drv_emac.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-05-16 shelton first version
  9. * 2022-07-11 shelton optimize code to improve network throughput
  10. * performance
  11. * 2022-10-15 shelton optimize code
  12. */
  13. #include "drv_emac.h"
  14. #include <netif/ethernetif.h>
  15. #include <lwipopts.h>
  16. /* debug option */
  17. //#define EMAC_RX_DUMP
  18. //#define EMAC_TX_DUMP
  19. //#define DRV_DEBUG
  20. #define LOG_TAG "drv.emac"
  21. #include <drv_log.h>
  22. #define CRYSTAL_ON_PHY 0
  23. /* emac memory buffer configuration */
  24. #define EMAC_NUM_RX_BUF 5 /* rx (5 * 1500) */
  25. #define EMAC_NUM_TX_BUF 5 /* tx (5 * 1500) */
  26. #define MAX_ADDR_LEN 6
  27. struct rt_at32_emac
  28. {
  29. /* inherit from ethernet device */
  30. struct eth_device parent;
  31. #ifndef PHY_USING_INTERRUPT_MODE
  32. rt_timer_t poll_link_timer;
  33. #endif
  34. /* interface address info, hw address */
  35. rt_uint8_t dev_addr[MAX_ADDR_LEN];
  36. /* emac_speed */
  37. emac_speed_type emac_speed;
  38. /* emac_duplex_mode */
  39. emac_duplex_type emac_mode;
  40. };
  41. static emac_dma_desc_type *dma_rx_dscr_tab, *dma_tx_dscr_tab;
  42. extern emac_dma_desc_type *dma_rx_desc_to_get, *dma_tx_desc_to_set;
  43. static rt_uint8_t *rx_buff, *tx_buff;
  44. static struct rt_at32_emac at32_emac_device;
  45. static uint8_t phy_addr = 0xFF;
  46. #if defined(EMAC_RX_DUMP) || defined(EMAC_TX_DUMP)
  47. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  48. static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
  49. {
  50. unsigned char *buf = (unsigned char *)ptr;
  51. int i, j;
  52. for (i = 0; i < buflen; i += 16)
  53. {
  54. rt_kprintf("%08X: ", i);
  55. for (j = 0; j < 16; j++)
  56. if (i + j < buflen)
  57. rt_kprintf("%02X ", buf[i + j]);
  58. else
  59. rt_kprintf(" ");
  60. rt_kprintf(" ");
  61. for (j = 0; j < 16; j++)
  62. if (i + j < buflen)
  63. rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
  64. rt_kprintf("\n");
  65. }
  66. }
  67. #endif
  68. /**
  69. * @brief phy reset
  70. */
  71. static void phy_reset(void)
  72. {
  73. gpio_init_type gpio_init_struct;
  74. #if defined (SOC_SERIES_AT32F437)
  75. crm_periph_clock_enable(CRM_GPIOE_PERIPH_CLOCK, TRUE);
  76. crm_periph_clock_enable(CRM_GPIOG_PERIPH_CLOCK, TRUE);
  77. gpio_default_para_init(&gpio_init_struct);
  78. gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  79. gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
  80. gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  81. gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
  82. gpio_init_struct.gpio_pins = GPIO_PINS_15;
  83. gpio_init(GPIOE, &gpio_init_struct);
  84. gpio_init_struct.gpio_pins = GPIO_PINS_15;
  85. gpio_init(GPIOG, &gpio_init_struct);
  86. gpio_bits_reset(GPIOE, GPIO_PINS_15);
  87. gpio_bits_reset(GPIOG, GPIO_PINS_15);
  88. rt_thread_mdelay(2);
  89. gpio_bits_set(GPIOE, GPIO_PINS_15);
  90. #endif
  91. #if defined (SOC_SERIES_AT32F407)
  92. crm_periph_clock_enable(CRM_GPIOC_PERIPH_CLOCK, TRUE);
  93. gpio_default_para_init(&gpio_init_struct);
  94. gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  95. gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
  96. gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  97. gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
  98. gpio_init_struct.gpio_pins = GPIO_PINS_8;
  99. gpio_init(GPIOC, &gpio_init_struct);
  100. gpio_bits_reset(GPIOC, GPIO_PINS_8);
  101. rt_thread_mdelay(2);
  102. gpio_bits_set(GPIOC, GPIO_PINS_8);
  103. #endif
  104. rt_thread_mdelay(2000);
  105. }
  106. /**
  107. * @brief phy clock config
  108. */
  109. static void phy_clock_config(void)
  110. {
  111. #if (CRYSTAL_ON_PHY == 0)
  112. /* if CRYSTAL_NO_PHY, output clock with pa8 of mcu */
  113. gpio_init_type gpio_init_struct;
  114. crm_periph_clock_enable(CRM_GPIOA_PERIPH_CLOCK, TRUE);
  115. gpio_default_para_init(&gpio_init_struct);
  116. gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  117. gpio_init_struct.gpio_mode = GPIO_MODE_MUX;
  118. gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  119. gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
  120. gpio_init_struct.gpio_pins = GPIO_PINS_8;
  121. gpio_init(GPIOA, &gpio_init_struct);
  122. /* 9162 clkout output 25 mhz */
  123. /* 83848 clkout output 50 mhz */
  124. #if defined (SOC_SERIES_AT32F407)
  125. crm_clock_out_set(CRM_CLKOUT_SCLK);
  126. #if defined (PHY_USING_DM9162)
  127. crm_clkout_div_set(CRM_CLKOUT_DIV_8);
  128. #elif defined (PHY_USING_DP83848)
  129. crm_clkout_div_set(CRM_CLKOUT_DIV_4);
  130. #endif
  131. #endif
  132. #if defined (SOC_SERIES_AT32F437)
  133. crm_clock_out1_set(CRM_CLKOUT1_PLL);
  134. #if defined (PHY_USING_DM9162)
  135. crm_clkout_div_set(CRM_CLKOUT_INDEX_1, CRM_CLKOUT_DIV1_5, CRM_CLKOUT_DIV2_2);
  136. #elif defined (PHY_USING_DP83848)
  137. crm_clkout_div_set(CRM_CLKOUT_INDEX_1, CRM_CLKOUT_DIV1_5, CRM_CLKOUT_DIV2_1);
  138. #endif
  139. #endif
  140. #endif
  141. }
  142. /**
  143. * @brief reset phy register
  144. */
  145. static error_status emac_phy_register_reset(void)
  146. {
  147. uint16_t data = 0;
  148. uint32_t timeout = 0;
  149. uint32_t i = 0;
  150. if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, PHY_RESET_BIT) == ERROR)
  151. {
  152. return ERROR;
  153. }
  154. for(i = 0; i < 0x000FFFFF; i++);
  155. do
  156. {
  157. timeout++;
  158. if(emac_phy_register_read(phy_addr, PHY_CONTROL_REG, &data) == ERROR)
  159. {
  160. return ERROR;
  161. }
  162. } while((data & PHY_RESET_BIT) && (timeout < PHY_TIMEOUT));
  163. for(i = 0; i < 0x00FFFFF; i++);
  164. if(timeout == PHY_TIMEOUT)
  165. {
  166. return ERROR;
  167. }
  168. return SUCCESS;
  169. }
  170. /**
  171. * @brief set mac speed related parameters
  172. */
  173. static error_status emac_speed_config(emac_auto_negotiation_type nego, emac_duplex_type mode, emac_speed_type speed)
  174. {
  175. uint16_t data = 0;
  176. uint32_t timeout = 0;
  177. if(nego == EMAC_AUTO_NEGOTIATION_ON)
  178. {
  179. do
  180. {
  181. timeout++;
  182. if(emac_phy_register_read(phy_addr, PHY_STATUS_REG, &data) == ERROR)
  183. {
  184. return ERROR;
  185. }
  186. } while(!(data & PHY_LINKED_STATUS_BIT) && (timeout < PHY_TIMEOUT));
  187. if(timeout == PHY_TIMEOUT)
  188. {
  189. return ERROR;
  190. }
  191. timeout = 0;
  192. if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, PHY_AUTO_NEGOTIATION_BIT) == ERROR)
  193. {
  194. return ERROR;
  195. }
  196. do
  197. {
  198. timeout++;
  199. if(emac_phy_register_read(phy_addr, PHY_STATUS_REG, &data) == ERROR)
  200. {
  201. return ERROR;
  202. }
  203. } while(!(data & PHY_NEGO_COMPLETE_BIT) && (timeout < PHY_TIMEOUT));
  204. if(timeout == PHY_TIMEOUT)
  205. {
  206. return ERROR;
  207. }
  208. if(emac_phy_register_read(phy_addr, PHY_SPECIFIED_CS_REG, &data) == ERROR)
  209. {
  210. return ERROR;
  211. }
  212. #ifdef PHY_USING_DM9162
  213. if(data & PHY_FULL_DUPLEX_100MBPS_BIT)
  214. {
  215. emac_fast_speed_set(EMAC_SPEED_100MBPS);
  216. emac_duplex_mode_set(EMAC_FULL_DUPLEX);
  217. }
  218. else if(data & PHY_HALF_DUPLEX_100MBPS_BIT)
  219. {
  220. emac_fast_speed_set(EMAC_SPEED_100MBPS);
  221. emac_duplex_mode_set(EMAC_HALF_DUPLEX);
  222. }
  223. else if(data & PHY_FULL_DUPLEX_10MBPS_BIT)
  224. {
  225. emac_fast_speed_set(EMAC_SPEED_10MBPS);
  226. emac_duplex_mode_set(EMAC_FULL_DUPLEX);
  227. }
  228. else if(data & PHY_HALF_DUPLEX_10MBPS_BIT)
  229. {
  230. emac_fast_speed_set(EMAC_SPEED_10MBPS);
  231. emac_duplex_mode_set(EMAC_HALF_DUPLEX);
  232. }
  233. #endif
  234. #ifdef PHY_USING_DP83848
  235. if(data & PHY_DUPLEX_MODE)
  236. {
  237. emac_duplex_mode_set(EMAC_FULL_DUPLEX);
  238. }
  239. else
  240. {
  241. emac_duplex_mode_set(EMAC_HALF_DUPLEX);
  242. }
  243. if(data & PHY_SPEED_MODE)
  244. {
  245. emac_fast_speed_set(EMAC_SPEED_10MBPS);
  246. }
  247. else
  248. {
  249. emac_fast_speed_set(EMAC_SPEED_100MBPS);
  250. }
  251. #endif
  252. }
  253. else
  254. {
  255. if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, (uint16_t)((mode << 8) | (speed << 13))) == ERROR)
  256. {
  257. return ERROR;
  258. }
  259. if(speed == EMAC_SPEED_100MBPS)
  260. {
  261. emac_fast_speed_set(EMAC_SPEED_100MBPS);
  262. }
  263. else
  264. {
  265. emac_fast_speed_set(EMAC_SPEED_10MBPS);
  266. }
  267. if(mode == EMAC_FULL_DUPLEX)
  268. {
  269. emac_duplex_mode_set(EMAC_FULL_DUPLEX);
  270. }
  271. else
  272. {
  273. emac_duplex_mode_set(EMAC_HALF_DUPLEX);
  274. }
  275. }
  276. return SUCCESS;
  277. }
  278. /**
  279. * @brief initialize emac phy
  280. */
  281. static error_status emac_phy_init(emac_control_config_type *control_para)
  282. {
  283. emac_clock_range_set();
  284. if(emac_phy_register_reset() == ERROR)
  285. {
  286. return ERROR;
  287. }
  288. if(emac_speed_config(control_para->auto_nego, control_para->duplex_mode, control_para->fast_ethernet_speed) == ERROR)
  289. {
  290. return ERROR;
  291. }
  292. emac_control_config(control_para);
  293. return SUCCESS;
  294. }
  295. /**
  296. * @brief emac initialization function
  297. */
  298. static rt_err_t rt_at32_emac_init(rt_device_t dev)
  299. {
  300. emac_control_config_type mac_control_para;
  301. emac_dma_config_type dma_control_para;
  302. /* check till phy detected */
  303. while(phy_addr == 0xFF)
  304. {
  305. rt_thread_mdelay(1000);
  306. }
  307. /* emac reset */
  308. emac_reset();
  309. /* software reset emac dma */
  310. emac_dma_software_reset_set();
  311. while(emac_dma_software_reset_get() == SET);
  312. emac_control_para_init(&mac_control_para);
  313. mac_control_para.auto_nego = EMAC_AUTO_NEGOTIATION_ON;
  314. if(emac_phy_init(&mac_control_para) == ERROR)
  315. {
  316. LOG_E("emac hardware init failed");
  317. return -RT_ERROR;
  318. }
  319. else
  320. {
  321. LOG_D("emac hardware init success");
  322. }
  323. emac_transmit_flow_control_enable(TRUE);
  324. emac_zero_quanta_pause_disable(TRUE);
  325. /* set mac address */
  326. emac_local_address_set(at32_emac_device.dev_addr);
  327. /* set emac dma rx link list */
  328. emac_dma_descriptor_list_address_set(EMAC_DMA_RECEIVE, dma_rx_dscr_tab, rx_buff, EMAC_NUM_RX_BUF);
  329. /* set emac dma tx link list */
  330. emac_dma_descriptor_list_address_set(EMAC_DMA_TRANSMIT, dma_tx_dscr_tab, tx_buff, EMAC_NUM_TX_BUF);
  331. emac_dma_para_init(&dma_control_para);
  332. dma_control_para.rsf_enable = TRUE;
  333. dma_control_para.tsf_enable = TRUE;
  334. dma_control_para.osf_enable = TRUE;
  335. dma_control_para.aab_enable = TRUE;
  336. dma_control_para.usp_enable = TRUE;
  337. dma_control_para.fb_enable = TRUE;
  338. dma_control_para.flush_rx_disable = TRUE;
  339. dma_control_para.rx_dma_pal = EMAC_DMA_PBL_32;
  340. dma_control_para.tx_dma_pal = EMAC_DMA_PBL_32;
  341. dma_control_para.priority_ratio = EMAC_DMA_2_RX_1_TX;
  342. emac_dma_config(&dma_control_para);
  343. /* emac interrupt init */
  344. emac_dma_interrupt_enable(EMAC_DMA_INTERRUPT_NORMAL_SUMMARY, TRUE);
  345. emac_dma_interrupt_enable(EMAC_DMA_INTERRUPT_RX, TRUE);
  346. nvic_irq_enable(EMAC_IRQn, 0x07, 0);
  347. /* enable emac */
  348. emac_start();
  349. return RT_EOK;
  350. }
  351. static rt_err_t rt_at32_emac_open(rt_device_t dev, rt_uint16_t oflag)
  352. {
  353. LOG_D("emac open");
  354. return RT_EOK;
  355. }
  356. static rt_err_t rt_at32_emac_close(rt_device_t dev)
  357. {
  358. LOG_D("emac close");
  359. return RT_EOK;
  360. }
  361. static rt_ssize_t rt_at32_emac_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  362. {
  363. LOG_D("emac read");
  364. rt_set_errno(-RT_ENOSYS);
  365. return 0;
  366. }
  367. static rt_ssize_t rt_at32_emac_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  368. {
  369. LOG_D("emac write");
  370. rt_set_errno(-RT_ENOSYS);
  371. return 0;
  372. }
  373. static rt_err_t rt_at32_emac_control(rt_device_t dev, int cmd, void *args)
  374. {
  375. switch (cmd)
  376. {
  377. case NIOCTL_GADDR:
  378. /* get mac address */
  379. if (args)
  380. {
  381. SMEMCPY(args, at32_emac_device.dev_addr, 6);
  382. }
  383. else
  384. {
  385. return -RT_ERROR;
  386. }
  387. break;
  388. default :
  389. break;
  390. }
  391. return RT_EOK;
  392. }
  393. /**
  394. * @brief transmit data
  395. */
  396. rt_err_t rt_at32_emac_tx(rt_device_t dev, struct pbuf *p)
  397. {
  398. rt_err_t ret = -RT_ERROR;
  399. struct pbuf *q;
  400. rt_uint32_t offset;
  401. if ((dma_tx_desc_to_set->status & EMAC_DMATXDESC_OWN) != RESET)
  402. {
  403. LOG_D("buffer not valid");
  404. ret = ERR_USE;
  405. goto __error;
  406. }
  407. offset = 0;
  408. for (q = p; q != NULL; q = q->next)
  409. {
  410. uint8_t *buffer;
  411. /* copy the frame to be sent into memory pointed by the current ethernet dma tx descriptor */
  412. buffer = (uint8_t*)((dma_tx_desc_to_set->buf1addr) + offset);
  413. SMEMCPY(buffer, q->payload, q->len);
  414. offset += q->len;
  415. }
  416. #ifdef EMAC_TX_DUMP
  417. dump_hex(p->payload, p->tot_len);
  418. #endif
  419. /* prepare transmit descriptors to give to dma */
  420. LOG_D("transmit frame length :%d", p->tot_len);
  421. /* setting the frame length: bits[12:0] */
  422. dma_tx_desc_to_set->controlsize = (p->tot_len & EMAC_DMATXDESC_TBS1);
  423. /* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
  424. dma_tx_desc_to_set->status |= EMAC_DMATXDESC_LS | EMAC_DMATXDESC_FS;
  425. /* enable tx completion interrupt */
  426. dma_tx_desc_to_set->status |= EMAC_DMATXDESC_IC;
  427. /* set own bit of the tx descriptor status: gives the buffer back to ethernet dma */
  428. dma_tx_desc_to_set->status |= EMAC_DMATXDESC_OWN;
  429. /* When Tx Buffer unavailable flag is set: clear it and resume transmission */
  430. if(emac_dma_flag_get(EMAC_DMA_TBU_FLAG) != RESET)
  431. {
  432. emac_dma_flag_clear(EMAC_DMA_TBU_FLAG);
  433. emac_dma_poll_demand_set(EMAC_DMA_TRANSMIT, 0);
  434. }
  435. /* selects the next dma tx descriptor list for next buffer to send */
  436. dma_tx_desc_to_set = (emac_dma_desc_type*) (dma_tx_desc_to_set->buf2nextdescaddr);
  437. return ERR_OK;
  438. __error:
  439. if (emac_dma_flag_get(EMAC_DMA_UNF_FLAG) != (uint32_t)RESET)
  440. {
  441. /* clear underflow ethernet dma flag */
  442. emac_dma_flag_clear(EMAC_DMA_UNF_FLAG);
  443. /* resume dma transmission*/
  444. EMAC_DMA->tpd = 0;
  445. }
  446. return ret;
  447. }
  448. /**
  449. * @brief receive data
  450. */
  451. struct pbuf *rt_at32_emac_rx(rt_device_t dev)
  452. {
  453. struct pbuf *p = NULL;
  454. struct pbuf *q = NULL;
  455. rt_uint32_t offset = 0;
  456. uint16_t len = 0;
  457. uint8_t *buffer;
  458. /* get received frame */
  459. len = emac_received_packet_size_get();
  460. if(len > 0)
  461. {
  462. LOG_D("receive frame len : %d", len);
  463. /* we allocate a pbuf chain of pbufs from the lwip buffer pool */
  464. p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
  465. if(p != NULL)
  466. {
  467. for (q = p; q != RT_NULL; q= q->next)
  468. {
  469. /* get rx buffer */
  470. buffer = (uint8_t *)(dma_rx_desc_to_get->buf1addr);
  471. #ifdef EMAC_RX_DUMP
  472. dump_hex(buffer, len);
  473. #endif
  474. /* copy the received frame into buffer from memory pointed by the current ethernet dma rx descriptor */
  475. SMEMCPY(q->payload, (buffer + offset), q->len);
  476. offset += q->len;
  477. }
  478. }
  479. }
  480. else
  481. {
  482. return p;
  483. }
  484. /* release descriptors to dma */
  485. dma_rx_desc_to_get->status |= EMAC_DMARXDESC_OWN;
  486. /* when rx buffer unavailable flag is set: clear it and resume reception */
  487. if(emac_dma_flag_get(EMAC_DMA_RBU_FLAG) != RESET)
  488. {
  489. /* clear rbu ethernet dma flag */
  490. emac_dma_flag_clear(EMAC_DMA_RBU_FLAG);
  491. /* resume dma reception */
  492. emac_dma_poll_demand_set(EMAC_DMA_RECEIVE, 0);
  493. }
  494. /* update the ethernet dma global rx descriptor with next rx decriptor */
  495. /* chained mode */
  496. if((dma_rx_desc_to_get->controlsize & EMAC_DMARXDESC_RCH) != RESET)
  497. {
  498. /* selects the next dma rx descriptor list for next buffer to read */
  499. dma_rx_desc_to_get = (emac_dma_desc_type*) (dma_rx_desc_to_get->buf2nextdescaddr);
  500. }
  501. /* ring mode */
  502. else
  503. {
  504. if((dma_rx_desc_to_get->controlsize & EMAC_DMARXDESC_RER) != RESET)
  505. {
  506. /* selects the first dma rx descriptor for next buffer to read: last rx descriptor was used */
  507. dma_rx_desc_to_get = (emac_dma_desc_type*) (EMAC_DMA->rdladdr);
  508. }
  509. else
  510. {
  511. /* selects the next dma rx descriptor list for next buffer to read */
  512. dma_rx_desc_to_get = (emac_dma_desc_type*) ((uint32_t)dma_rx_desc_to_get + 0x10 + ((EMAC_DMA->bm & 0x0000007C) >> 2));
  513. }
  514. }
  515. return p;
  516. }
  517. void EMAC_IRQHandler(void)
  518. {
  519. /* enter interrupt */
  520. rt_interrupt_enter();
  521. /* packet receiption */
  522. if (emac_dma_flag_get(EMAC_DMA_RI_FLAG) == SET)
  523. {
  524. /* a frame has been received */
  525. eth_device_ready(&(at32_emac_device.parent));
  526. emac_dma_flag_clear(EMAC_DMA_RI_FLAG);
  527. }
  528. /* packet transmission */
  529. if (emac_dma_flag_get(EMAC_DMA_TI_FLAG) == SET)
  530. {
  531. emac_dma_flag_clear(EMAC_DMA_TI_FLAG);
  532. }
  533. /* clear normal interrupt */
  534. emac_dma_flag_clear(EMAC_DMA_NIS_FLAG);
  535. /* clear dma error */
  536. if(emac_dma_flag_get(EMAC_DMA_AIS_FLAG) != RESET)
  537. {
  538. if(emac_dma_flag_get(EMAC_DMA_RBU_FLAG) != RESET)
  539. {
  540. emac_dma_flag_clear(EMAC_DMA_RBU_FLAG);
  541. }
  542. if(emac_dma_flag_get(EMAC_DMA_OVF_FLAG) != RESET)
  543. {
  544. emac_dma_flag_clear(EMAC_DMA_OVF_FLAG);
  545. }
  546. emac_dma_flag_clear(EMAC_DMA_AIS_FLAG);
  547. }
  548. /* leave interrupt */
  549. rt_interrupt_leave();
  550. }
  551. enum {
  552. PHY_LINK = (1 << 0),
  553. PHY_10M = (1 << 1),
  554. PHY_FULLDUPLEX = (1 << 2),
  555. };
  556. static void phy_linkchange()
  557. {
  558. static rt_uint8_t phy_speed = 0;
  559. rt_uint8_t phy_speed_new = 0;
  560. rt_uint16_t status;
  561. emac_phy_register_read(phy_addr, PHY_BASIC_STATUS_REG, (uint16_t *)&status);
  562. LOG_D("phy basic status reg is 0x%X", status);
  563. if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK))
  564. {
  565. rt_uint16_t SR = 0;
  566. phy_speed_new |= PHY_LINK;
  567. emac_phy_register_read(phy_addr, PHY_SPECIFIED_CS_REG, (uint16_t *)&SR);
  568. LOG_D("phy control status reg is 0x%X", SR);
  569. if (SR & (PHY_SPEED_MODE))
  570. {
  571. phy_speed_new |= PHY_10M;
  572. }
  573. if (SR & (PHY_DUPLEX_MODE))
  574. {
  575. phy_speed_new |= PHY_FULLDUPLEX;
  576. }
  577. }
  578. if (phy_speed != phy_speed_new)
  579. {
  580. phy_speed = phy_speed_new;
  581. if (phy_speed & PHY_LINK)
  582. {
  583. LOG_D("link up");
  584. if (phy_speed & PHY_10M)
  585. {
  586. LOG_D("10Mbps");
  587. at32_emac_device.emac_speed = EMAC_SPEED_10MBPS;
  588. }
  589. else
  590. {
  591. at32_emac_device.emac_speed = EMAC_SPEED_100MBPS;
  592. LOG_D("100Mbps");
  593. }
  594. if (phy_speed & PHY_FULLDUPLEX)
  595. {
  596. LOG_D("full-duplex");
  597. at32_emac_device.emac_mode = EMAC_FULL_DUPLEX;
  598. }
  599. else
  600. {
  601. LOG_D("half-duplex");
  602. at32_emac_device.emac_mode = EMAC_HALF_DUPLEX;
  603. }
  604. /* send link up. */
  605. eth_device_linkchange(&at32_emac_device.parent, RT_TRUE);
  606. }
  607. else
  608. {
  609. LOG_I("link down");
  610. eth_device_linkchange(&at32_emac_device.parent, RT_FALSE);
  611. }
  612. }
  613. }
  614. #ifdef PHY_USING_INTERRUPT_MODE
  615. static void emac_phy_isr(void *args)
  616. {
  617. rt_uint32_t status = 0;
  618. emac_phy_register_read(phy_addr, PHY_INTERRUPT_FLAG_REG, (uint16_t *)&status);
  619. LOG_D("phy interrupt status reg is 0x%X", status);
  620. phy_linkchange();
  621. }
  622. #endif /* PHY_USING_INTERRUPT_MODE */
  623. static void phy_monitor_thread_entry(void *parameter)
  624. {
  625. uint8_t detected_count = 0;
  626. while(phy_addr == 0xFF)
  627. {
  628. /* phy search */
  629. rt_uint32_t i, temp;
  630. for (i = 0; i <= 0x1F; i++)
  631. {
  632. emac_phy_register_read(i, PHY_BASIC_STATUS_REG, (uint16_t *)&temp);
  633. if (temp != 0xFFFF && temp != 0x00)
  634. {
  635. phy_addr = i;
  636. break;
  637. }
  638. }
  639. detected_count++;
  640. rt_thread_mdelay(1000);
  641. if (detected_count > 10)
  642. {
  643. LOG_E("No PHY device was detected, please check hardware!");
  644. }
  645. }
  646. LOG_D("Found a phy, address:0x%02X", phy_addr);
  647. /* reset phy */
  648. LOG_D("RESET PHY!");
  649. emac_phy_register_write(phy_addr, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK);
  650. rt_thread_mdelay(2000);
  651. emac_phy_register_write(phy_addr, PHY_BASIC_CONTROL_REG, PHY_AUTO_NEGOTIATION_MASK);
  652. phy_linkchange();
  653. #ifdef PHY_USING_INTERRUPT_MODE
  654. /* configuration intterrupt pin */
  655. rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
  656. rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, emac_phy_isr, (void *)"callbackargs");
  657. rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE);
  658. /* enable phy interrupt */
  659. emac_phy_register_write(phy_addr, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK);
  660. #if defined(PHY_INTERRUPT_CTRL_REG)
  661. emac_phy_register_write(phy_addr, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN);
  662. #endif
  663. #else /* PHY_USING_INTERRUPT_MODE */
  664. at32_emac_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
  665. NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
  666. if (!at32_emac_device.poll_link_timer || rt_timer_start(at32_emac_device.poll_link_timer) != RT_EOK)
  667. {
  668. LOG_E("Start link change detection timer failed");
  669. }
  670. #endif /* PHY_USING_INTERRUPT_MODE */
  671. }
  672. /* Register the EMAC device */
  673. static int rt_hw_at32_emac_init(void)
  674. {
  675. rt_err_t state = RT_EOK;
  676. /* Prepare receive and send buffers */
  677. rx_buff = (rt_uint8_t *)rt_calloc(EMAC_NUM_RX_BUF, EMAC_MAX_PACKET_LENGTH);
  678. if (rx_buff == RT_NULL)
  679. {
  680. LOG_E("No memory");
  681. state = -RT_ENOMEM;
  682. goto __exit;
  683. }
  684. tx_buff = (rt_uint8_t *)rt_calloc(EMAC_NUM_TX_BUF, EMAC_MAX_PACKET_LENGTH);
  685. if (tx_buff == RT_NULL)
  686. {
  687. LOG_E("No memory");
  688. state = -RT_ENOMEM;
  689. goto __exit;
  690. }
  691. dma_rx_dscr_tab = (emac_dma_desc_type *)rt_calloc(EMAC_NUM_RX_BUF, sizeof(emac_dma_desc_type));
  692. if (dma_rx_dscr_tab == RT_NULL)
  693. {
  694. LOG_E("No memory");
  695. state = -RT_ENOMEM;
  696. goto __exit;
  697. }
  698. dma_tx_dscr_tab = (emac_dma_desc_type *)rt_calloc(EMAC_NUM_TX_BUF, sizeof(emac_dma_desc_type));
  699. if (dma_tx_dscr_tab == RT_NULL)
  700. {
  701. LOG_E("No memory");
  702. state = -RT_ENOMEM;
  703. goto __exit;
  704. }
  705. /* phy clock */
  706. phy_clock_config();
  707. /* enable periph clock */
  708. crm_periph_clock_enable(CRM_EMAC_PERIPH_CLOCK, TRUE);
  709. crm_periph_clock_enable(CRM_EMACTX_PERIPH_CLOCK, TRUE);
  710. crm_periph_clock_enable(CRM_EMACRX_PERIPH_CLOCK, TRUE);
  711. /* interface mode */
  712. #if defined (SOC_SERIES_AT32F407)
  713. gpio_pin_remap_config(MII_RMII_SEL_GMUX, TRUE);
  714. #endif
  715. #if defined (SOC_SERIES_AT32F437)
  716. scfg_emac_interface_set(SCFG_EMAC_SELECT_RMII);
  717. #endif
  718. /* emac gpio init */
  719. at32_msp_emac_init(NULL);
  720. at32_emac_device.emac_speed = EMAC_SPEED_100MBPS;
  721. at32_emac_device.emac_mode = EMAC_FULL_DUPLEX;
  722. at32_emac_device.dev_addr[0] = 0x00;
  723. at32_emac_device.dev_addr[1] = 0x66;
  724. at32_emac_device.dev_addr[2] = 0x88;
  725. /* generate mac addr from unique id (only for test). */
  726. at32_emac_device.dev_addr[3] = *(rt_uint8_t *)(0x1FFFF7E8 + 4);
  727. at32_emac_device.dev_addr[4] = *(rt_uint8_t *)(0x1FFFF7E8 + 2);
  728. at32_emac_device.dev_addr[5] = *(rt_uint8_t *)(0x1FFFF7E8 + 0);
  729. at32_emac_device.parent.parent.init = rt_at32_emac_init;
  730. at32_emac_device.parent.parent.open = rt_at32_emac_open;
  731. at32_emac_device.parent.parent.close = rt_at32_emac_close;
  732. at32_emac_device.parent.parent.read = rt_at32_emac_read;
  733. at32_emac_device.parent.parent.write = rt_at32_emac_write;
  734. at32_emac_device.parent.parent.control = rt_at32_emac_control;
  735. at32_emac_device.parent.parent.user_data = RT_NULL;
  736. at32_emac_device.parent.eth_rx = rt_at32_emac_rx;
  737. at32_emac_device.parent.eth_tx = rt_at32_emac_tx;
  738. /* reset phy */
  739. phy_reset();
  740. /* start phy monitor */
  741. rt_thread_t tid;
  742. tid = rt_thread_create("phy",
  743. phy_monitor_thread_entry,
  744. RT_NULL,
  745. 1024,
  746. RT_THREAD_PRIORITY_MAX - 2,
  747. 2);
  748. if (tid != RT_NULL)
  749. {
  750. rt_thread_startup(tid);
  751. }
  752. else
  753. {
  754. state = -RT_ERROR;
  755. }
  756. /* register eth device */
  757. state = eth_device_init(&(at32_emac_device.parent), "e0");
  758. if (RT_EOK == state)
  759. {
  760. LOG_D("emac device init success");
  761. }
  762. else
  763. {
  764. LOG_E("emac device init faild: %d", state);
  765. state = -RT_ERROR;
  766. goto __exit;
  767. }
  768. __exit:
  769. if (state != RT_EOK)
  770. {
  771. if (rx_buff)
  772. {
  773. rt_free(rx_buff);
  774. }
  775. if (tx_buff)
  776. {
  777. rt_free(tx_buff);
  778. }
  779. if (dma_rx_dscr_tab)
  780. {
  781. rt_free(dma_rx_dscr_tab);
  782. }
  783. if (dma_tx_dscr_tab)
  784. {
  785. rt_free(dma_tx_dscr_tab);
  786. }
  787. }
  788. return state;
  789. }
  790. INIT_DEVICE_EXPORT(rt_hw_at32_emac_init);