drv_spi.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-5 SummerGift first version
  9. * 2018-12-11 greedyhao Porting for stm32f7xx
  10. * 2019-01-03 zylx modify DMA initialization and spixfer function
  11. * 2020-01-15 whj4674672 Porting for stm32h7xx
  12. * 2020-06-18 thread-liu Porting for stm32mp1xx
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. #include "board.h"
  18. #ifdef RT_USING_SPI
  19. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  20. #include "drv_spi.h"
  21. #include "drv_config.h"
  22. #include <string.h>
  23. //#define DRV_DEBUG
  24. #define LOG_TAG "drv.spi"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI5
  41. SPI5_INDEX,
  42. #endif
  43. #ifdef BSP_USING_SPI6
  44. SPI6_INDEX,
  45. #endif
  46. };
  47. static struct stm32_spi_config spi_config[] =
  48. {
  49. #ifdef BSP_USING_SPI1
  50. SPI1_BUS_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_SPI2
  53. SPI2_BUS_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_SPI3
  56. SPI3_BUS_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_SPI4
  59. SPI4_BUS_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_SPI5
  62. SPI5_BUS_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_SPI6
  65. SPI6_BUS_CONFIG,
  66. #endif
  67. };
  68. static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  69. static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  70. {
  71. RT_ASSERT(spi_drv != RT_NULL);
  72. RT_ASSERT(cfg != RT_NULL);
  73. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  74. if (cfg->mode & RT_SPI_SLAVE)
  75. {
  76. spi_handle->Init.Mode = SPI_MODE_SLAVE;
  77. }
  78. else
  79. {
  80. spi_handle->Init.Mode = SPI_MODE_MASTER;
  81. }
  82. if (cfg->mode & RT_SPI_3WIRE)
  83. {
  84. spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
  85. }
  86. else
  87. {
  88. spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
  89. }
  90. if (cfg->data_width == 8)
  91. {
  92. spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
  93. spi_handle->TxXferSize = 8;
  94. spi_handle->RxXferSize = 8;
  95. }
  96. else if (cfg->data_width == 16)
  97. {
  98. spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
  99. }
  100. else
  101. {
  102. return RT_EIO;
  103. }
  104. if (cfg->mode & RT_SPI_CPHA)
  105. {
  106. spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
  107. }
  108. else
  109. {
  110. spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
  111. }
  112. if (cfg->mode & RT_SPI_CPOL)
  113. {
  114. spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
  115. }
  116. else
  117. {
  118. spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
  119. }
  120. if (cfg->mode & RT_SPI_NO_CS)
  121. {
  122. spi_handle->Init.NSS = SPI_NSS_HARD_OUTPUT;
  123. }
  124. else
  125. {
  126. spi_handle->Init.NSS = SPI_NSS_SOFT;
  127. }
  128. uint32_t SPI_APB_CLOCK;
  129. #if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
  130. SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
  131. #elif defined(SOC_SERIES_STM32H7)
  132. SPI_APB_CLOCK = HAL_RCC_GetSysClockFreq();
  133. #else
  134. SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq();
  135. #endif
  136. if (cfg->max_hz >= SPI_APB_CLOCK / 2)
  137. {
  138. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  139. }
  140. else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
  141. {
  142. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  143. }
  144. else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
  145. {
  146. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  147. }
  148. else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
  149. {
  150. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  151. }
  152. else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
  153. {
  154. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  155. }
  156. else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
  157. {
  158. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  159. }
  160. else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
  161. {
  162. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
  163. }
  164. else
  165. {
  166. /* min prescaler 256 */
  167. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  168. }
  169. LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
  170. #if defined(SOC_SERIES_STM32MP1)
  171. HAL_RCC_GetSystemCoreClockFreq(),
  172. #else
  173. HAL_RCC_GetSysClockFreq(),
  174. #endif
  175. SPI_APB_CLOCK,
  176. cfg->max_hz,
  177. spi_handle->Init.BaudRatePrescaler);
  178. if (cfg->mode & RT_SPI_MSB)
  179. {
  180. spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
  181. }
  182. else
  183. {
  184. spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
  185. }
  186. spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
  187. spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  188. spi_handle->State = HAL_SPI_STATE_RESET;
  189. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
  190. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  191. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  192. spi_handle->Init.Mode = SPI_MODE_MASTER;
  193. spi_handle->Init.NSS = SPI_NSS_SOFT;
  194. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  195. spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  196. spi_handle->Init.CRCPolynomial = 7;
  197. spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  198. spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  199. spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  200. spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  201. spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  202. spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
  203. spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
  204. spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
  205. #endif
  206. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  207. {
  208. return RT_EIO;
  209. }
  210. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
  211. || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
  212. SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
  213. #endif
  214. /* DMA configuration */
  215. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  216. {
  217. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  218. __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
  219. /* NVIC configuration for DMA transfer complete interrupt */
  220. HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
  221. HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
  222. }
  223. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  224. {
  225. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  226. __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
  227. /* NVIC configuration for DMA transfer complete interrupt */
  228. HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 0, 1);
  229. HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
  230. }
  231. if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  232. {
  233. HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
  234. HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
  235. }
  236. LOG_D("%s init done", spi_drv->config->bus_name);
  237. return RT_EOK;
  238. }
  239. static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  240. {
  241. HAL_StatusTypeDef state;
  242. rt_size_t message_length, already_send_length;
  243. rt_uint16_t send_length;
  244. rt_uint8_t *recv_buf;
  245. const rt_uint8_t *send_buf;
  246. RT_ASSERT(device != RT_NULL);
  247. RT_ASSERT(device->bus != RT_NULL);
  248. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  249. RT_ASSERT(message != RT_NULL);
  250. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  251. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  252. struct stm32_hw_spi_cs *cs = device->parent.user_data;
  253. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
  254. {
  255. if (device->config.mode & RT_SPI_CS_HIGH)
  256. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
  257. else
  258. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
  259. }
  260. LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
  261. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
  262. spi_drv->config->bus_name,
  263. (uint32_t)message->send_buf,
  264. (uint32_t)message->recv_buf, message->length);
  265. message_length = message->length;
  266. recv_buf = message->recv_buf;
  267. send_buf = message->send_buf;
  268. while (message_length)
  269. {
  270. /* the HAL library use uint16 to save the data length */
  271. if (message_length > 65535)
  272. {
  273. send_length = 65535;
  274. message_length = message_length - 65535;
  275. }
  276. else
  277. {
  278. send_length = message_length;
  279. message_length = 0;
  280. }
  281. /* calculate the start address */
  282. already_send_length = message->length - send_length - message_length;
  283. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  284. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  285. /* start once data exchange in DMA mode */
  286. if (message->send_buf && message->recv_buf)
  287. {
  288. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
  289. {
  290. state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
  291. }
  292. else
  293. {
  294. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
  295. }
  296. }
  297. else if (message->send_buf)
  298. {
  299. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  300. {
  301. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
  302. }
  303. else
  304. {
  305. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
  306. }
  307. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  308. {
  309. /* release the CS by disable SPI when using 3 wires SPI */
  310. __HAL_SPI_DISABLE(spi_handle);
  311. }
  312. }
  313. else
  314. {
  315. memset((uint8_t *)recv_buf, 0xff, send_length);
  316. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  317. {
  318. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
  319. }
  320. else
  321. {
  322. /* clear the old error flag */
  323. __HAL_SPI_CLEAR_OVRFLAG(spi_handle);
  324. state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
  325. }
  326. }
  327. if (state != HAL_OK)
  328. {
  329. LOG_I("spi transfer error : %d", state);
  330. message->length = 0;
  331. spi_handle->State = HAL_SPI_STATE_READY;
  332. }
  333. else
  334. {
  335. LOG_D("%s transfer done", spi_drv->config->bus_name);
  336. }
  337. /* For simplicity reasons, this example is just waiting till the end of the
  338. transfer, but application may perform other tasks while transfer operation
  339. is ongoing. */
  340. while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
  341. }
  342. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
  343. {
  344. if (device->config.mode & RT_SPI_CS_HIGH)
  345. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
  346. else
  347. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
  348. }
  349. return message->length;
  350. }
  351. static rt_err_t spi_configure(struct rt_spi_device *device,
  352. struct rt_spi_configuration *configuration)
  353. {
  354. RT_ASSERT(device != RT_NULL);
  355. RT_ASSERT(configuration != RT_NULL);
  356. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  357. spi_drv->cfg = configuration;
  358. return stm32_spi_init(spi_drv, configuration);
  359. }
  360. static const struct rt_spi_ops stm_spi_ops =
  361. {
  362. .configure = spi_configure,
  363. .xfer = spixfer,
  364. };
  365. static int rt_hw_spi_bus_init(void)
  366. {
  367. rt_err_t result;
  368. for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  369. {
  370. spi_bus_obj[i].config = &spi_config[i];
  371. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  372. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  373. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  374. {
  375. /* Configure the DMA handler for Transmission process */
  376. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  377. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  378. spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
  379. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  380. spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
  381. #endif
  382. spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
  383. spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  384. spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
  385. spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  386. spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  387. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  388. spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
  389. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1)
  390. spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  391. spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  392. spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
  393. spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
  394. #endif
  395. {
  396. rt_uint32_t tmpreg = 0x00U;
  397. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  398. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  399. SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  400. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  401. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB)
  402. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  403. /* Delay after an RCC peripheral clock enabling */
  404. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  405. #elif defined(SOC_SERIES_STM32MP1)
  406. __HAL_RCC_DMAMUX_CLK_ENABLE();
  407. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  408. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  409. #endif
  410. UNUSED(tmpreg); /* To avoid compiler warnings */
  411. }
  412. }
  413. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  414. {
  415. /* Configure the DMA handler for Transmission process */
  416. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  417. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  418. spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
  419. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  420. spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
  421. #endif
  422. spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  423. spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  424. spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
  425. spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  426. spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  427. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  428. spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
  429. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1)
  430. spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  431. spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  432. spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
  433. spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
  434. #endif
  435. {
  436. rt_uint32_t tmpreg = 0x00U;
  437. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  438. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  439. SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  440. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  441. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB)
  442. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  443. /* Delay after an RCC peripheral clock enabling */
  444. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  445. #elif defined(SOC_SERIES_STM32MP1)
  446. __HAL_RCC_DMAMUX_CLK_ENABLE();
  447. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  448. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  449. #endif
  450. UNUSED(tmpreg); /* To avoid compiler warnings */
  451. }
  452. }
  453. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
  454. RT_ASSERT(result == RT_EOK);
  455. LOG_D("%s bus init done", spi_config[i].bus_name);
  456. }
  457. return result;
  458. }
  459. /**
  460. * Attach the spi device to SPI bus, this function must be used after initialization.
  461. */
  462. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
  463. {
  464. RT_ASSERT(bus_name != RT_NULL);
  465. RT_ASSERT(device_name != RT_NULL);
  466. rt_err_t result;
  467. struct rt_spi_device *spi_device;
  468. struct stm32_hw_spi_cs *cs_pin;
  469. /* initialize the cs pin && select the slave*/
  470. GPIO_InitTypeDef GPIO_Initure;
  471. GPIO_Initure.Pin = cs_gpio_pin;
  472. GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
  473. GPIO_Initure.Pull = GPIO_PULLUP;
  474. GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH;
  475. HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
  476. HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET);
  477. /* attach the device to spi bus*/
  478. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  479. RT_ASSERT(spi_device != RT_NULL);
  480. cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
  481. RT_ASSERT(cs_pin != RT_NULL);
  482. cs_pin->GPIOx = cs_gpiox;
  483. cs_pin->GPIO_Pin = cs_gpio_pin;
  484. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  485. if (result != RT_EOK)
  486. {
  487. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  488. }
  489. RT_ASSERT(result == RT_EOK);
  490. LOG_D("%s attach to %s done", device_name, bus_name);
  491. return result;
  492. }
  493. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  494. void SPI1_IRQHandler(void)
  495. {
  496. /* enter interrupt */
  497. rt_interrupt_enter();
  498. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  499. /* leave interrupt */
  500. rt_interrupt_leave();
  501. }
  502. #endif
  503. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  504. /**
  505. * @brief This function handles DMA Rx interrupt request.
  506. * @param None
  507. * @retval None
  508. */
  509. void SPI1_DMA_RX_IRQHandler(void)
  510. {
  511. /* enter interrupt */
  512. rt_interrupt_enter();
  513. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
  514. /* leave interrupt */
  515. rt_interrupt_leave();
  516. }
  517. #endif
  518. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  519. /**
  520. * @brief This function handles DMA Tx interrupt request.
  521. * @param None
  522. * @retval None
  523. */
  524. void SPI1_DMA_TX_IRQHandler(void)
  525. {
  526. /* enter interrupt */
  527. rt_interrupt_enter();
  528. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
  529. /* leave interrupt */
  530. rt_interrupt_leave();
  531. }
  532. #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
  533. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  534. void SPI2_IRQHandler(void)
  535. {
  536. /* enter interrupt */
  537. rt_interrupt_enter();
  538. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  539. /* leave interrupt */
  540. rt_interrupt_leave();
  541. }
  542. #endif
  543. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  544. /**
  545. * @brief This function handles DMA Rx interrupt request.
  546. * @param None
  547. * @retval None
  548. */
  549. void SPI2_DMA_RX_IRQHandler(void)
  550. {
  551. /* enter interrupt */
  552. rt_interrupt_enter();
  553. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
  554. /* leave interrupt */
  555. rt_interrupt_leave();
  556. }
  557. #endif
  558. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  559. /**
  560. * @brief This function handles DMA Tx interrupt request.
  561. * @param None
  562. * @retval None
  563. */
  564. void SPI2_DMA_TX_IRQHandler(void)
  565. {
  566. /* enter interrupt */
  567. rt_interrupt_enter();
  568. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
  569. /* leave interrupt */
  570. rt_interrupt_leave();
  571. }
  572. #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
  573. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  574. void SPI3_IRQHandler(void)
  575. {
  576. /* enter interrupt */
  577. rt_interrupt_enter();
  578. HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
  579. /* leave interrupt */
  580. rt_interrupt_leave();
  581. }
  582. #endif
  583. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  584. /**
  585. * @brief This function handles DMA Rx interrupt request.
  586. * @param None
  587. * @retval None
  588. */
  589. void SPI3_DMA_RX_IRQHandler(void)
  590. {
  591. /* enter interrupt */
  592. rt_interrupt_enter();
  593. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
  594. /* leave interrupt */
  595. rt_interrupt_leave();
  596. }
  597. #endif
  598. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  599. /**
  600. * @brief This function handles DMA Tx interrupt request.
  601. * @param None
  602. * @retval None
  603. */
  604. void SPI3_DMA_TX_IRQHandler(void)
  605. {
  606. /* enter interrupt */
  607. rt_interrupt_enter();
  608. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
  609. /* leave interrupt */
  610. rt_interrupt_leave();
  611. }
  612. #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
  613. #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
  614. void SPI4_IRQHandler(void)
  615. {
  616. /* enter interrupt */
  617. rt_interrupt_enter();
  618. HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
  619. /* leave interrupt */
  620. rt_interrupt_leave();
  621. }
  622. #endif
  623. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  624. /**
  625. * @brief This function handles DMA Rx interrupt request.
  626. * @param None
  627. * @retval None
  628. */
  629. void SPI4_DMA_RX_IRQHandler(void)
  630. {
  631. /* enter interrupt */
  632. rt_interrupt_enter();
  633. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
  634. /* leave interrupt */
  635. rt_interrupt_leave();
  636. }
  637. #endif
  638. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  639. /**
  640. * @brief This function handles DMA Tx interrupt request.
  641. * @param None
  642. * @retval None
  643. */
  644. void SPI4_DMA_TX_IRQHandler(void)
  645. {
  646. /* enter interrupt */
  647. rt_interrupt_enter();
  648. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
  649. /* leave interrupt */
  650. rt_interrupt_leave();
  651. }
  652. #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
  653. #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
  654. void SPI5_IRQHandler(void)
  655. {
  656. /* enter interrupt */
  657. rt_interrupt_enter();
  658. HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
  659. /* leave interrupt */
  660. rt_interrupt_leave();
  661. }
  662. #endif
  663. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  664. /**
  665. * @brief This function handles DMA Rx interrupt request.
  666. * @param None
  667. * @retval None
  668. */
  669. void SPI5_DMA_RX_IRQHandler(void)
  670. {
  671. /* enter interrupt */
  672. rt_interrupt_enter();
  673. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
  674. /* leave interrupt */
  675. rt_interrupt_leave();
  676. }
  677. #endif
  678. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  679. /**
  680. * @brief This function handles DMA Tx interrupt request.
  681. * @param None
  682. * @retval None
  683. */
  684. void SPI5_DMA_TX_IRQHandler(void)
  685. {
  686. /* enter interrupt */
  687. rt_interrupt_enter();
  688. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
  689. /* leave interrupt */
  690. rt_interrupt_leave();
  691. }
  692. #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
  693. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  694. /**
  695. * @brief This function handles DMA Rx interrupt request.
  696. * @param None
  697. * @retval None
  698. */
  699. void SPI6_DMA_RX_IRQHandler(void)
  700. {
  701. /* enter interrupt */
  702. rt_interrupt_enter();
  703. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
  704. /* leave interrupt */
  705. rt_interrupt_leave();
  706. }
  707. #endif
  708. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  709. /**
  710. * @brief This function handles DMA Tx interrupt request.
  711. * @param None
  712. * @retval None
  713. */
  714. void SPI6_DMA_TX_IRQHandler(void)
  715. {
  716. /* enter interrupt */
  717. rt_interrupt_enter();
  718. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
  719. /* leave interrupt */
  720. rt_interrupt_leave();
  721. }
  722. #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
  723. static void stm32_get_dma_info(void)
  724. {
  725. #ifdef BSP_SPI1_RX_USING_DMA
  726. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  727. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  728. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  729. #endif
  730. #ifdef BSP_SPI1_TX_USING_DMA
  731. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  732. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  733. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  734. #endif
  735. #ifdef BSP_SPI2_RX_USING_DMA
  736. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  737. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  738. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  739. #endif
  740. #ifdef BSP_SPI2_TX_USING_DMA
  741. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  742. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  743. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  744. #endif
  745. #ifdef BSP_SPI3_RX_USING_DMA
  746. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  747. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  748. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  749. #endif
  750. #ifdef BSP_SPI3_TX_USING_DMA
  751. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  752. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  753. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  754. #endif
  755. #ifdef BSP_SPI4_RX_USING_DMA
  756. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  757. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  758. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  759. #endif
  760. #ifdef BSP_SPI4_TX_USING_DMA
  761. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  762. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  763. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  764. #endif
  765. #ifdef BSP_SPI5_RX_USING_DMA
  766. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  767. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  768. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  769. #endif
  770. #ifdef BSP_SPI5_TX_USING_DMA
  771. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  772. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  773. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  774. #endif
  775. #ifdef BSP_SPI6_RX_USING_DMA
  776. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  777. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  778. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  779. #endif
  780. #ifdef BSP_SPI6_TX_USING_DMA
  781. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  782. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  783. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  784. #endif
  785. }
  786. #if defined(SOC_SERIES_STM32F0)
  787. void SPI1_DMA_RX_TX_IRQHandler(void)
  788. {
  789. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  790. SPI1_DMA_TX_IRQHandler();
  791. #endif
  792. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  793. SPI1_DMA_RX_IRQHandler();
  794. #endif
  795. }
  796. void SPI2_DMA_RX_TX_IRQHandler(void)
  797. {
  798. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  799. SPI2_DMA_TX_IRQHandler();
  800. #endif
  801. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  802. SPI2_DMA_RX_IRQHandler();
  803. #endif
  804. }
  805. #endif /* SOC_SERIES_STM32F0 */
  806. int rt_hw_spi_init(void)
  807. {
  808. stm32_get_dma_info();
  809. return rt_hw_spi_bus_init();
  810. }
  811. INIT_BOARD_EXPORT(rt_hw_spi_init);
  812. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
  813. #endif /* RT_USING_SPI */