drv_spi.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-05-16 shelton first version
  9. * 2022-11-10 shelton support spi dma
  10. * 2023-01-31 shelton add support f421/f425
  11. */
  12. #include "drv_common.h"
  13. #include "drv_spi.h"
  14. #include "drv_config.h"
  15. #include <string.h>
  16. #ifdef RT_USING_SPI
  17. #if !defined(BSP_USING_SPI1) && !defined(BSP_USING_SPI2) && \
  18. !defined(BSP_USING_SPI3) && !defined(BSP_USING_SPI4)
  19. #error "Please define at least one BSP_USING_SPIx"
  20. #endif
  21. //#define DRV_DEBUG
  22. #define LOG_TAG "drv.pwm"
  23. #include <drv_log.h>
  24. enum
  25. {
  26. #ifdef BSP_USING_SPI1
  27. SPI1_INDEX,
  28. #endif
  29. #ifdef BSP_USING_SPI2
  30. SPI2_INDEX,
  31. #endif
  32. #ifdef BSP_USING_SPI3
  33. SPI3_INDEX,
  34. #endif
  35. #ifdef BSP_USING_SPI4
  36. SPI4_INDEX,
  37. #endif
  38. };
  39. static struct at32_spi_config spi_config[] = {
  40. #ifdef BSP_USING_SPI1
  41. SPI1_CONFIG,
  42. #endif
  43. #ifdef BSP_USING_SPI2
  44. SPI2_CONFIG,
  45. #endif
  46. #ifdef BSP_USING_SPI3
  47. SPI3_CONFIG,
  48. #endif
  49. #ifdef BSP_USING_SPI4
  50. SPI4_CONFIG,
  51. #endif
  52. };
  53. /* private rt-thread spi ops function */
  54. static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
  55. static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message);
  56. static struct rt_spi_ops at32_spi_ops =
  57. {
  58. configure,
  59. xfer
  60. };
  61. /**
  62. * attach the spi device to spi bus, this function must be used after initialization.
  63. */
  64. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, gpio_type *cs_gpiox, uint16_t cs_gpio_pin)
  65. {
  66. gpio_init_type gpio_init_struct;
  67. RT_ASSERT(bus_name != RT_NULL);
  68. RT_ASSERT(device_name != RT_NULL);
  69. rt_err_t result;
  70. struct rt_spi_device *spi_device;
  71. struct at32_spi_cs *cs_pin;
  72. /* initialize the cs pin & select the slave*/
  73. gpio_default_para_init(&gpio_init_struct);
  74. gpio_init_struct.gpio_pins = cs_gpio_pin;
  75. gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
  76. gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  77. gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  78. gpio_init(cs_gpiox, &gpio_init_struct);
  79. gpio_bits_set(cs_gpiox, cs_gpio_pin);
  80. /* attach the device to spi bus */
  81. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  82. RT_ASSERT(spi_device != RT_NULL);
  83. cs_pin = (struct at32_spi_cs *)rt_malloc(sizeof(struct at32_spi_cs));
  84. RT_ASSERT(cs_pin != RT_NULL);
  85. cs_pin->gpio_x = cs_gpiox;
  86. cs_pin->gpio_pin = cs_gpio_pin;
  87. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  88. if (result != RT_EOK)
  89. {
  90. LOG_D("%s attach to %s faild, %d\n", device_name, bus_name, result);
  91. }
  92. RT_ASSERT(result == RT_EOK);
  93. LOG_D("%s attach to %s done", device_name, bus_name);
  94. return result;
  95. }
  96. static rt_err_t configure(struct rt_spi_device* device,
  97. struct rt_spi_configuration* configuration)
  98. {
  99. struct rt_spi_bus * spi_bus = (struct rt_spi_bus *)device->bus;
  100. struct at32_spi *instance = (struct at32_spi *)spi_bus->parent.user_data;
  101. spi_init_type spi_init_struct;
  102. RT_ASSERT(device != RT_NULL);
  103. RT_ASSERT(configuration != RT_NULL);
  104. at32_msp_spi_init(instance->config->spi_x);
  105. /* data_width */
  106. if(configuration->data_width <= 8)
  107. {
  108. spi_init_struct.frame_bit_num = SPI_FRAME_8BIT;
  109. }
  110. else if(configuration->data_width <= 16)
  111. {
  112. spi_init_struct.frame_bit_num = SPI_FRAME_16BIT;
  113. }
  114. else
  115. {
  116. return -RT_EIO;
  117. }
  118. /* baudrate */
  119. {
  120. uint32_t spi_apb_clock;
  121. uint32_t max_hz;
  122. crm_clocks_freq_type clocks_struct;
  123. max_hz = configuration->max_hz;
  124. crm_clocks_freq_get(&clocks_struct);
  125. LOG_D("sys freq: %d\n", clocks_struct.sclk_freq);
  126. LOG_D("max freq: %d\n", max_hz);
  127. if (instance->config->spi_x == SPI1)
  128. {
  129. spi_apb_clock = clocks_struct.apb2_freq;
  130. LOG_D("pclk2 freq: %d\n", clocks_struct.apb2_freq);
  131. }
  132. else
  133. {
  134. spi_apb_clock = clocks_struct.apb1_freq;
  135. LOG_D("pclk1 freq: %d\n", clocks_struct.apb1_freq);
  136. }
  137. if(max_hz >= (spi_apb_clock / 2))
  138. {
  139. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_2;
  140. }
  141. else if (max_hz >= (spi_apb_clock / 4))
  142. {
  143. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_4;
  144. }
  145. else if (max_hz >= (spi_apb_clock / 8))
  146. {
  147. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_8;
  148. }
  149. else if (max_hz >= (spi_apb_clock / 16))
  150. {
  151. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_16;
  152. }
  153. else if (max_hz >= (spi_apb_clock / 32))
  154. {
  155. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_32;
  156. }
  157. else if (max_hz >= (spi_apb_clock / 64))
  158. {
  159. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_64;
  160. }
  161. else if (max_hz >= (spi_apb_clock / 128))
  162. {
  163. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_128;
  164. }
  165. else
  166. {
  167. /* min prescaler 256 */
  168. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_256;
  169. }
  170. } /* baudrate */
  171. switch(configuration->mode & RT_SPI_MODE_3)
  172. {
  173. case RT_SPI_MODE_0:
  174. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
  175. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
  176. break;
  177. case RT_SPI_MODE_1:
  178. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
  179. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
  180. break;
  181. case RT_SPI_MODE_2:
  182. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
  183. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
  184. break;
  185. case RT_SPI_MODE_3:
  186. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
  187. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
  188. break;
  189. }
  190. /* msb or lsb */
  191. if(configuration->mode & RT_SPI_MSB)
  192. {
  193. spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_MSB;
  194. }
  195. else
  196. {
  197. spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_LSB;
  198. }
  199. spi_init_struct.transmission_mode = SPI_TRANSMIT_FULL_DUPLEX;
  200. spi_init_struct.master_slave_mode = SPI_MODE_MASTER;
  201. spi_init_struct.cs_mode_selection = SPI_CS_SOFTWARE_MODE;
  202. /* init spi */
  203. spi_init(instance->config->spi_x, &spi_init_struct);
  204. /* enable spi */
  205. spi_enable(instance->config->spi_x, TRUE);
  206. /* disable spi crc */
  207. spi_crc_enable(instance->config->spi_x, FALSE);
  208. return RT_EOK;
  209. };
  210. static void _spi_dma_receive(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
  211. {
  212. dma_channel_type* dma_channel = instance->config->dma_rx->dma_channel;
  213. dma_channel->dtcnt = size;
  214. dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
  215. dma_channel->maddr = (rt_uint32_t)buffer;
  216. /* enable transmit complete interrupt */
  217. dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
  218. /* enable dma receive */
  219. spi_i2s_dma_receiver_enable(instance->config->spi_x, TRUE);
  220. /* mark dma flag */
  221. instance->config->dma_rx->dma_done = RT_FALSE;
  222. /* enable dma channel */
  223. dma_channel_enable(dma_channel, TRUE);
  224. }
  225. static void _spi_dma_transmit(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
  226. {
  227. dma_channel_type *dma_channel = instance->config->dma_tx->dma_channel;
  228. dma_channel->dtcnt = size;
  229. dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
  230. dma_channel->maddr = (rt_uint32_t)buffer;
  231. /* enable spi error interrupt */
  232. spi_i2s_interrupt_enable(instance->config->spi_x, SPI_I2S_ERROR_INT, TRUE);
  233. /* enable transmit complete interrupt */
  234. dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
  235. /* enable dma transmit */
  236. spi_i2s_dma_transmitter_enable(instance->config->spi_x, TRUE);
  237. /* mark dma flag */
  238. instance->config->dma_tx->dma_done = RT_FALSE;
  239. /* enable dma channel */
  240. dma_channel_enable(dma_channel, TRUE);
  241. }
  242. static void _spi_polling_receive_transmit(struct at32_spi *instance, rt_uint8_t *recv_buf, rt_uint8_t *send_buf, \
  243. rt_uint32_t size, rt_uint8_t data_mode)
  244. {
  245. /* data frame length 8 bit */
  246. if(data_mode <= 8)
  247. {
  248. const rt_uint8_t *send_ptr = send_buf;
  249. rt_uint8_t * recv_ptr = recv_buf;
  250. LOG_D("spi poll transfer start: %d\n", size);
  251. while(size--)
  252. {
  253. rt_uint8_t data = 0xFF;
  254. if(send_ptr != RT_NULL)
  255. {
  256. data = *send_ptr++;
  257. }
  258. /* wait until the transmit buffer is empty */
  259. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
  260. /* send the byte */
  261. spi_i2s_data_transmit(instance->config->spi_x, data);
  262. /* wait until a data is received */
  263. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
  264. /* get the received data */
  265. data = spi_i2s_data_receive(instance->config->spi_x);
  266. if(recv_ptr != RT_NULL)
  267. {
  268. *recv_ptr++ = data;
  269. }
  270. }
  271. LOG_D("spi poll transfer finsh\n");
  272. }
  273. /* data frame length 16 bit */
  274. else if(data_mode <= 16)
  275. {
  276. const rt_uint16_t * send_ptr = (rt_uint16_t *)send_buf;
  277. rt_uint16_t * recv_ptr = (rt_uint16_t *)recv_buf;
  278. while(size--)
  279. {
  280. rt_uint16_t data = 0xFF;
  281. if(send_ptr != RT_NULL)
  282. {
  283. data = *send_ptr++;
  284. }
  285. /* wait until the transmit buffer is empty */
  286. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
  287. /* send the byte */
  288. spi_i2s_data_transmit(instance->config->spi_x, data);
  289. /* wait until a data is received */
  290. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
  291. /* get the received data */
  292. data = spi_i2s_data_receive(instance->config->spi_x);
  293. if(recv_ptr != RT_NULL)
  294. {
  295. *recv_ptr++ = data;
  296. }
  297. }
  298. }
  299. }
  300. static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
  301. {
  302. struct rt_spi_bus * at32_spi_bus = (struct rt_spi_bus *)device->bus;
  303. struct at32_spi *instance = (struct at32_spi *)at32_spi_bus->parent.user_data;
  304. struct rt_spi_configuration *config = &device->config;
  305. struct at32_spi_cs * at32_spi_cs = device->parent.user_data;
  306. rt_size_t message_length = 0, already_send_length = 0;
  307. rt_uint16_t send_length = 0;
  308. rt_uint8_t *recv_buf;
  309. const rt_uint8_t *send_buf;
  310. RT_ASSERT(device != NULL);
  311. RT_ASSERT(message != NULL);
  312. /* take cs */
  313. if(message->cs_take)
  314. {
  315. gpio_bits_reset(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
  316. LOG_D("spi take cs\n");
  317. }
  318. message_length = message->length;
  319. recv_buf = message->recv_buf;
  320. send_buf = message->send_buf;
  321. while (message_length)
  322. {
  323. /* the HAL library use uint16 to save the data length */
  324. if (message_length > 65535)
  325. {
  326. send_length = 65535;
  327. message_length = message_length - 65535;
  328. }
  329. else
  330. {
  331. send_length = message_length;
  332. message_length = 0;
  333. }
  334. /* calculate the start address */
  335. already_send_length = message->length - send_length - message_length;
  336. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  337. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  338. /* start once data exchange in dma mode */
  339. if (message->send_buf && message->recv_buf)
  340. {
  341. if ((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX) && \
  342. (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX))
  343. {
  344. _spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
  345. _spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
  346. /* wait transfer complete */
  347. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  348. while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
  349. /* clear rx overrun flag */
  350. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  351. spi_enable(instance->config->spi_x, FALSE);
  352. spi_enable(instance->config->spi_x, TRUE);
  353. }
  354. else
  355. {
  356. _spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)send_buf, send_length, config->data_width);
  357. }
  358. }
  359. else if (message->send_buf)
  360. {
  361. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  362. {
  363. _spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
  364. /* wait transfer complete */
  365. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  366. while(instance->config->dma_tx->dma_done == RT_FALSE);
  367. /* clear rx overrun flag */
  368. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  369. spi_enable(instance->config->spi_x, FALSE);
  370. spi_enable(instance->config->spi_x, TRUE);
  371. }
  372. else
  373. {
  374. _spi_polling_receive_transmit(instance, RT_NULL, (uint8_t *)send_buf, send_length, config->data_width);
  375. }
  376. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  377. {
  378. /* release the cs by disable spi when using 3 wires spi */
  379. spi_enable(instance->config->spi_x, FALSE);
  380. }
  381. }
  382. else
  383. {
  384. memset((void *)recv_buf, 0xff, send_length);
  385. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  386. {
  387. _spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
  388. _spi_dma_transmit(instance, (uint8_t *)recv_buf, send_length);
  389. /* wait transfer complete */
  390. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  391. while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
  392. /* clear rx overrun flag */
  393. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  394. spi_enable(instance->config->spi_x, FALSE);
  395. spi_enable(instance->config->spi_x, TRUE);
  396. }
  397. else
  398. {
  399. /* clear the old error flag */
  400. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  401. _spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)recv_buf, send_length, config->data_width);
  402. }
  403. }
  404. }
  405. /* release cs */
  406. if(message->cs_release)
  407. {
  408. gpio_bits_set(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
  409. LOG_D("spi release cs\n");
  410. }
  411. return message->length;
  412. }
  413. static void _dma_base_channel_check(struct at32_spi *instance)
  414. {
  415. dma_channel_type *rx_channel = instance->config->dma_rx->dma_channel;
  416. dma_channel_type *tx_channel = instance->config->dma_tx->dma_channel;
  417. if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  418. {
  419. instance->config->dma_rx->dma_done = RT_TRUE;
  420. instance->config->dma_rx->dma_x = (dma_type *)((rt_uint32_t)rx_channel & ~0xFF);
  421. instance->config->dma_rx->channel_index = ((((rt_uint32_t)rx_channel & 0xFF) - 8) / 0x14) + 1;
  422. }
  423. if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  424. {
  425. instance->config->dma_tx->dma_done = RT_TRUE;
  426. instance->config->dma_tx->dma_x = (dma_type *)((rt_uint32_t)tx_channel & ~0xFF);
  427. instance->config->dma_tx->channel_index = ((((rt_uint32_t)tx_channel & 0xFF) - 8) / 0x14) + 1;
  428. }
  429. }
  430. static void at32_spi_dma_init(struct at32_spi *instance)
  431. {
  432. dma_init_type dma_init_struct;
  433. /* search dma base and channel index */
  434. _dma_base_channel_check(instance);
  435. /* config dma channel */
  436. dma_default_para_init(&dma_init_struct);
  437. dma_init_struct.peripheral_inc_enable = FALSE;
  438. dma_init_struct.memory_inc_enable = TRUE;
  439. dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
  440. dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
  441. dma_init_struct.priority = DMA_PRIORITY_MEDIUM;
  442. dma_init_struct.loop_mode_enable = FALSE;
  443. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  444. {
  445. crm_periph_clock_enable(instance->config->dma_rx->dma_clock, TRUE);
  446. dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
  447. dma_reset(instance->config->dma_rx->dma_channel);
  448. dma_init(instance->config->dma_rx->dma_channel, &dma_init_struct);
  449. #if defined (SOC_SERIES_AT32F425)
  450. dma_flexible_config(instance->config->dma_rx->dma_x, instance->config->dma_rx->flex_channel, \
  451. (dma_flexible_request_type)instance->config->dma_rx->request_id);
  452. #endif
  453. #if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437)
  454. dmamux_enable(instance->config->dma_rx->dma_x, TRUE);
  455. dmamux_init(instance->config->dma_rx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_rx->request_id);
  456. #endif
  457. /* dma irq should set in dma rx mode */
  458. nvic_irq_enable(instance->config->dma_rx->dma_irqn, 0, 1);
  459. }
  460. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  461. {
  462. crm_periph_clock_enable(instance->config->dma_tx->dma_clock, TRUE);
  463. dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
  464. dma_reset(instance->config->dma_tx->dma_channel);
  465. dma_init(instance->config->dma_tx->dma_channel, &dma_init_struct);
  466. #if defined (SOC_SERIES_AT32F425)
  467. dma_flexible_config(instance->config->dma_tx->dma_x, instance->config->dma_tx->flex_channel, \
  468. (dma_flexible_request_type)instance->config->dma_tx->request_id);
  469. #endif
  470. #if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437)
  471. dmamux_enable(instance->config->dma_tx->dma_x, TRUE);
  472. dmamux_init(instance->config->dma_tx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_tx->request_id);
  473. #endif
  474. /* dma irq should set in dma tx mode */
  475. nvic_irq_enable(instance->config->dma_tx->dma_irqn, 0, 1);
  476. }
  477. if((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX) || \
  478. (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX))
  479. {
  480. nvic_irq_enable(instance->config->irqn, 0, 0);
  481. }
  482. }
  483. void dma_isr(struct dma_config *dma_instance)
  484. {
  485. volatile rt_uint32_t reg_sts = 0, index = 0;
  486. reg_sts = dma_instance->dma_x->sts;
  487. index = dma_instance->channel_index;
  488. if ((reg_sts & (DMA_FDT_FLAG << (4 * (index - 1)))) != RESET)
  489. {
  490. /* clear dma flag */
  491. dma_instance->dma_x->clr |= (rt_uint32_t)((DMA_FDT_FLAG << (4 * (index - 1))) | \
  492. (DMA_HDT_FLAG << (4 * (index - 1))));
  493. /* disable interrupt */
  494. dma_interrupt_enable(dma_instance->dma_channel, DMA_FDT_INT, FALSE);
  495. /* disable dma channel */
  496. dma_channel_enable(dma_instance->dma_channel, FALSE);
  497. /* mark done flag */
  498. dma_instance->dma_done = RT_TRUE;
  499. }
  500. }
  501. void spi_isr(spi_type *spi_x)
  502. {
  503. if(spi_i2s_flag_get(spi_x, SPI_I2S_ROERR_FLAG) != RESET)
  504. {
  505. /* clear rx overrun error flag */
  506. spi_i2s_flag_clear(spi_x, SPI_I2S_ROERR_FLAG);
  507. }
  508. if(spi_i2s_flag_get(spi_x, SPI_MMERR_FLAG) != RESET)
  509. {
  510. /* clear master mode error flag */
  511. spi_i2s_flag_clear(spi_x, SPI_MMERR_FLAG);
  512. }
  513. }
  514. #ifdef BSP_USING_SPI1
  515. void SPI1_IRQHandler(void)
  516. {
  517. /* enter interrupt */
  518. rt_interrupt_enter();
  519. spi_isr(spi_config[SPI1_INDEX].spi_x);
  520. /* leave interrupt */
  521. rt_interrupt_leave();
  522. }
  523. #if defined(BSP_SPI1_RX_USING_DMA)
  524. void SPI1_RX_DMA_IRQHandler(void)
  525. {
  526. /* enter interrupt */
  527. rt_interrupt_enter();
  528. dma_isr(spi_config[SPI1_INDEX].dma_rx);
  529. /* leave interrupt */
  530. rt_interrupt_leave();
  531. }
  532. #endif /* defined(BSP_SPI1_RX_USING_DMA) */
  533. #if defined(BSP_SPI1_TX_USING_DMA)
  534. void SPI1_TX_DMA_IRQHandler(void)
  535. {
  536. /* enter interrupt */
  537. rt_interrupt_enter();
  538. dma_isr(spi_config[SPI1_INDEX].dma_tx);
  539. /* leave interrupt */
  540. rt_interrupt_leave();
  541. }
  542. #endif /* defined(BSP_SPI1_TX_USING_DMA) */
  543. #endif
  544. #ifdef BSP_USING_SPI2
  545. void SPI2_IRQHandler(void)
  546. {
  547. /* enter interrupt */
  548. rt_interrupt_enter();
  549. spi_isr(spi_config[SPI2_INDEX].spi_x);
  550. /* leave interrupt */
  551. rt_interrupt_leave();
  552. }
  553. #if defined(BSP_SPI2_RX_USING_DMA)
  554. void SPI2_RX_DMA_IRQHandler(void)
  555. {
  556. /* enter interrupt */
  557. rt_interrupt_enter();
  558. dma_isr(spi_config[SPI2_INDEX].dma_rx);
  559. /* leave interrupt */
  560. rt_interrupt_leave();
  561. }
  562. #endif /* defined(BSP_SPI2_RX_USING_DMA) */
  563. #if defined(BSP_SPI2_TX_USING_DMA)
  564. void SPI2_TX_DMA_IRQHandler(void)
  565. {
  566. /* enter interrupt */
  567. rt_interrupt_enter();
  568. dma_isr(spi_config[SPI2_INDEX].dma_tx);
  569. /* leave interrupt */
  570. rt_interrupt_leave();
  571. }
  572. #endif /* defined(BSP_SPI2_TX_USING_DMA) */
  573. #endif
  574. #ifdef BSP_USING_SPI3
  575. void SPI3_IRQHandler(void)
  576. {
  577. /* enter interrupt */
  578. rt_interrupt_enter();
  579. spi_isr(spi_config[SPI3_INDEX].spi_x);
  580. /* leave interrupt */
  581. rt_interrupt_leave();
  582. }
  583. #if defined(BSP_SPI3_RX_USING_DMA)
  584. void SPI3_RX_DMA_IRQHandler(void)
  585. {
  586. /* enter interrupt */
  587. rt_interrupt_enter();
  588. dma_isr(spi_config[SPI3_INDEX].dma_rx);
  589. /* leave interrupt */
  590. rt_interrupt_leave();
  591. }
  592. #endif /* defined(BSP_SPI3_RX_USING_DMA) */
  593. #if defined(BSP_SPI3_TX_USING_DMA)
  594. void SPI3_TX_DMA_IRQHandler(void)
  595. {
  596. /* enter interrupt */
  597. rt_interrupt_enter();
  598. dma_isr(spi_config[SPI3_INDEX].dma_tx);
  599. /* leave interrupt */
  600. rt_interrupt_leave();
  601. }
  602. #endif /* defined(BSP_SPI3_TX_USING_DMA) */
  603. #endif
  604. #ifdef BSP_USING_SPI4
  605. void SPI4_IRQHandler(void)
  606. {
  607. /* enter interrupt */
  608. rt_interrupt_enter();
  609. spi_isr(spi_config[SPI4_INDEX].spi_x);
  610. /* leave interrupt */
  611. rt_interrupt_leave();
  612. }
  613. #if defined(BSP_SPI4_RX_USING_DMA)
  614. void SPI4_RX_DMA_IRQHandler(void)
  615. {
  616. /* enter interrupt */
  617. rt_interrupt_enter();
  618. dma_isr(spi_config[SPI4_INDEX].dma_rx);
  619. /* leave interrupt */
  620. rt_interrupt_leave();
  621. }
  622. #endif /* defined(BSP_SPI4_RX_USING_DMA) */
  623. #if defined(BSP_SPI4_TX_USING_DMA)
  624. void SPI4_TX_DMA_IRQHandler(void)
  625. {
  626. /* enter interrupt */
  627. rt_interrupt_enter();
  628. dma_isr(spi_config[SPI4_INDEX].dma_tx);
  629. /* leave interrupt */
  630. rt_interrupt_leave();
  631. }
  632. #endif /* defined(BSP_SPI14_TX_USING_DMA) */
  633. #endif
  634. #if defined (SOC_SERIES_AT32F421)
  635. void SPI1_TX_RX_DMA_IRQHandler(void)
  636. {
  637. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  638. SPI1_TX_DMA_IRQHandler();
  639. #endif
  640. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  641. SPI1_RX_DMA_IRQHandler();
  642. #endif
  643. }
  644. void SPI2_TX_RX_DMA_IRQHandler(void)
  645. {
  646. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  647. SPI2_TX_DMA_IRQHandler();
  648. #endif
  649. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  650. SPI2_RX_DMA_IRQHandler();
  651. #endif
  652. }
  653. #endif
  654. #if defined (SOC_SERIES_AT32F425)
  655. void SPI1_TX_RX_DMA_IRQHandler(void)
  656. {
  657. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  658. SPI1_TX_DMA_IRQHandler();
  659. #endif
  660. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  661. SPI1_RX_DMA_IRQHandler();
  662. #endif
  663. }
  664. void SPI3_2_TX_RX_DMA_IRQHandler(void)
  665. {
  666. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  667. SPI2_TX_DMA_IRQHandler();
  668. #endif
  669. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  670. SPI2_RX_DMA_IRQHandler();
  671. #endif
  672. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  673. SPI3_TX_DMA_IRQHandler();
  674. #endif
  675. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  676. SPI3_RX_DMA_IRQHandler();
  677. #endif
  678. }
  679. #endif
  680. static struct at32_spi spis[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  681. static void at32_spi_get_dma_config(void)
  682. {
  683. #ifdef BSP_USING_SPI1
  684. spi_config[SPI1_INDEX].spi_dma_flag = 0;
  685. #ifdef BSP_SPI1_RX_USING_DMA
  686. spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  687. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  688. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  689. #endif
  690. #ifdef BSP_SPI1_TX_USING_DMA
  691. spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  692. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  693. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  694. #endif
  695. #endif
  696. #ifdef BSP_USING_SPI2
  697. spi_config[SPI2_INDEX].spi_dma_flag = 0;
  698. #ifdef BSP_SPI2_RX_USING_DMA
  699. spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  700. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  701. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  702. #endif
  703. #ifdef BSP_SPI2_TX_USING_DMA
  704. spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  705. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  706. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  707. #endif
  708. #endif
  709. #ifdef BSP_USING_SPI3
  710. spi_config[SPI3_INDEX].spi_dma_flag = 0;
  711. #ifdef BSP_SPI3_RX_USING_DMA
  712. spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  713. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  714. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  715. #endif
  716. #ifdef BSP_SPI3_TX_USING_DMA
  717. spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  718. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  719. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  720. #endif
  721. #endif
  722. #ifdef BSP_USING_SPI4
  723. spi_config[SPI4_INDEX].spi_dma_flag = 0;
  724. #ifdef BSP_SPI4_RX_USING_DMA
  725. spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  726. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  727. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  728. #endif
  729. #ifdef BSP_SPI4_TX_USING_DMA
  730. spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  731. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  732. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  733. #endif
  734. #endif
  735. }
  736. int rt_hw_spi_init(void)
  737. {
  738. int i;
  739. rt_err_t result;
  740. rt_size_t obj_num = sizeof(spi_config) / sizeof(spi_config[0]);
  741. at32_spi_get_dma_config();
  742. for (i = 0; i < obj_num; i++)
  743. {
  744. spis[i].config = &spi_config[i];
  745. spis[i].spi_bus.parent.user_data = (void *)&spis[i];
  746. if(spis[i].config->spi_dma_flag & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
  747. {
  748. at32_spi_dma_init(&spis[i]);
  749. }
  750. result = rt_spi_bus_register(&(spis[i].spi_bus), spis[i].config->spi_name, &at32_spi_ops);
  751. }
  752. return result;
  753. }
  754. INIT_BOARD_EXPORT(rt_hw_spi_init);
  755. #endif