cpuport.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. /*
  2. * File : cpuport.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006 - 2013, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2009-01-05 Bernard first version
  13. * 2011-02-14 onelife Modify for EFM32
  14. * 2011-06-17 onelife Merge all of the C source code into cpuport.c
  15. * 2012-12-23 aozima stack addr align to 8byte.
  16. * 2012-12-29 Bernard Add exception hook.
  17. * 2013-07-09 aozima enhancement hard fault exception handler.
  18. */
  19. #include <rtthread.h>
  20. struct exception_stack_frame
  21. {
  22. rt_uint32_t r0;
  23. rt_uint32_t r1;
  24. rt_uint32_t r2;
  25. rt_uint32_t r3;
  26. rt_uint32_t r12;
  27. rt_uint32_t lr;
  28. rt_uint32_t pc;
  29. rt_uint32_t psr;
  30. };
  31. struct stack_frame
  32. {
  33. /* r4 ~ r11 register */
  34. rt_uint32_t r4;
  35. rt_uint32_t r5;
  36. rt_uint32_t r6;
  37. rt_uint32_t r7;
  38. rt_uint32_t r8;
  39. rt_uint32_t r9;
  40. rt_uint32_t r10;
  41. rt_uint32_t r11;
  42. struct exception_stack_frame exception_stack_frame;
  43. };
  44. /* flag in interrupt handling */
  45. rt_uint32_t rt_interrupt_from_thread, rt_interrupt_to_thread;
  46. rt_uint32_t rt_thread_switch_interrupt_flag;
  47. /* exception hook */
  48. static rt_err_t (*rt_exception_hook)(void *context) = RT_NULL;
  49. /**
  50. * This function will initialize thread stack
  51. *
  52. * @param tentry the entry of thread
  53. * @param parameter the parameter of entry
  54. * @param stack_addr the beginning stack address
  55. * @param texit the function will be called when thread exit
  56. *
  57. * @return stack address
  58. */
  59. rt_uint8_t *rt_hw_stack_init(void *tentry,
  60. void *parameter,
  61. rt_uint8_t *stack_addr,
  62. void *texit)
  63. {
  64. struct stack_frame *stack_frame;
  65. rt_uint8_t *stk;
  66. unsigned long i;
  67. stk = stack_addr + sizeof(rt_uint32_t);
  68. stk = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stk, 8);
  69. stk -= sizeof(struct stack_frame);
  70. stack_frame = (struct stack_frame *)stk;
  71. /* init all register */
  72. for (i = 0; i < sizeof(struct stack_frame) / sizeof(rt_uint32_t); i ++)
  73. {
  74. ((rt_uint32_t *)stack_frame)[i] = 0xdeadbeef;
  75. }
  76. stack_frame->exception_stack_frame.r0 = (unsigned long)parameter; /* r0 : argument */
  77. stack_frame->exception_stack_frame.r1 = 0; /* r1 */
  78. stack_frame->exception_stack_frame.r2 = 0; /* r2 */
  79. stack_frame->exception_stack_frame.r3 = 0; /* r3 */
  80. stack_frame->exception_stack_frame.r12 = 0; /* r12 */
  81. stack_frame->exception_stack_frame.lr = (unsigned long)texit; /* lr */
  82. stack_frame->exception_stack_frame.pc = (unsigned long)tentry; /* entry point, pc */
  83. stack_frame->exception_stack_frame.psr = 0x01000000L; /* PSR */
  84. /* return task's current stack address */
  85. return stk;
  86. }
  87. /**
  88. * This function set the hook, which is invoked on fault exception handling.
  89. *
  90. * @param exception_handle the exception handling hook function.
  91. */
  92. void rt_hw_exception_install(rt_err_t (*exception_handle)(void* context))
  93. {
  94. rt_exception_hook = exception_handle;
  95. }
  96. #define SCB_CFSR (*(volatile const unsigned *)0xE000ED28) /* Configurable Fault Status Register */
  97. #define SCB_HFSR (*(volatile const unsigned *)0xE000ED2C) /* HardFault Status Register */
  98. #define SCB_MMAR (*(volatile const unsigned *)0xE000ED34) /* MemManage Fault Address register */
  99. #define SCB_BFAR (*(volatile const unsigned *)0xE000ED38) /* Bus Fault Address Register */
  100. #define SCB_CFSR_MFSR (*(volatile const unsigned char*)0xE000ED28) /* Memory-management Fault Status Register */
  101. #define SCB_CFSR_BFSR (*(volatile const unsigned char*)0xE000ED29) /* Bus Fault Status Register */
  102. #define SCB_CFSR_UFSR (*(volatile const unsigned short*)0xE000ED2A) /* Usage Fault Status Register */
  103. #ifdef RT_USING_FINSH
  104. static void usage_fault_track(void)
  105. {
  106. rt_kprintf("usage fault:\n");
  107. rt_kprintf("SCB_CFSR_UFSR:0x%02X ", SCB_CFSR_UFSR);
  108. if(SCB_CFSR_UFSR & (1<<0))
  109. {
  110. /* [0]:UNDEFINSTR */
  111. rt_kprintf("UNDEFINSTR ");
  112. }
  113. if(SCB_CFSR_UFSR & (1<<1))
  114. {
  115. /* [1]:INVSTATE */
  116. rt_kprintf("INVSTATE ");
  117. }
  118. if(SCB_CFSR_UFSR & (1<<2))
  119. {
  120. /* [2]:INVPC */
  121. rt_kprintf("INVPC ");
  122. }
  123. if(SCB_CFSR_UFSR & (1<<3))
  124. {
  125. /* [3]:NOCP */
  126. rt_kprintf("NOCP ");
  127. }
  128. if(SCB_CFSR_UFSR & (1<<8))
  129. {
  130. /* [8]:UNALIGNED */
  131. rt_kprintf("UNALIGNED ");
  132. }
  133. if(SCB_CFSR_UFSR & (1<<9))
  134. {
  135. /* [9]:DIVBYZERO */
  136. rt_kprintf("DIVBYZERO ");
  137. }
  138. rt_kprintf("\n");
  139. }
  140. static void bus_fault_track(void)
  141. {
  142. rt_kprintf("bus fault:\n");
  143. rt_kprintf("SCB_CFSR_BFSR:0x%02X ", SCB_CFSR_BFSR);
  144. if(SCB_CFSR_BFSR & (1<<0))
  145. {
  146. /* [0]:IBUSERR */
  147. rt_kprintf("IBUSERR ");
  148. }
  149. if(SCB_CFSR_BFSR & (1<<1))
  150. {
  151. /* [1]:PRECISERR */
  152. rt_kprintf("PRECISERR ");
  153. }
  154. if(SCB_CFSR_BFSR & (1<<2))
  155. {
  156. /* [2]:IMPRECISERR */
  157. rt_kprintf("IMPRECISERR ");
  158. }
  159. if(SCB_CFSR_BFSR & (1<<3))
  160. {
  161. /* [3]:UNSTKERR */
  162. rt_kprintf("UNSTKERR ");
  163. }
  164. if(SCB_CFSR_BFSR & (1<<4))
  165. {
  166. /* [4]:STKERR */
  167. rt_kprintf("STKERR ");
  168. }
  169. if(SCB_CFSR_BFSR & (1<<7))
  170. {
  171. rt_kprintf("SCB->BFAR:%08X\n", SCB_BFAR);
  172. }
  173. else
  174. {
  175. rt_kprintf("\n");
  176. }
  177. }
  178. static void mem_manage_fault_track(void)
  179. {
  180. rt_kprintf("mem manage fault:\n");
  181. rt_kprintf("SCB_CFSR_MFSR:0x%02X ", SCB_CFSR_MFSR);
  182. if(SCB_CFSR_MFSR & (1<<0))
  183. {
  184. /* [0]:IACCVIOL */
  185. rt_kprintf("IACCVIOL ");
  186. }
  187. if(SCB_CFSR_MFSR & (1<<1))
  188. {
  189. /* [1]:DACCVIOL */
  190. rt_kprintf("DACCVIOL ");
  191. }
  192. if(SCB_CFSR_MFSR & (1<<3))
  193. {
  194. /* [3]:MUNSTKERR */
  195. rt_kprintf("MUNSTKERR ");
  196. }
  197. if(SCB_CFSR_MFSR & (1<<4))
  198. {
  199. /* [4]:MSTKERR */
  200. rt_kprintf("MSTKERR ");
  201. }
  202. if(SCB_CFSR_MFSR & (1<<7))
  203. {
  204. /* [7]:MMARVALID */
  205. rt_kprintf("SCB->MMAR:%08X\n", SCB_MMAR);
  206. }
  207. else
  208. {
  209. rt_kprintf("\n");
  210. }
  211. }
  212. static void hard_fault_track(void)
  213. {
  214. if(SCB_HFSR & (1UL<<1))
  215. {
  216. /* [1]:VECTBL, Indicates hard fault is caused by failed vector fetch. */
  217. rt_kprintf("failed vector fetch\n");
  218. }
  219. if(SCB_HFSR & (1UL<<30))
  220. {
  221. /* [30]:FORCED, Indicates hard fault is taken because of bus fault,
  222. memory management fault, or usage fault. */
  223. if(SCB_CFSR_BFSR)
  224. {
  225. bus_fault_track();
  226. }
  227. if(SCB_CFSR_MFSR)
  228. {
  229. mem_manage_fault_track();
  230. }
  231. if(SCB_CFSR_UFSR)
  232. {
  233. usage_fault_track();
  234. }
  235. }
  236. if(SCB_HFSR & (1UL<<31))
  237. {
  238. /* [31]:DEBUGEVT, Indicates hard fault is triggered by debug event. */
  239. rt_kprintf("debug event\n");
  240. }
  241. }
  242. #endif /* RT_USING_FINSH */
  243. struct exception_info
  244. {
  245. rt_uint32_t exc_return;
  246. struct stack_frame stack_frame;
  247. };
  248. /*
  249. * fault exception handler
  250. */
  251. void rt_hw_hard_fault_exception(struct exception_info * exception_info)
  252. {
  253. extern long list_thread(void);
  254. struct stack_frame* context = &exception_info->stack_frame;
  255. if (rt_exception_hook != RT_NULL)
  256. {
  257. rt_err_t result;
  258. result = rt_exception_hook(exception_info);
  259. if (result == RT_EOK)
  260. return;
  261. }
  262. rt_kprintf("psr: 0x%08x\n", context->exception_stack_frame.psr);
  263. rt_kprintf("r00: 0x%08x\n", context->exception_stack_frame.r0);
  264. rt_kprintf("r01: 0x%08x\n", context->exception_stack_frame.r1);
  265. rt_kprintf("r02: 0x%08x\n", context->exception_stack_frame.r2);
  266. rt_kprintf("r03: 0x%08x\n", context->exception_stack_frame.r3);
  267. rt_kprintf("r04: 0x%08x\n", context->r4);
  268. rt_kprintf("r05: 0x%08x\n", context->r5);
  269. rt_kprintf("r06: 0x%08x\n", context->r6);
  270. rt_kprintf("r07: 0x%08x\n", context->r7);
  271. rt_kprintf("r08: 0x%08x\n", context->r8);
  272. rt_kprintf("r09: 0x%08x\n", context->r9);
  273. rt_kprintf("r10: 0x%08x\n", context->r10);
  274. rt_kprintf("r11: 0x%08x\n", context->r11);
  275. rt_kprintf("r12: 0x%08x\n", context->exception_stack_frame.r12);
  276. rt_kprintf(" lr: 0x%08x\n", context->exception_stack_frame.lr);
  277. rt_kprintf(" pc: 0x%08x\n", context->exception_stack_frame.pc);
  278. if(exception_info->exc_return & (1 << 2) )
  279. {
  280. rt_kprintf("hard fault on thread: %s\r\n\r\n", rt_thread_self()->name);
  281. #ifdef RT_USING_FINSH
  282. list_thread();
  283. #endif /* RT_USING_FINSH */
  284. }
  285. else
  286. {
  287. rt_kprintf("hard fault on handler\r\n\r\n");
  288. }
  289. #ifdef RT_USING_FINSH
  290. hard_fault_track();
  291. #endif /* RT_USING_FINSH */
  292. while (1);
  293. }
  294. /**
  295. * shutdown CPU
  296. */
  297. void rt_hw_cpu_shutdown(void)
  298. {
  299. rt_kprintf("shutdown...\n");
  300. RT_ASSERT(0);
  301. }
  302. #ifdef RT_USING_CPU_FFS
  303. /**
  304. * This function finds the first bit set (beginning with the least significant bit)
  305. * in value and return the index of that bit.
  306. *
  307. * Bits are numbered starting at 1 (the least significant bit). A return value of
  308. * zero from any of these functions means that the argument was zero.
  309. *
  310. * @return return the index of the first bit set. If value is 0, then this function
  311. * shall return 0.
  312. */
  313. #if defined(__CC_ARM)
  314. __asm int __rt_ffs(int value)
  315. {
  316. CMP r0, #0x00
  317. BEQ exit
  318. RBIT r0, r0
  319. CLZ r0, r0
  320. ADDS r0, r0, #0x01
  321. exit
  322. BX lr
  323. }
  324. #elif defined(__IAR_SYSTEMS_ICC__)
  325. int __rt_ffs(int value)
  326. {
  327. if (value == 0) return value;
  328. __ASM("RBIT r0, r0");
  329. __ASM("CLZ r0, r0");
  330. __ASM("ADDS r0, r0, #0x01");
  331. }
  332. #elif defined(__GNUC__)
  333. int __rt_ffs(int value)
  334. {
  335. return __builtin_ffs(value);
  336. }
  337. #endif
  338. #endif