02X 0x%02X 0x%02X\n",
  713. (spi_read(spi_device, ETXSTH) << 8) | spi_read(spi_device, ETXSTL),
  714. (spi_read(spi_device, ETXNDH) << 8) | spi_read(spi_device, ETXNDL),
  715. spi_read(spi_device, MACLCON1),
  716. spi_read(spi_device, MACLCON2),
  717. spi_read(spi_device, MAPHSUP));
  718. rt_kprintf("PHY : PHCON1 PHSTAT1\r\n");
  719. rt_kprintf(" 0x%04X 0x%04X\r\n",
  720. enc28j60_phy_read(spi_device, PHCON1),
  721. enc28j60_phy_read(spi_device, PHSTAT1));
  722. enc28j60_unlock(&enc28j60_dev);
  723. }
  724. FINSH_FUNCTION_EXPORT(enc28j60, dump enc28j60 registers);
  725. #endif