1
0

drv_spi.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. /*
  2. * File : drv_spi.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2015, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2016-09-02 Aubr.Cool the first version
  13. */
  14. #include <stm32l0xx.h>
  15. #include <rthw.h>
  16. #include <rtthread.h>
  17. #include <rtdevice.h>
  18. #include <board.h>
  19. #define SPIRXEVENT 0x01
  20. #define SPITXEVENT 0x02
  21. #ifdef RT_USING_SPI
  22. #define SPITIMEOUT 2
  23. #define SPICRCEN 0
  24. struct stm32_hw_spi;
  25. typedef void(*spiirqapi)(struct stm32_hw_spi *hspi);
  26. struct stm32_hw_spi {
  27. SPI_TypeDef* Instance;
  28. struct rt_spi_configuration* cfg;
  29. };
  30. struct stm32_spi {
  31. SPI_TypeDef* spi_device;
  32. struct stm32_hw_spi *data;
  33. };
  34. struct stm32_hw_spi_cs {
  35. rt_uint32_t pin;
  36. };
  37. static rt_err_t stml0xx_spi_init(SPI_TypeDef * spix, struct rt_spi_configuration * cfg)
  38. {
  39. SPI_HandleTypeDef hspi;
  40. hspi.Instance = spix;
  41. if(cfg->mode & RT_SPI_SLAVE) {
  42. hspi.Init.Mode = SPI_MODE_SLAVE;
  43. } else {
  44. hspi.Init.Mode = SPI_MODE_MASTER;
  45. }
  46. if(cfg->mode & RT_SPI_3WIRE) {
  47. hspi.Init.Direction = SPI_DIRECTION_1LINE;
  48. } else {
  49. hspi.Init.Direction = SPI_DIRECTION_2LINES;
  50. }
  51. if(cfg->data_width == 8) {
  52. hspi.Init.DataSize = SPI_DATASIZE_8BIT;
  53. } else if(cfg->data_width == 16) {
  54. hspi.Init.DataSize = SPI_DATASIZE_16BIT;
  55. } else {
  56. return RT_EIO;
  57. }
  58. if(cfg->mode & RT_SPI_CPHA) {
  59. hspi.Init.CLKPhase = SPI_PHASE_2EDGE;
  60. } else {
  61. hspi.Init.CLKPhase = SPI_PHASE_1EDGE;
  62. }
  63. if(cfg->mode & RT_SPI_CPOL) {
  64. hspi.Init.CLKPolarity = SPI_POLARITY_HIGH;
  65. } else {
  66. hspi.Init.CLKPolarity = SPI_POLARITY_LOW;
  67. }
  68. if(cfg->mode & RT_SPI_NO_CS) {
  69. hspi.Init.NSS = SPI_NSS_SOFT;
  70. } else {
  71. hspi.Init.NSS = SPI_NSS_HARD_OUTPUT;
  72. }
  73. hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  74. if(cfg->mode & RT_SPI_MSB) {
  75. hspi.Init.FirstBit = SPI_FIRSTBIT_MSB;
  76. } else {
  77. hspi.Init.FirstBit = SPI_FIRSTBIT_LSB;
  78. }
  79. hspi.Init.TIMode = SPI_TIMODE_DISABLE;
  80. hspi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  81. hspi.Init.CRCPolynomial = 7;
  82. if (HAL_SPI_Init(&hspi) != HAL_OK)
  83. {
  84. return RT_EIO;
  85. }
  86. __HAL_SPI_ENABLE(&hspi);
  87. return RT_EOK;
  88. }
  89. #define SPISTEP(datalen) (((datalen) == 8) ? 1 : 2)
  90. #define SPISEND_1(reg, ptr, datalen) \
  91. do {\
  92. if(datalen == 8) { \
  93. (reg) = *(rt_uint8_t *)(ptr); \
  94. } else { \
  95. (reg) = *(rt_uint16_t *) (ptr); \
  96. } \
  97. } while(0)
  98. #define SPIRECV_1(reg, ptr, datalen) \
  99. do {\
  100. if(datalen == 8) { \
  101. *(rt_uint8_t *)(ptr) = (reg); \
  102. } else { \
  103. *(rt_uint16_t *) (ptr) = reg; \
  104. } \
  105. } while(0)
  106. static rt_err_t spitxrx1b(struct stm32_hw_spi *hspi, void *rcvb, const void *sndb)
  107. {
  108. rt_uint32_t padrcv = 0;
  109. rt_uint32_t padsnd = 0xFF;
  110. if(! rcvb && !sndb) {
  111. return RT_ERROR;
  112. }
  113. if(!rcvb) {
  114. rcvb = &padrcv;
  115. }
  116. if(!sndb) {
  117. sndb = &padsnd;
  118. }
  119. while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE) == RESET);
  120. SPISEND_1(hspi->Instance->DR, sndb, hspi->cfg->data_width);
  121. while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE) == RESET);
  122. SPIRECV_1(hspi->Instance->DR, rcvb, hspi->cfg->data_width);
  123. return RT_EOK;
  124. }
  125. static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  126. {
  127. rt_err_t res;
  128. RT_ASSERT(device != RT_NULL);
  129. RT_ASSERT(device->bus != RT_NULL);
  130. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  131. struct stm32_spi* spix;
  132. spix = (struct stm32_spi *)device->bus->parent.user_data;
  133. struct stm32_hw_spi *hspi = spix->data;
  134. struct stm32_hw_spi_cs * cs = device->parent.user_data;
  135. if(message->cs_take) {
  136. rt_pin_write(cs->pin, 0);
  137. }
  138. const rt_uint8_t *sndb = message->send_buf;
  139. rt_uint8_t *rcvb = message->recv_buf;
  140. rt_int32_t length = message->length;
  141. while(length) {
  142. res = spitxrx1b(hspi, rcvb, sndb);
  143. if(rcvb) {
  144. rcvb += SPISTEP(hspi->cfg->data_width);
  145. }
  146. if(sndb) {
  147. sndb += SPISTEP(hspi->cfg->data_width);
  148. }
  149. if(res != RT_EOK) {
  150. break;
  151. }
  152. length--;
  153. }
  154. /* Wait until Busy flag is reset before disabling SPI */
  155. while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_BSY) == SET);
  156. if(message->cs_release) {
  157. rt_pin_write(cs->pin, 1);
  158. }
  159. return message->length - length;
  160. }
  161. #ifdef RT_USING_SPI1
  162. static struct stm32_hw_spi spi1hwdata = {
  163. .Instance = SPI1,
  164. };
  165. const static struct stm32_spi spi1 = {
  166. SPI1,
  167. &spi1hwdata,
  168. };
  169. const static struct stm32_hw_spi_cs stm32_spi1_cs = {
  170. SPI1PINNSS,
  171. };
  172. rt_err_t spi1configure(struct rt_spi_device *device,
  173. struct rt_spi_configuration *configuration)
  174. {
  175. spi1hwdata.cfg = configuration;
  176. return stml0xx_spi_init(spi1.spi_device, configuration);
  177. }
  178. const struct rt_spi_ops stm_spi_ops1 =
  179. {
  180. .configure = spi1configure,
  181. .xfer = spixfer,
  182. };
  183. static struct rt_spi_bus stm_spi_bus1 = {
  184. .parent = {
  185. .user_data = (void *)&spi1,
  186. },
  187. };
  188. #endif /*RT_USING_SPI1*/
  189. #ifdef RT_USING_SPI2
  190. static struct stm32_hw_spi spi2hwdata = {
  191. .Instance = SPI2,
  192. };
  193. const struct stm32_spi spi2 = {
  194. SPI2,
  195. &spi2hwdata,
  196. };
  197. rt_err_t spi2configure(struct rt_spi_device *device,
  198. struct rt_spi_configuration *configuration)
  199. {
  200. spi2hwdata.cfg = configuration;
  201. return stml0xx_spi_init(spi2.spi_device, configuration);
  202. }
  203. const struct rt_spi_ops stm_spi_ops2 =
  204. {
  205. .configure = spi2configure,
  206. .xfer = spixfer,
  207. };
  208. const static struct stm32_hw_spi_cs stm32_spi2_cs = {
  209. SPI2PINNSS,
  210. };
  211. static struct rt_spi_bus stm_spi_bus2 = {
  212. .parent = {
  213. .user_data = (void *)&spi2,
  214. },
  215. };
  216. #endif /*RT_USING_SPI2*/
  217. static void RCC_Configuration(void)
  218. {
  219. #ifdef RT_USING_SPI1
  220. __HAL_RCC_SPI1_CLK_ENABLE();
  221. #endif /*RT_USING_SPI1*/
  222. #ifdef RT_USING_SPI2
  223. __HAL_RCC_SPI2_CLK_ENABLE();
  224. #endif /*RT_USING_SPI2*/
  225. }
  226. static void GPIO_Configuration(void)
  227. {
  228. #ifdef RT_USING_SPI1
  229. {
  230. /**SPI1 GPIO Configuration **/
  231. rt_uint32_t mode;
  232. mode = (GPIO_AF0_SPI1 << 8) | GPIO_MODE_AF_PP;
  233. stm32_pin_mode_early(SPI1PINSCK, mode);
  234. stm32_pin_mode_early(SPI1PINMISO, mode);
  235. stm32_pin_mode_early(SPI1PINMOSI, mode);
  236. }
  237. #endif /*RT_USING_SPI1*/
  238. #ifdef RT_USING_SPI2
  239. #endif /*RT_USING_SPI1*/
  240. }
  241. int stm32_hw_spi_init(void)
  242. {
  243. int result1 = RT_EOK, result2 = RT_EOK;
  244. RCC_Configuration();
  245. GPIO_Configuration();
  246. #ifdef RT_USING_SPI1
  247. {
  248. result1 = rt_spi_bus_register(&stm_spi_bus1, "spi1", &stm_spi_ops1);
  249. static struct rt_spi_device spi_device;
  250. rt_uint32_t mode = GPIO_MODE_OUTPUT_PP;
  251. stm32_pin_mode_early(SPI1PINNSS, mode);
  252. stm32_pin_write_early(SPI1PINNSS, 1);
  253. rt_spi_bus_attach_device(&spi_device, "spi10", "spi1", (void *)&stm32_spi1_cs);
  254. }
  255. #endif /*RT_USING_SPI1*/
  256. #ifdef RT_USING_SPI2
  257. {
  258. result2 = rt_spi_bus_register(&stm_spi_bus2, "spi2", &stm_spi_ops1);
  259. static struct rt_spi_device spi_device;
  260. rt_uint32_t mode = GPIO_MODE_OUTPUT_PP;
  261. stm32_pin_mode_early(SPI2PINNSS, mode);
  262. stm32_pin_write_early(SPI2PINNSS, 1);
  263. rt_spi_bus_attach_device(&spi_device, "spi20", "spi2", (void *)&stm32_spi2_cs);
  264. }
  265. #endif /*RT_USING_SPI2*/
  266. return result1 | result2;
  267. }
  268. INIT_BOARD_EXPORT(stm32_hw_spi_init);
  269. #endif /*RT_USING_SPI*/