1
0

spi_flash_sfud.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2016-09-28 armink first version.
  9. */
  10. #include <stdint.h>
  11. #include <string.h>
  12. #include <rtdevice.h>
  13. #include "spi_flash.h"
  14. #include "spi_flash_sfud.h"
  15. #ifdef RT_USING_SFUD
  16. #ifndef RT_SFUD_DEFAULT_SPI_CFG
  17. #ifndef RT_SFUD_SPI_MAX_HZ
  18. #define RT_SFUD_SPI_MAX_HZ 50000000
  19. #endif
  20. /* read the JEDEC SFDP command must run at 50 MHz or less */
  21. #define RT_SFUD_DEFAULT_SPI_CFG \
  22. { \
  23. .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
  24. .data_width = 8, \
  25. .max_hz = RT_SFUD_SPI_MAX_HZ, \
  26. }
  27. #endif /* RT_SFUD_DEFAULT_SPI_CFG */
  28. #ifdef SFUD_USING_QSPI
  29. #define RT_SFUD_DEFAULT_QSPI_CFG \
  30. { \
  31. RT_SFUD_DEFAULT_SPI_CFG, \
  32. .medium_size = 0x800000, \
  33. .ddr_mode = 0, \
  34. .qspi_dl_width = 4, \
  35. }
  36. #endif /* SFUD_USING_QSPI */
  37. static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
  38. RT_ASSERT(dev);
  39. switch (cmd) {
  40. case RT_DEVICE_CTRL_BLK_GETGEOME: {
  41. struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
  42. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  43. if (rtt_dev == RT_NULL || geometry == RT_NULL) {
  44. return -RT_ERROR;
  45. }
  46. geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
  47. geometry->sector_count = rtt_dev->geometry.sector_count;
  48. geometry->block_size = rtt_dev->geometry.block_size;
  49. break;
  50. }
  51. case RT_DEVICE_CTRL_BLK_ERASE: {
  52. rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
  53. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  54. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  55. rt_size_t phy_size;
  56. if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
  57. return -RT_ERROR;
  58. }
  59. if (end_addr == start_addr) {
  60. end_addr ++;
  61. }
  62. phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
  63. phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
  64. if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
  65. return -RT_ERROR;
  66. }
  67. break;
  68. }
  69. }
  70. return RT_EOK;
  71. }
  72. static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
  73. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  74. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  75. RT_ASSERT(dev);
  76. RT_ASSERT(rtt_dev);
  77. RT_ASSERT(sfud_dev);
  78. /* change the block device's logic address to physical address */
  79. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  80. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  81. if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  82. return 0;
  83. } else {
  84. return size;
  85. }
  86. }
  87. static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
  88. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  89. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  90. RT_ASSERT(dev);
  91. RT_ASSERT(rtt_dev);
  92. RT_ASSERT(sfud_dev);
  93. /* change the block device's logic address to physical address */
  94. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  95. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  96. if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  97. return 0;
  98. } else {
  99. return size;
  100. }
  101. }
  102. /**
  103. * SPI write data then read data
  104. */
  105. static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
  106. size_t read_size) {
  107. sfud_err result = SFUD_SUCCESS;
  108. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  109. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  110. RT_ASSERT(spi);
  111. RT_ASSERT(sfud_dev);
  112. RT_ASSERT(rtt_dev);
  113. #ifdef SFUD_USING_QSPI
  114. struct rt_qspi_device *qspi_dev = RT_NULL;
  115. #endif
  116. if (write_size) {
  117. RT_ASSERT(write_buf);
  118. }
  119. if (read_size) {
  120. RT_ASSERT(read_buf);
  121. }
  122. #ifdef SFUD_USING_QSPI
  123. if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) {
  124. qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  125. if (write_size && read_size) {
  126. if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) <= 0) {
  127. result = SFUD_ERR_TIMEOUT;
  128. }
  129. } else if (write_size) {
  130. if (rt_qspi_send(qspi_dev, write_buf, write_size) <= 0) {
  131. result = SFUD_ERR_TIMEOUT;
  132. }
  133. }
  134. }
  135. else
  136. #endif
  137. {
  138. if (write_size && read_size) {
  139. if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
  140. result = SFUD_ERR_TIMEOUT;
  141. }
  142. } else if (write_size) {
  143. if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) <= 0) {
  144. result = SFUD_ERR_TIMEOUT;
  145. }
  146. } else {
  147. if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) <= 0) {
  148. result = SFUD_ERR_TIMEOUT;
  149. }
  150. }
  151. }
  152. return result;
  153. }
  154. #ifdef SFUD_USING_QSPI
  155. /**
  156. * QSPI fast read data
  157. */
  158. static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) {
  159. struct rt_qspi_message message;
  160. sfud_err result = SFUD_SUCCESS;
  161. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  162. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  163. struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  164. RT_ASSERT(spi);
  165. RT_ASSERT(sfud_dev);
  166. RT_ASSERT(rtt_dev);
  167. RT_ASSERT(qspi_dev);
  168. /* set message struct */
  169. message.instruction.content = qspi_read_cmd_format->instruction;
  170. message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines;
  171. message.address.content = addr;
  172. message.address.size = qspi_read_cmd_format->address_size;
  173. message.address.qspi_lines = qspi_read_cmd_format->address_lines;
  174. message.alternate_bytes.content = 0;
  175. message.alternate_bytes.size = 0;
  176. message.alternate_bytes.qspi_lines = 0;
  177. message.dummy_cycles = qspi_read_cmd_format->dummy_cycles;
  178. message.parent.send_buf = RT_NULL;
  179. message.parent.recv_buf = read_buf;
  180. message.parent.length = read_size;
  181. message.parent.cs_release = 1;
  182. message.parent.cs_take = 1;
  183. message.qspi_data_lines = qspi_read_cmd_format->data_lines;
  184. if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) {
  185. result = SFUD_ERR_TIMEOUT;
  186. }
  187. return result;
  188. }
  189. #endif
  190. static void spi_lock(const sfud_spi *spi) {
  191. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  192. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  193. RT_ASSERT(spi);
  194. RT_ASSERT(sfud_dev);
  195. RT_ASSERT(rtt_dev);
  196. rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
  197. }
  198. static void spi_unlock(const sfud_spi *spi) {
  199. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  200. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  201. RT_ASSERT(spi);
  202. RT_ASSERT(sfud_dev);
  203. RT_ASSERT(rtt_dev);
  204. rt_mutex_release(&(rtt_dev->lock));
  205. }
  206. static void retry_delay_100us(void) {
  207. /* 100 microsecond delay */
  208. rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
  209. }
  210. sfud_err sfud_spi_port_init(sfud_flash *flash) {
  211. sfud_err result = SFUD_SUCCESS;
  212. RT_ASSERT(flash);
  213. /* port SPI device interface */
  214. flash->spi.wr = spi_write_read;
  215. #ifdef SFUD_USING_QSPI
  216. flash->spi.qspi_read = qspi_read;
  217. #endif
  218. flash->spi.lock = spi_lock;
  219. flash->spi.unlock = spi_unlock;
  220. flash->spi.user_data = flash;
  221. if (RT_TICK_PER_SECOND < 1000) {
  222. LOG_W("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.", RT_TICK_PER_SECOND);
  223. }
  224. /* 100 microsecond delay */
  225. flash->retry.delay = retry_delay_100us;
  226. /* 60 seconds timeout */
  227. flash->retry.times = 60 * 10000;
  228. return result;
  229. }
  230. #ifdef RT_USING_DEVICE_OPS
  231. const static struct rt_device_ops flash_device_ops =
  232. {
  233. RT_NULL,
  234. RT_NULL,
  235. RT_NULL,
  236. rt_sfud_read,
  237. rt_sfud_write,
  238. rt_sfud_control
  239. };
  240. #endif
  241. /**
  242. * Probe SPI flash by SFUD (Serial Flash Universal Driver) driver library and though SPI device by specified configuration.
  243. *
  244. * @param spi_flash_dev_name the name which will create SPI flash device
  245. * @param spi_dev_name using SPI device name
  246. * @param spi_cfg SPI device configuration
  247. * @param qspi_cfg QSPI device configuration
  248. *
  249. * @return probed SPI flash device, probe failed will return RT_NULL
  250. */
  251. rt_spi_flash_device_t rt_sfud_flash_probe_ex(const char *spi_flash_dev_name, const char *spi_dev_name,
  252. struct rt_spi_configuration *spi_cfg, struct rt_qspi_configuration *qspi_cfg)
  253. {
  254. rt_spi_flash_device_t rtt_dev = RT_NULL;
  255. sfud_flash *sfud_dev = RT_NULL;
  256. char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
  257. extern sfud_err sfud_device_init(sfud_flash *flash);
  258. #ifdef SFUD_USING_QSPI
  259. struct rt_qspi_device *qspi_dev = RT_NULL;
  260. #endif
  261. RT_ASSERT(spi_flash_dev_name);
  262. RT_ASSERT(spi_dev_name);
  263. rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
  264. sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
  265. spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
  266. spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
  267. if (rtt_dev) {
  268. rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
  269. /* initialize lock */
  270. rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_PRIO);
  271. }
  272. if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
  273. rt_memset(sfud_dev, 0, sizeof(sfud_flash));
  274. rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
  275. rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
  276. /* make string end sign */
  277. spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
  278. spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
  279. /* SPI configure */
  280. {
  281. /* RT-Thread SPI device initialize */
  282. rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  283. if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  284. LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
  285. goto error;
  286. }
  287. sfud_dev->spi.name = spi_dev_name_bak;
  288. #ifdef SFUD_USING_QSPI
  289. /* set the qspi line number and configure the QSPI bus */
  290. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  291. qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device;
  292. qspi_cfg->qspi_dl_width = qspi_dev->config.qspi_dl_width;
  293. rt_qspi_configure(qspi_dev, qspi_cfg);
  294. }
  295. else
  296. #endif
  297. rt_spi_configure(rtt_dev->rt_spi_device, spi_cfg);
  298. }
  299. /* SFUD flash device initialize */
  300. {
  301. sfud_dev->name = spi_flash_dev_name_bak;
  302. /* accessed each other */
  303. rtt_dev->user_data = sfud_dev;
  304. rtt_dev->rt_spi_device->user_data = rtt_dev;
  305. rtt_dev->flash_device.user_data = rtt_dev;
  306. sfud_dev->user_data = rtt_dev;
  307. /* initialize SFUD device */
  308. if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
  309. LOG_E("ERROR: SPI flash probe failed by SPI device %s.", spi_dev_name);
  310. goto error;
  311. }
  312. /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
  313. rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
  314. rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
  315. rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
  316. #ifdef SFUD_USING_QSPI
  317. /* reconfigure the QSPI bus for medium size */
  318. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  319. qspi_cfg->medium_size = sfud_dev->chip.capacity;
  320. rt_qspi_configure(qspi_dev, qspi_cfg);
  321. if(qspi_dev->enter_qspi_mode != RT_NULL)
  322. qspi_dev->enter_qspi_mode(qspi_dev);
  323. /* set data lines width */
  324. sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width);
  325. }
  326. #endif /* SFUD_USING_QSPI */
  327. }
  328. /* register device */
  329. rtt_dev->flash_device.type = RT_Device_Class_Block;
  330. #ifdef RT_USING_DEVICE_OPS
  331. rtt_dev->flash_device.ops = &flash_device_ops;
  332. #else
  333. rtt_dev->flash_device.init = RT_NULL;
  334. rtt_dev->flash_device.open = RT_NULL;
  335. rtt_dev->flash_device.close = RT_NULL;
  336. rtt_dev->flash_device.read = rt_sfud_read;
  337. rtt_dev->flash_device.write = rt_sfud_write;
  338. rtt_dev->flash_device.control = rt_sfud_control;
  339. #endif
  340. rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  341. LOG_I("Probe SPI flash %s by SPI device %s success.",spi_flash_dev_name, spi_dev_name);
  342. return rtt_dev;
  343. } else {
  344. LOG_E("ERROR: Low memory.");
  345. goto error;
  346. }
  347. error:
  348. if (rtt_dev) {
  349. rt_mutex_detach(&(rtt_dev->lock));
  350. }
  351. /* may be one of objects memory was malloc success, so need free all */
  352. rt_free(rtt_dev);
  353. rt_free(sfud_dev);
  354. rt_free(spi_flash_dev_name_bak);
  355. rt_free(spi_dev_name_bak);
  356. return RT_NULL;
  357. }
  358. /**
  359. * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
  360. *
  361. * @param spi_flash_dev_name the name which will create SPI flash device
  362. * @param spi_dev_name using SPI device name
  363. *
  364. * @return probed SPI flash device, probe failed will return RT_NULL
  365. */
  366. rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name)
  367. {
  368. struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
  369. #ifndef SFUD_USING_QSPI
  370. return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, RT_NULL);
  371. #else
  372. struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG;
  373. return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, &qspi_cfg);
  374. #endif
  375. }
  376. /**
  377. * Delete SPI flash device
  378. *
  379. * @param spi_flash_dev SPI flash device
  380. *
  381. * @return the operation status, RT_EOK on successful
  382. */
  383. rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
  384. sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
  385. RT_ASSERT(spi_flash_dev);
  386. RT_ASSERT(sfud_flash_dev);
  387. rt_device_unregister(&(spi_flash_dev->flash_device));
  388. rt_mutex_detach(&(spi_flash_dev->lock));
  389. rt_free(sfud_flash_dev->spi.name);
  390. rt_free(sfud_flash_dev->name);
  391. rt_free(sfud_flash_dev);
  392. rt_free(spi_flash_dev);
  393. return RT_EOK;
  394. }
  395. sfud_flash_t rt_sfud_flash_find(const char *spi_dev_name)
  396. {
  397. rt_spi_flash_device_t rtt_dev = RT_NULL;
  398. struct rt_spi_device *rt_spi_device = RT_NULL;
  399. sfud_flash_t sfud_dev = RT_NULL;
  400. rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  401. if (rt_spi_device == RT_NULL || rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  402. LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
  403. goto __error;
  404. }
  405. rtt_dev = (rt_spi_flash_device_t) (rt_spi_device->user_data);
  406. if (rtt_dev && rtt_dev->user_data) {
  407. sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
  408. return sfud_dev;
  409. } else {
  410. LOG_E("ERROR: SFUD flash device not found!");
  411. goto __error;
  412. }
  413. __error:
  414. return RT_NULL;
  415. }
  416. sfud_flash_t rt_sfud_flash_find_by_dev_name(const char *flash_dev_name)
  417. {
  418. rt_spi_flash_device_t rtt_dev = RT_NULL;
  419. sfud_flash_t sfud_dev = RT_NULL;
  420. rtt_dev = (rt_spi_flash_device_t) rt_device_find(flash_dev_name);
  421. if (rtt_dev == RT_NULL || rtt_dev->flash_device.type != RT_Device_Class_Block) {
  422. LOG_E("ERROR: Flash device %s not found!", flash_dev_name);
  423. goto __error;
  424. }
  425. if (rtt_dev->user_data) {
  426. sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
  427. return sfud_dev;
  428. } else {
  429. LOG_E("ERROR: SFUD flash device not found!");
  430. goto __error;
  431. }
  432. __error:
  433. return RT_NULL;
  434. }
  435. #if defined(RT_USING_FINSH)
  436. #include <finsh.h>
  437. static void sf(uint8_t argc, char **argv) {
  438. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  439. #define HEXDUMP_WIDTH 16
  440. #define CMD_PROBE_INDEX 0
  441. #define CMD_READ_INDEX 1
  442. #define CMD_WRITE_INDEX 2
  443. #define CMD_ERASE_INDEX 3
  444. #define CMD_RW_STATUS_INDEX 4
  445. #define CMD_BENCH_INDEX 5
  446. sfud_err result = SFUD_SUCCESS;
  447. static const sfud_flash *sfud_dev = NULL;
  448. static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
  449. size_t i = 0, j = 0;
  450. const char* sf_help_info[] = {
  451. [CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
  452. [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
  453. [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
  454. [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
  455. [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
  456. [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
  457. };
  458. if (argc < 2) {
  459. rt_kprintf("Usage:\n");
  460. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  461. rt_kprintf("%s\n", sf_help_info[i]);
  462. }
  463. rt_kprintf("\n");
  464. } else {
  465. const char *operator = argv[1];
  466. uint32_t addr, size;
  467. if (!strcmp(operator, "probe")) {
  468. if (argc < 3) {
  469. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
  470. } else {
  471. char *spi_dev_name = argv[2];
  472. rtt_dev_bak = rtt_dev;
  473. /* delete the old SPI flash device */
  474. if(rtt_dev_bak) {
  475. rt_sfud_flash_delete(rtt_dev_bak);
  476. }
  477. rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
  478. if (!rtt_dev) {
  479. return;
  480. }
  481. sfud_dev = (sfud_flash_t)rtt_dev->user_data;
  482. if (sfud_dev->chip.capacity < 1024 * 1024) {
  483. rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
  484. } else {
  485. rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
  486. sfud_dev->name);
  487. }
  488. }
  489. } else {
  490. if (!sfud_dev) {
  491. rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
  492. return;
  493. }
  494. if (!rt_strcmp(operator, "read")) {
  495. if (argc < 4) {
  496. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
  497. return;
  498. } else {
  499. addr = strtol(argv[2], NULL, 0);
  500. size = strtol(argv[3], NULL, 0);
  501. uint8_t *data = rt_malloc(size);
  502. if (data) {
  503. result = sfud_read(sfud_dev, addr, size, data);
  504. if (result == SFUD_SUCCESS) {
  505. rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
  506. sfud_dev->name, addr, size);
  507. rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
  508. for (i = 0; i < size; i += HEXDUMP_WIDTH)
  509. {
  510. rt_kprintf("[%08X] ", addr + i);
  511. /* dump hex */
  512. for (j = 0; j < HEXDUMP_WIDTH; j++) {
  513. if (i + j < size) {
  514. rt_kprintf("%02X ", data[i + j]);
  515. } else {
  516. rt_kprintf(" ");
  517. }
  518. }
  519. /* dump char for hex */
  520. for (j = 0; j < HEXDUMP_WIDTH; j++) {
  521. if (i + j < size) {
  522. rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
  523. }
  524. }
  525. rt_kprintf("\n");
  526. }
  527. rt_kprintf("\n");
  528. }
  529. rt_free(data);
  530. } else {
  531. rt_kprintf("Low memory!\n");
  532. }
  533. }
  534. } else if (!rt_strcmp(operator, "write")) {
  535. if (argc < 4) {
  536. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
  537. return;
  538. } else {
  539. addr = strtol(argv[2], NULL, 0);
  540. size = argc - 3;
  541. uint8_t *data = rt_malloc(size);
  542. if (data) {
  543. for (i = 0; i < size; i++) {
  544. data[i] = strtol(argv[3 + i], NULL, 0);
  545. }
  546. result = sfud_write(sfud_dev, addr, size, data);
  547. if (result == SFUD_SUCCESS) {
  548. rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
  549. sfud_dev->name, addr, size);
  550. rt_kprintf("Write data: ");
  551. for (i = 0; i < size; i++) {
  552. rt_kprintf("%d ", data[i]);
  553. }
  554. rt_kprintf(".\n");
  555. }
  556. rt_free(data);
  557. } else {
  558. rt_kprintf("Low memory!\n");
  559. }
  560. }
  561. } else if (!rt_strcmp(operator, "erase")) {
  562. if (argc < 4) {
  563. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
  564. return;
  565. } else {
  566. addr = strtol(argv[2], NULL, 0);
  567. size = strtol(argv[3], NULL, 0);
  568. result = sfud_erase(sfud_dev, addr, size);
  569. if (result == SFUD_SUCCESS) {
  570. rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
  571. addr, size);
  572. }
  573. }
  574. } else if (!rt_strcmp(operator, "status")) {
  575. if (argc < 3) {
  576. uint8_t status;
  577. result = sfud_read_status(sfud_dev, &status);
  578. if (result == SFUD_SUCCESS) {
  579. rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
  580. }
  581. } else if (argc == 4) {
  582. bool is_volatile = strtol(argv[2], NULL, 0);
  583. uint8_t status = strtol(argv[3], NULL, 0);
  584. result = sfud_write_status(sfud_dev, is_volatile, status);
  585. if (result == SFUD_SUCCESS) {
  586. rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
  587. }
  588. } else {
  589. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
  590. return;
  591. }
  592. } else if (!rt_strcmp(operator, "bench")) {
  593. if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
  594. rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
  595. return;
  596. }
  597. /* full chip benchmark test */
  598. addr = 0;
  599. size = sfud_dev->chip.capacity;
  600. uint32_t start_time, time_cast;
  601. size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = SFUD_WRITE_MAX_PAGE_SIZE, cur_op_size;
  602. uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
  603. if (write_data && read_data) {
  604. for (i = 0; i < write_size; i ++) {
  605. write_data[i] = i & 0xFF;
  606. }
  607. /* benchmark testing */
  608. rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  609. start_time = rt_tick_get();
  610. result = sfud_erase(sfud_dev, addr, size);
  611. if (result == SFUD_SUCCESS) {
  612. time_cast = rt_tick_get() - start_time;
  613. rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  614. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  615. } else {
  616. rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
  617. }
  618. /* write test */
  619. rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  620. start_time = rt_tick_get();
  621. for (i = 0; i < size; i += write_size) {
  622. if (i + write_size <= size) {
  623. cur_op_size = write_size;
  624. } else {
  625. cur_op_size = size - i;
  626. }
  627. result = sfud_write(sfud_dev, addr + i, cur_op_size, write_data);
  628. if (result != SFUD_SUCCESS) {
  629. rt_kprintf("Writing %s failed, already wr for %lu bytes, write %d each time\n", sfud_dev->name, i, write_size);
  630. break;
  631. }
  632. }
  633. if (result == SFUD_SUCCESS) {
  634. time_cast = rt_tick_get() - start_time;
  635. rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  636. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  637. } else {
  638. rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
  639. }
  640. /* read test */
  641. rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  642. start_time = rt_tick_get();
  643. for (i = 0; i < size; i += read_size) {
  644. if (i + read_size <= size) {
  645. cur_op_size = read_size;
  646. } else {
  647. cur_op_size = size - i;
  648. }
  649. result = sfud_read(sfud_dev, addr + i, cur_op_size, read_data);
  650. /* data check */
  651. if (memcmp(write_data, read_data, cur_op_size))
  652. {
  653. rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
  654. result = SFUD_ERR_READ;
  655. }
  656. if (result != SFUD_SUCCESS) {
  657. rt_kprintf("Read %s failed, already rd for %lu bytes, read %d each time\n", sfud_dev->name, i, read_size);
  658. break;
  659. }
  660. }
  661. if (result == SFUD_SUCCESS) {
  662. time_cast = rt_tick_get() - start_time;
  663. rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  664. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  665. } else {
  666. rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
  667. }
  668. } else {
  669. rt_kprintf("Low memory!\n");
  670. }
  671. rt_free(write_data);
  672. rt_free(read_data);
  673. } else {
  674. rt_kprintf("Usage:\n");
  675. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  676. rt_kprintf("%s\n", sf_help_info[i]);
  677. }
  678. rt_kprintf("\n");
  679. return;
  680. }
  681. if (result != SFUD_SUCCESS) {
  682. rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
  683. }
  684. }
  685. }
  686. }
  687. MSH_CMD_EXPORT(sf, SPI Flash operate.);
  688. #endif /* defined(RT_USING_FINSH) */
  689. #endif /* RT_USING_SFUD */