drv_eth.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2020-07-20 thread-liu the first version
  9. */
  10. #include "board.h"
  11. #include "drv_config.h"
  12. #include <netif/ethernetif.h>
  13. #include "lwipopts.h"
  14. #include "drv_eth.h"
  15. #if defined(BSP_USING_GBE)
  16. #define DRV_DEBUG
  17. //#define ETH_RX_DUMP
  18. //#define ETH_TX_DUMP
  19. #define LOG_TAG "drv.emac"
  20. #include <drv_log.h>
  21. #define MAX_ADDR_LEN 6
  22. rt_base_t level;
  23. #define TX_ADD_BASE 0x2FFC3000
  24. #define RX_ADD_BASE 0x2FFC5000
  25. #define TX_DMA_ADD_BASE 0x2FFC7000
  26. #define RX_DMA_ADD_BASE 0x2FFC7100
  27. #if defined(__ICCARM__)
  28. /* transmit buffer */
  29. #pragma location = TX_ADD_BASE
  30. static rt_uint8_t txBuffer[ETH_TXBUFNB][ETH_TX_BUF_SIZE];
  31. /* Receive buffer */
  32. #pragma location = RX_ADD_BASE
  33. static rt_uint8_t rxBuffer[ETH_RXBUFNB][ETH_RX_BUF_SIZE];
  34. /* Transmit DMA descriptors */
  35. #pragma location = TX_DMA_ADD_BASE
  36. static TxDmaDesc txDmaDesc[ETH_TXBUFNB];
  37. /* Receive DMA descriptors */
  38. #pragma location = RX_DMA_ADD_BASE
  39. static RxDmaDesc rxDmaDesc[ETH_RXBUFNB];
  40. #elif defined(__CC_ARM) || defined(__CLANG_ARM)
  41. /* transmit buffer */
  42. static rt_uint8_t txBuffer[ETH_TXBUFNB][ETH_TX_BUF_SIZE] __attribute__((at(TX_ADD_BASE)));
  43. /* Receive buffer */
  44. static rt_uint8_t rxBuffer[ETH_RXBUFNB][ETH_RX_BUF_SIZE] __attribute__((at(RX_ADD_BASE)));
  45. /* Transmit DMA descriptors */
  46. static TxDmaDesc txDmaDesc[ETH_TXBUFNB] __attribute__((at(TX_DMA_ADD_BASE)));
  47. /* Receive DMA descriptors */
  48. static RxDmaDesc rxDmaDesc[ETH_RXBUFNB] __attribute__((at(RX_DMA_ADD_BASE)));
  49. #elif defined ( __GNUC__ )
  50. /* transmit buffer */
  51. static rt_uint8_t txBuffer[ETH_TXBUFNB][ETH_TX_BUF_SIZE] __attribute__((at(TX_ADD_BASE)));
  52. /* Receive buffer */
  53. static rt_uint8_t rxBuffer[ETH_RXBUFNB][ETH_RX_BUF_SIZE] __attribute__((at(RX_ADD_BASE)));
  54. /* Transmit DMA descriptors */
  55. static TxDmaDesc txDmaDesc[ETH_TXBUFNB] __attribute__((at(TX_DMA_ADD_BASE)));
  56. /* Receive DMA descriptors */
  57. static RxDmaDesc rxDmaDesc[ETH_RXBUFNB] __attribute__((at(RX_DMA_ADD_BASE)));
  58. #endif
  59. /* Current transmit descriptor */
  60. static rt_uint8_t txIndex = 0;
  61. /* Current receive descriptor */
  62. static rt_uint8_t rxIndex = 0;
  63. /* eth rx event */
  64. static struct rt_event rx_event = {0};
  65. #define ETH_TIME_OUT 100000
  66. struct rt_stm32_eth
  67. {
  68. /* inherit from ethernet device */
  69. struct eth_device parent;
  70. #ifndef PHY_USING_INTERRUPT_MODE
  71. rt_timer_t poll_link_timer;
  72. #endif
  73. /* interface address info, hw address */
  74. rt_uint8_t dev_addr[MAX_ADDR_LEN];
  75. /* eth speed */
  76. rt_uint32_t eth_speed;
  77. /* eth duplex mode */
  78. rt_uint32_t eth_mode;
  79. };
  80. static struct rt_stm32_eth stm32_eth_device = {0};
  81. #if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
  82. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  83. static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
  84. {
  85. unsigned char *buf = (unsigned char *)ptr;
  86. int i, j;
  87. for (i = 0; i < buflen; i += 16)
  88. {
  89. rt_kprintf("%08X: ", i);
  90. for (j = 0; j < 16; j++)
  91. {
  92. if (i + j < buflen)
  93. {
  94. rt_kprintf("%02X ", buf[i + j]);
  95. }
  96. else
  97. {
  98. rt_kprintf(" ");
  99. }
  100. }
  101. rt_kprintf(" ");
  102. for (j = 0; j < 16; j++)
  103. {
  104. if (i + j < buflen)
  105. {
  106. rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
  107. }
  108. }
  109. rt_kprintf("\n");
  110. }
  111. }
  112. #endif
  113. static rt_err_t phy_write_reg(uint8_t phy_addr, uint8_t reg_addr, uint16_t reg_value)
  114. {
  115. uint32_t temp;
  116. volatile uint32_t tickstart = 0;
  117. /* Take care not to alter MDC clock configuration */
  118. temp = ETH->MACMDIOAR & ETH_MACMDIOAR_CR;
  119. /* Set up a write operation */
  120. temp |= ETH_MACMDIOAR_GOC_Val(1) | ETH_MACMDIOAR_GB;
  121. /* PHY address */
  122. temp |= (phy_addr << 21) & ETH_MACMDIOAR_PA;
  123. /* Register address */
  124. temp |= (reg_addr << 16) & ETH_MACMDIOAR_RDA;
  125. /* Data to be written in the PHY register */
  126. ETH->MACMDIODR = reg_value & ETH_MACMDIODR_GD;
  127. /* Start a write operation */
  128. ETH->MACMDIOAR = temp;
  129. /* Wait for the write to complete */
  130. tickstart = rt_tick_get();
  131. while((ETH->MACMDIOAR & ETH_MACMDIOAR_GB) != 0)
  132. {
  133. /* judge timeout */
  134. if((rt_tick_get() - tickstart) > ETH_TIME_OUT)
  135. {
  136. LOG_E("PHY write reg %02x date %04x timeout!", reg_addr, reg_value);
  137. return -RT_ETIMEOUT;
  138. }
  139. }
  140. return RT_EOK;
  141. }
  142. static uint16_t phy_read_reg(uint8_t phy_addr, uint8_t reg_addr)
  143. {
  144. uint16_t reg_value = 0;
  145. uint32_t status = 0;
  146. volatile uint32_t tickstart = 0;
  147. /* Take care not to alter MDC clock configuration */
  148. status = ETH->MACMDIOAR & ETH_MACMDIOAR_CR;
  149. /* Set up a read operation */
  150. status |= ETH_MACMDIOAR_GOC_Val(3) | ETH_MACMDIOAR_GB;
  151. /* PHY address */
  152. status |= (phy_addr << 21) & ETH_MACMDIOAR_PA;
  153. /* Register address */
  154. status |= (reg_addr << 16) & ETH_MACMDIOAR_RDA;
  155. /* Start a read operation */
  156. ETH->MACMDIOAR = status;
  157. /* Wait for the read to complete */
  158. tickstart = rt_tick_get();
  159. while((ETH->MACMDIOAR & ETH_MACMDIOAR_GB) != 0)
  160. {
  161. /* judge timeout */
  162. if((rt_tick_get() - tickstart) > ETH_TIME_OUT)
  163. {
  164. LOG_E("PHY read reg %02x timeout!", reg_addr);
  165. return RT_ETIMEOUT;
  166. }
  167. }
  168. /* Get register value */
  169. reg_value = ETH->MACMDIODR & ETH_MACMDIODR_GD;
  170. return reg_value;
  171. }
  172. static rt_err_t update_mac_mode(rt_uint32_t eth_speed, rt_uint32_t eth_mode)
  173. {
  174. uint32_t status;
  175. /* Read current MAC configuration */
  176. status = ETH->MACCR;
  177. if (eth_speed == PHY_1000M)
  178. {
  179. status &= ~ETH_MACCR_PS;
  180. status &= ~ETH_MACCR_FES;
  181. }
  182. else if (eth_speed == PHY_100M)
  183. {
  184. status |= ETH_MACCR_PS;
  185. status |= ETH_MACCR_FES;
  186. }
  187. /* 10M */
  188. else
  189. {
  190. status |= ETH_MACCR_PS;
  191. status &= ~ETH_MACCR_FES;
  192. }
  193. if (eth_mode == PHY_FULL_DUPLEX)
  194. {
  195. status |= ETH_MACCR_DM;
  196. }
  197. else
  198. {
  199. status &= ~ETH_MACCR_DM;
  200. }
  201. /* Update MAC configuration register */
  202. ETH->MACCR = status;
  203. return RT_EOK;
  204. }
  205. static void HAL_ETH_MspInit(void)
  206. {
  207. GPIO_InitTypeDef GPIO_InitStruct = {0};
  208. RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  209. if(IS_ENGINEERING_BOOT_MODE())
  210. {
  211. /** Initializes the peripherals clock
  212. */
  213. PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ETH;
  214. PeriphClkInit.EthClockSelection = RCC_ETHCLKSOURCE_PLL4;
  215. if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  216. {
  217. Error_Handler();
  218. }
  219. }
  220. /* Enable SYSCFG clock */
  221. __HAL_RCC_SYSCFG_CLK_ENABLE();
  222. /* Enable GPIO clocks */
  223. __HAL_RCC_GPIOA_CLK_ENABLE();
  224. __HAL_RCC_GPIOB_CLK_ENABLE();
  225. __HAL_RCC_GPIOC_CLK_ENABLE();
  226. __HAL_RCC_GPIOE_CLK_ENABLE();
  227. __HAL_RCC_GPIOG_CLK_ENABLE();
  228. /* Select RGMII interface mode */
  229. HAL_SYSCFG_ETHInterfaceSelect(SYSCFG_ETH_RGMII);
  230. /* Enable Ethernet MAC clock */
  231. __HAL_RCC_ETH1MAC_CLK_ENABLE();
  232. __HAL_RCC_ETH1TX_CLK_ENABLE();
  233. __HAL_RCC_ETH1RX_CLK_ENABLE();
  234. /**ETH1 GPIO Configuration
  235. PA1 ------> ETH1_RX_CLK
  236. PA7 ------> ETH1_RX_CTL
  237. PB0 ------> ETH1_RXD2
  238. PB1 ------> ETH1_RXD3
  239. PC4 ------> ETH1_RXD0
  240. PC5 ------> ETH1_RXD1
  241. PA2 ------> ETH1_MDIO
  242. PB11 ------> ETH1_TX_CTL
  243. PC1 ------> ETH1_MDC
  244. PC2 ------> ETH1_TXD2
  245. PE2 ------> ETH1_TXD3
  246. PG4 ------> ETH1_GTX_CLK
  247. PG5 ------> ETH1_CLK125
  248. PG13 ------> ETH1_TXD0
  249. PG14 ------> ETH1_TXD1
  250. */
  251. GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7;
  252. GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  253. GPIO_InitStruct.Pull = GPIO_NOPULL;
  254. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  255. GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
  256. HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  257. GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_11;
  258. HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  259. GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_4|GPIO_PIN_5;
  260. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  261. GPIO_InitStruct.Pin = GPIO_PIN_2;
  262. HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
  263. GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_13|GPIO_PIN_14;
  264. HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
  265. /* ETH interrupt Init */
  266. HAL_NVIC_SetPriority(ETH1_IRQn, 0x01, 0x00);
  267. HAL_NVIC_EnableIRQ(ETH1_IRQn);
  268. /* Configure PHY_RST (PG0) */
  269. GPIO_InitStruct.Pin = GPIO_PIN_0;
  270. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  271. GPIO_InitStruct.Pull = GPIO_PULLUP;
  272. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  273. HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
  274. /* Reset PHY transceiver */
  275. HAL_GPIO_WritePin(GPIOG, GPIO_PIN_0, GPIO_PIN_RESET);
  276. rt_thread_mdelay(20);
  277. HAL_GPIO_WritePin(GPIOG, GPIO_PIN_0, GPIO_PIN_SET);
  278. rt_thread_mdelay(20);
  279. }
  280. static rt_err_t rt_stm32_eth_init(rt_device_t dev)
  281. {
  282. RT_ASSERT(dev != RT_NULL);
  283. rt_uint32_t status, i;
  284. volatile rt_uint32_t tickstart = 0;
  285. rt_uint8_t *macAddr = &stm32_eth_device.dev_addr[0];
  286. /* Initialize TX descriptor index */
  287. txIndex = 0;
  288. /* Initialize RX descriptor index */
  289. rxIndex = 0;
  290. HAL_ETH_MspInit();
  291. /* Reset Ethernet MAC peripheral */
  292. __HAL_RCC_ETH1MAC_FORCE_RESET();
  293. __HAL_RCC_ETH1MAC_RELEASE_RESET();
  294. /* Ethernet Software reset */
  295. ETH->DMAMR |= ETH_DMAMR_SWR;
  296. /* Wait for the reset to complete */
  297. tickstart = rt_tick_get();
  298. while (READ_BIT(ETH->DMAMR, ETH_DMAMR_SWR))
  299. {
  300. if(((HAL_GetTick() - tickstart ) > ETH_TIME_OUT))
  301. {
  302. LOG_E("ETH software reset timeout!");
  303. return RT_ERROR;
  304. }
  305. }
  306. /* Adjust MDC clock range depending on HCLK frequency */
  307. ETH->MACMDIOAR = ETH_MACMDIOAR_CR_Val(5);
  308. /* Use default MAC configuration */
  309. ETH->MACCR = ETH_MACCR_DO;
  310. /* Set the MAC address of the station */
  311. ETH->MACA0LR = ((macAddr[3] << 24) | (macAddr[2] << 16) | (macAddr[1] << 8) | macAddr[0]);
  312. ETH->MACA0HR = ((macAddr[5] << 8) | macAddr[4]);
  313. /* The MAC supports 3 additional addresses for unicast perfect filtering */
  314. ETH->MACA1LR = 0;
  315. ETH->MACA1HR = 0;
  316. ETH->MACA2LR = 0;
  317. ETH->MACA2HR = 0;
  318. ETH->MACA3LR = 0;
  319. ETH->MACA3HR = 0;
  320. /* Initialize hash table */
  321. ETH->MACHT0R = 0;
  322. ETH->MACHT1R = 0;
  323. /* Configure the receive filter */
  324. ETH->MACPFR = ETH_MACPFR_HPF | ETH_MACPFR_HMC;
  325. /* Disable flow control */
  326. ETH->MACQ0TXFCR = 0;
  327. ETH->MACRXFCR = 0;
  328. /* Enable the first RX queue */
  329. ETH->MACRXQC0R = ETH_MACRXQC0R_RXQ0EN_Val(1);
  330. /* Configure DMA operating mode */
  331. ETH->DMAMR = ETH_DMAMR_INTM_Val(0) | ETH_DMAMR_PR_Val(0);
  332. /* Configure system bus mode */
  333. ETH->DMASBMR |= ETH_DMASBMR_AAL;
  334. /* The DMA takes the descriptor table as contiguous */
  335. ETH->DMAC0CR = ETH_DMAC0CR_DSL_Val(0);
  336. /* Configure TX features */
  337. ETH->DMAC0TXCR = ETH_DMAC0TXCR_TXPBL_Val(1);
  338. /* Configure RX features */
  339. ETH->DMAC0RXCR = ETH_DMAC0RXCR_RXPBL_Val(1) | ETH_DMAC0RXCR_RBSZ_Val(ETH_RX_BUF_SIZE);
  340. /* Enable store and forward mode for transmission */
  341. ETH->MTLTXQ0OMR = ETH_MTLTXQ0OMR_TQS_Val(7) | ETH_MTLTXQ0OMR_TXQEN_Val(2) | ETH_MTLTXQ0OMR_TSF;
  342. /* Enable store and forward mode for reception */
  343. ETH->MTLRXQ0OMR = ETH_MTLRXQ0OMR_RQS_Val(7) | ETH_MTLRXQ0OMR_RSF;
  344. /* Initialize TX DMA descriptor list */
  345. for (i = 0; i < ETH_TXBUFNB; i++)
  346. {
  347. /* The descriptor is initially owned by the application */
  348. txDmaDesc[i].tdes0 = 0;
  349. txDmaDesc[i].tdes1 = 0;
  350. txDmaDesc[i].tdes2 = 0;
  351. txDmaDesc[i].tdes3 = 0;
  352. }
  353. /* Initialize RX DMA descriptor list */
  354. for (i = 0; i < ETH_RXBUFNB; i++)
  355. {
  356. /* The descriptor is initially owned by the DMA */
  357. rxDmaDesc[i].rdes0 = (uint32_t) rxBuffer[i];
  358. rxDmaDesc[i].rdes1 = 0;
  359. rxDmaDesc[i].rdes2 = 0;
  360. rxDmaDesc[i].rdes3 = ETH_RDES3_OWN | ETH_RDES3_IOC | ETH_RDES3_BUF1V;
  361. }
  362. /* Set Transmit Descriptor List Address Register */
  363. ETH->DMAC0TXDLAR = (uint32_t) &txDmaDesc[0];
  364. /* Length of the transmit descriptor ring */
  365. ETH->DMAC0TXRLR = ETH_TXBUFNB - 1;
  366. /* Set Receive Descriptor List Address Register */
  367. ETH->DMAC0RXDLAR = (uint32_t) &rxDmaDesc[0];
  368. /* Length of the receive descriptor ring */
  369. ETH->DMAC0RXRLR = ETH_RXBUFNB - 1;
  370. /* Prevent interrupts from being generated when the transmit statistic
  371. * counters reach half their maximum value */
  372. ETH->MMCTXIMR = ETH_MMCTXIMR_TXLPITRCIM | ETH_MMCTXIMR_TXLPIUSCIM | ETH_MMCTXIMR_TXGPKTIM | ETH_MMCTXIMR_TXMCOLGPIM | ETH_MMCTXIMR_TXSCOLGPIM;
  373. /* Prevent interrupts from being generated when the receive statistic
  374. * counters reach half their maximum value */
  375. ETH->MMCRXIMR = ETH_MMCRXIMR_RXLPITRCIM | ETH_MMCRXIMR_RXLPIUSCIM | ETH_MMCRXIMR_RXUCGPIM | ETH_MMCRXIMR_RXALGNERPIM | ETH_MMCRXIMR_RXCRCERPIM;
  376. /* Disable MAC interrupts */
  377. ETH->MACIER = 0;
  378. /* Enable the desired DMA interrupts */
  379. ETH->DMAC0IER = ETH_DMAC0IER_NIE | ETH_DMAC0IER_RIE | ETH_DMAC0IER_TIE;
  380. /* Enable MAC transmission and reception */
  381. ETH->MACCR |= ETH_MACCR_TE | ETH_MACCR_RE;
  382. /* Enable DMA transmission and reception */
  383. ETH->DMAC0TXCR |= ETH_DMAC0TXCR_ST;
  384. ETH->DMAC0RXCR |= ETH_DMAC0RXCR_SR;
  385. /* Reset PHY transceiver */
  386. phy_write_reg(RTL8211F_PHY_ADDR, RTL8211F_BMCR, RTL8211F_BMCR_RESET);
  387. status = phy_read_reg(RTL8211F_PHY_ADDR, RTL8211F_BMCR);
  388. /* Wait for the reset to complete */
  389. tickstart = rt_tick_get();
  390. while (status & RTL8211F_BMCR_RESET)
  391. {
  392. if((rt_tick_get() - tickstart) > ETH_TIME_OUT)
  393. {
  394. LOG_E("PHY software reset timeout!");
  395. return RT_ETIMEOUT;
  396. }
  397. else
  398. {
  399. status = phy_read_reg(RTL8211F_PHY_ADDR, RTL8211F_BMCR);
  400. }
  401. }
  402. /* The PHY will generate interrupts when link status changes are detected */
  403. phy_write_reg(RTL8211F_PHY_ADDR, RTL8211F_INER, RTL8211F_INER_AN_COMPLETE | RTL8211F_INER_LINK_STATUS);
  404. return RT_EOK;
  405. }
  406. static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
  407. {
  408. LOG_D("emac open");
  409. return RT_EOK;
  410. }
  411. static rt_err_t rt_stm32_eth_close(rt_device_t dev)
  412. {
  413. LOG_D("emac close");
  414. return RT_EOK;
  415. }
  416. static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  417. {
  418. LOG_D("emac read");
  419. rt_set_errno(-RT_ENOSYS);
  420. return 0;
  421. }
  422. static rt_size_t rt_stm32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  423. {
  424. LOG_D("emac write");
  425. rt_set_errno(-RT_ENOSYS);
  426. return 0;
  427. }
  428. static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
  429. {
  430. switch (cmd)
  431. {
  432. case NIOCTL_GADDR:
  433. /* get mac address */
  434. if (args)
  435. {
  436. rt_memcpy(args, stm32_eth_device.dev_addr, 6);
  437. }
  438. else
  439. {
  440. return -RT_ERROR;
  441. }
  442. break;
  443. default :
  444. break;
  445. }
  446. return RT_EOK;
  447. }
  448. rt_err_t rt_stm32_eth_tx(rt_device_t dev, struct pbuf *p)
  449. {
  450. uint32_t framelen = 0;
  451. struct pbuf *q = RT_NULL;
  452. /* Copy user data to the transmit buffer */
  453. for (q = p; q != NULL; q = q->next)
  454. {
  455. /* Make sure the current buffer is available for writing */
  456. if((txDmaDesc[txIndex].tdes3 & ETH_TDES3_OWN) != 0)
  457. {
  458. LOG_D("buffer not valid");
  459. return ERR_USE;
  460. }
  461. level = rt_hw_interrupt_disable();
  462. rt_memcpy(&txBuffer[txIndex][framelen], q->payload, q->len);
  463. framelen += q->len;
  464. rt_hw_interrupt_enable(level);
  465. /* Check the frame length */
  466. if (framelen > ETH_TX_BUF_SIZE - 1)
  467. {
  468. LOG_D(" tx buffer frame length over : %d", framelen);
  469. return ERR_USE;
  470. }
  471. }
  472. #ifdef ETH_TX_DUMP
  473. rt_kprintf("Tx dump, len= %d\r\n", framelen);
  474. dump_hex(txBuffer[txIndex], framelen);
  475. #endif
  476. /* Set the start address of the buffer */
  477. txDmaDesc[txIndex].tdes0 = (uint32_t)txBuffer[txIndex];
  478. /* Write the number of bytes to send */
  479. txDmaDesc[txIndex].tdes2 = ETH_TDES2_IOC | (framelen & ETH_TDES2_B1L);
  480. /* Give the ownership of the descriptor to the DMA */
  481. txDmaDesc[txIndex].tdes3 = ETH_TDES3_OWN | ETH_TDES3_FD | ETH_TDES3_LD;
  482. /* Data synchronization barrier */
  483. __DSB();
  484. /* Clear TBU flag to resume processing */
  485. ETH->DMAC0SR = ETH_DMAC0SR_TBU;
  486. /* Instruct the DMA to poll the transmit descriptor list */
  487. ETH->DMAC0TXDTPR = 0;
  488. if (++txIndex > ETH_TXBUFNB - 1)
  489. {
  490. txIndex = 0;
  491. }
  492. return ERR_OK;
  493. }
  494. struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
  495. {
  496. rt_uint32_t framelength = 0;
  497. uint32_t framelen = 0;
  498. struct pbuf *p = RT_NULL, *q = RT_NULL;
  499. /* The current buffer is available for reading */
  500. if (!(rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_OWN))
  501. {
  502. /* FD and LD flags should be set */
  503. if ((rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_FD) && (rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_LD))
  504. {
  505. /* Make sure no error occurred */
  506. if(!(rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_ES))
  507. {
  508. /* Retrieve the length of the frame */
  509. framelength = rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_PL;
  510. /* check the frame length */
  511. framelength = (framelength > ETH_RX_BUF_SIZE) ? ETH_RX_BUF_SIZE : framelength;
  512. p = pbuf_alloc(PBUF_RAW, framelength, PBUF_RAM);
  513. if (p != NULL)
  514. {
  515. for (q = p; q != NULL; q = q->next)
  516. {
  517. level=rt_hw_interrupt_disable();
  518. rt_memcpy(q->payload, &rxBuffer[rxIndex][framelen], q->len);
  519. framelen += q->len;
  520. rt_hw_interrupt_enable(level);
  521. if (framelen > framelength)
  522. {
  523. LOG_E("frame len is too long!");
  524. return RT_NULL;
  525. }
  526. }
  527. }
  528. }
  529. else
  530. {
  531. /* The received packet contains an error */
  532. LOG_D("the received packet contains an error!");
  533. return RT_NULL;
  534. }
  535. }
  536. else
  537. {
  538. /* The packet is not valid */
  539. LOG_D("the packet is not valid");
  540. return RT_NULL;
  541. }
  542. /* Set the start address of the buffer */
  543. rxDmaDesc[rxIndex].rdes0 = (uint32_t)rxBuffer[rxIndex];
  544. /* Give the ownership of the descriptor back to the DMA */
  545. rxDmaDesc[rxIndex].rdes3 = ETH_RDES3_OWN | ETH_RDES3_IOC | ETH_RDES3_BUF1V;
  546. #ifdef ETH_RX_DUMP
  547. rt_kprintf("Rx dump, len= %d\r\n", framelen);
  548. dump_hex(rxBuffer[rxIndex], framelen);
  549. #endif
  550. /* Increment index and wrap around if necessary */
  551. if (++rxIndex > ETH_RXBUFNB - 1)
  552. {
  553. rxIndex = 0;
  554. }
  555. /* Clear RBU flag to resume processing */
  556. ETH->DMAC0SR = ETH_DMAC0SR_RBU;
  557. /* Instruct the DMA to poll the receive descriptor list */
  558. ETH->DMAC0RXDTPR = 0;
  559. }
  560. return p;
  561. }
  562. void ETH1_IRQHandler(void)
  563. {
  564. rt_uint32_t status = 0;
  565. /* enter interrupt */
  566. rt_interrupt_enter();
  567. /* Read DMA status register */
  568. status = ETH->DMAC0SR;
  569. /* Frame transmitted */
  570. if (status & ETH_DMAC0SR_TI)
  571. {
  572. /* Clear the Eth DMA Tx IT pending bits */
  573. ETH->DMAC0SR = ETH_DMAC0SR_TI;
  574. }
  575. /* Frame received */
  576. else if (status & ETH_DMAC0SR_RI)
  577. {
  578. /* Disable RIE interrupt */
  579. ETH->DMAC0IER &= ~ETH_DMAC0IER_RIE;
  580. rt_event_send(&rx_event, status);
  581. }
  582. /* ETH DMA Error */
  583. if (status & ETH_DMAC0SR_AIS)
  584. {
  585. ETH->DMAC0IER &= ~ETH_DMAC0IER_AIE;
  586. LOG_E("eth dam err");
  587. }
  588. /* Clear the interrupt flags */
  589. ETH->DMAC0SR = ETH_DMAC0SR_NIS;
  590. /* leave interrupt */
  591. rt_interrupt_leave();
  592. }
  593. static void phy_linkchange()
  594. {
  595. rt_uint32_t status = 0;
  596. /* Read status register to acknowledge the interrupt */
  597. status = phy_read_reg(RTL8211F_PHY_ADDR, RTL8211F_INSR);
  598. if (status & (RTL8211F_BMSR_LINK_STATUS | RTL8211F_INSR_AN_COMPLETE))
  599. {
  600. status = phy_read_reg(RTL8211F_PHY_ADDR, RTL8211F_BMSR);
  601. status = phy_read_reg(RTL8211F_PHY_ADDR, RTL8211F_BMSR);
  602. if (status & RTL8211F_BMSR_LINK_STATUS)
  603. {
  604. LOG_D("link up");
  605. status = phy_read_reg(RTL8211F_PHY_ADDR, RTL8211F_PHYSR);
  606. switch (status & RTL8211F_PHYSR_SPEED)
  607. {
  608. case RTL8211F_PHYSR_SPEED_10MBPS:
  609. {
  610. LOG_D("speed: 10M");
  611. stm32_eth_device.eth_speed |= PHY_10M;
  612. }
  613. break;
  614. case RTL8211F_PHYSR_SPEED_100MBPS:
  615. {
  616. LOG_D("speed: 100M");
  617. stm32_eth_device.eth_speed |= PHY_100M;
  618. }
  619. break;
  620. case RTL8211F_PHYSR_SPEED_1000MBPS:
  621. {
  622. LOG_D("speed: 1000M");
  623. stm32_eth_device.eth_speed |= PHY_1000M;
  624. }
  625. break;
  626. /* Unknown speed */
  627. default:
  628. rt_kprintf("Invalid speed.");
  629. break;
  630. }
  631. stm32_eth_device.eth_mode = (status & RTL8211F_PHYSR_DUPLEX)? PHY_FULL_DUPLEX : PHY_HALF_DUPLEX ;
  632. update_mac_mode(stm32_eth_device.eth_speed, stm32_eth_device.eth_mode);
  633. /* send link up. */
  634. eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
  635. }
  636. else
  637. {
  638. LOG_I("link down");
  639. eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
  640. }
  641. }
  642. }
  643. #ifdef PHY_USING_INTERRUPT_MODE
  644. static void eth_phy_isr(void *args)
  645. {
  646. rt_uint32_t status = 0;
  647. phy_read_reg(RTL8211F_PHY_ADDR, PHY_INTERRUPT_FLAG_REG, (uint32_t *)&status);
  648. LOG_D("phy interrupt status reg is 0x%X", status);
  649. phy_linkchange();
  650. }
  651. #endif /* PHY_USING_INTERRUPT_MODE */
  652. static void phy_monitor_thread_entry(void *parameter)
  653. {
  654. rt_uint32_t status = 0;
  655. phy_linkchange();
  656. #ifdef PHY_USING_INTERRUPT_MODE
  657. /* configuration intterrupt pin */
  658. rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
  659. rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_isr, (void *)"callbackargs");
  660. rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE);
  661. /* enable phy interrupt */
  662. phy_write_reg(RTL8211F_PHY_ADDR, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK);
  663. #if defined(PHY_INTERRUPT_CTRL_REG)
  664. phy_write_reg( RTL8211F_PHY_ADDR, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN);
  665. #endif
  666. #else /* PHY_USING_INTERRUPT_MODE */
  667. stm32_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
  668. NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
  669. if (!stm32_eth_device.poll_link_timer || rt_timer_start(stm32_eth_device.poll_link_timer) != RT_EOK)
  670. {
  671. LOG_E("Start link change detection timer failed");
  672. }
  673. #endif /* PHY_USING_INTERRUPT_MODE */
  674. while(1)
  675. {
  676. if (rt_event_recv(&rx_event, 0xffffffff, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
  677. RT_WAITING_FOREVER, &status) == RT_EOK)
  678. {
  679. /* check dma rx buffer */
  680. if (ETH->DMAC0SR & ETH_DMAC0SR_RI)
  681. {
  682. /* Clear interrupt flag */
  683. ETH->DMAC0SR = ETH_DMAC0SR_RI;
  684. /* Process all pending packets */
  685. while (rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_PL)
  686. {
  687. /* trigger lwip receive thread */
  688. eth_device_ready(&(stm32_eth_device.parent));
  689. }
  690. }
  691. /* enable DMA interrupts */
  692. ETH->DMAC0IER = ETH_DMAC0IER_NIE | ETH_DMAC0IER_RIE | ETH_DMAC0IER_TIE;
  693. }
  694. }
  695. }
  696. /* Register the EMAC device */
  697. static int rt_hw_stm32_eth_init(void)
  698. {
  699. rt_err_t state = RT_EOK;
  700. /* OUI 00-80-E1 STMICROELECTRONICS. */
  701. stm32_eth_device.dev_addr[0] = 0x00;
  702. stm32_eth_device.dev_addr[1] = 0x80;
  703. stm32_eth_device.dev_addr[2] = 0xE1;
  704. /* generate MAC addr from 96bit unique ID (only for test). */
  705. stm32_eth_device.dev_addr[3] = *(rt_uint8_t *)(UID_BASE + 4);
  706. stm32_eth_device.dev_addr[4] = *(rt_uint8_t *)(UID_BASE + 2);
  707. stm32_eth_device.dev_addr[5] = *(rt_uint8_t *)(UID_BASE + 0);
  708. stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
  709. stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
  710. stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
  711. stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
  712. stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
  713. stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
  714. stm32_eth_device.parent.parent.user_data = RT_NULL;
  715. stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
  716. stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
  717. rt_event_init(&rx_event, "eth_rx", RT_IPC_FLAG_FIFO);
  718. /* register eth device */
  719. state = eth_device_init(&(stm32_eth_device.parent), "e0");
  720. if (RT_EOK == state)
  721. {
  722. LOG_D("emac device init success");
  723. }
  724. else
  725. {
  726. LOG_E("emac device init faild: %d", state);
  727. state = -RT_ERROR;
  728. }
  729. /* start phy monitor */
  730. rt_thread_t tid;
  731. tid = rt_thread_create("phy",
  732. phy_monitor_thread_entry,
  733. RT_NULL,
  734. 1024,
  735. RT_THREAD_PRIORITY_MAX - 2,
  736. 2);
  737. if (tid != RT_NULL)
  738. {
  739. rt_thread_startup(tid);
  740. }
  741. else
  742. {
  743. state = -RT_ERROR;
  744. }
  745. return state;
  746. }
  747. INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);
  748. #endif