thread_delete.c 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. *
  8. */
  9. /*
  10. * 程序清单:删除线程
  11. *
  12. * 这个例子会创建两个线程,在一个线程中删除另外一个线程。
  13. */
  14. #include <rtthread.h>
  15. #include "tc_comm.h"
  16. /*
  17. * 线程删除(rt_thread_delete)函数仅适合于动态线程,为了在一个线程
  18. * 中访问另一个线程的控制块,所以把线程块指针声明成全局类型以供全
  19. * 局访问
  20. */
  21. static rt_thread_t tid1 = RT_NULL, tid2 = RT_NULL;
  22. /* 线程1的入口函数 */
  23. static void thread1_entry(void* parameter)
  24. {
  25. rt_uint32_t count = 0;
  26. while (1)
  27. {
  28. /* 线程1采用低优先级运行,一直打印计数值 */
  29. // rt_kprintf("thread count: %d\n", count ++);
  30. count ++;
  31. }
  32. }
  33. static void thread1_cleanup(struct rt_thread *tid)
  34. {
  35. if (tid != tid1)
  36. {
  37. tc_stat(TC_STAT_END | TC_STAT_FAILED);
  38. return ;
  39. }
  40. rt_kprintf("thread1 end\n");
  41. tid1 = RT_NULL;
  42. }
  43. /* 线程2的入口函数 */
  44. static void thread2_entry(void* parameter)
  45. {
  46. /* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
  47. /* 线程2启动后先睡眠10个OS Tick */
  48. rt_thread_delay(RT_TICK_PER_SECOND);
  49. /*
  50. * 线程2唤醒后直接删除线程1,删除线程1后,线程1自动脱离就绪线程
  51. * 队列
  52. */
  53. rt_thread_delete(tid1);
  54. /*
  55. * 线程2继续休眠10个OS Tick然后退出,线程2休眠后应切换到idle线程
  56. * idle线程将执行真正的线程1控制块和线程栈的删除
  57. */
  58. rt_thread_delay(RT_TICK_PER_SECOND);
  59. }
  60. static void thread2_cleanup(struct rt_thread *tid)
  61. {
  62. /*
  63. * 线程2运行结束后也将自动被删除(线程控制块和线程栈在idle线
  64. * 程中释放)
  65. */
  66. if (tid != tid2)
  67. {
  68. tc_stat(TC_STAT_END | TC_STAT_FAILED);
  69. return ;
  70. }
  71. rt_kprintf("thread2 end\n");
  72. tid2 = RT_NULL;
  73. tc_done(TC_STAT_PASSED);
  74. }
  75. /* 线程删除示例的初始化 */
  76. int thread_delete_init()
  77. {
  78. /* 创建线程1 */
  79. tid1 = rt_thread_create("t1", /* 线程1的名称是t1 */
  80. thread1_entry, RT_NULL, /* 入口是thread1_entry,参数是RT_NULL */
  81. THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
  82. if (tid1 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
  83. {
  84. tid1->cleanup = thread1_cleanup;
  85. rt_thread_startup(tid1);
  86. }
  87. else
  88. tc_stat(TC_STAT_END | TC_STAT_FAILED);
  89. /* 创建线程1 */
  90. tid2 = rt_thread_create("t2", /* 线程1的名称是t2 */
  91. thread2_entry, RT_NULL, /* 入口是thread2_entry,参数是RT_NULL */
  92. THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
  93. if (tid2 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
  94. {
  95. tid2->cleanup = thread2_cleanup;
  96. rt_thread_startup(tid2);
  97. }
  98. else
  99. tc_stat(TC_STAT_END | TC_STAT_FAILED);
  100. return 10 * RT_TICK_PER_SECOND;
  101. }
  102. #ifdef RT_USING_TC
  103. static void _tc_cleanup()
  104. {
  105. /* lock scheduler */
  106. rt_enter_critical();
  107. /* delete thread */
  108. if (tid1 != RT_NULL)
  109. {
  110. rt_kprintf("tid1 is %p, should be NULL\n", tid1);
  111. tc_stat(TC_STAT_FAILED);
  112. }
  113. if (tid2 != RT_NULL)
  114. {
  115. rt_kprintf("tid2 is %p, should be NULL\n", tid2);
  116. tc_stat(TC_STAT_FAILED);
  117. }
  118. /* unlock scheduler */
  119. rt_exit_critical();
  120. }
  121. int _tc_thread_delete()
  122. {
  123. /* set tc cleanup */
  124. tc_cleanup(_tc_cleanup);
  125. return thread_delete_init();
  126. }
  127. FINSH_FUNCTION_EXPORT(_tc_thread_delete, a thread delete example);
  128. #else
  129. int rt_application_init()
  130. {
  131. thread_delete_init();
  132. return 0;
  133. }
  134. #endif