drv_eth.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2020-07-20 thread-liu the first version
  9. */
  10. #include "board.h"
  11. #include "drv_config.h"
  12. #include <netif/ethernetif.h>
  13. #include "lwipopts.h"
  14. #include "drv_eth.h"
  15. #if defined(BSP_USING_GBE)
  16. //#define DRV_DEBUG
  17. //#define ETH_RX_DUMP
  18. //#define ETH_TX_DUMP
  19. #define LOG_TAG "drv.emac"
  20. #include <drv_log.h>
  21. #define MAX_ADDR_LEN 6
  22. rt_base_t level;
  23. #define TX_ADD_BASE 0x2FFC3000
  24. #define RX_ADD_BASE 0x2FFC5000
  25. #define TX_DMA_ADD_BASE 0x2FFC7000
  26. #define RX_DMA_ADD_BASE 0x2FFC7100
  27. #undef PHY_FULL_DUPLEX
  28. #undef PHY_HALF_DUPLEX
  29. #define PHY_LINK (1 << 0)
  30. #define PHY_10M (1 << 1)
  31. #define PHY_100M (1 << 2)
  32. #define PHY_1000M (1 << 3)
  33. #define PHY_FULL_DUPLEX (1 << 4)
  34. #define PHY_HALF_DUPLEX (1 << 5)
  35. #if defined(__ICCARM__)
  36. /* transmit buffer */
  37. #pragma location = TX_ADD_BASE
  38. __no_init static rt_uint8_t txBuffer[ETH_TXBUFNB][ETH_TX_BUF_SIZE];
  39. /* Receive buffer */
  40. #pragma location = RX_ADD_BASE
  41. __no_init static rt_uint8_t rxBuffer[ETH_RXBUFNB][ETH_RX_BUF_SIZE];
  42. /* Transmit DMA descriptors */
  43. #pragma location = TX_DMA_ADD_BASE
  44. __no_init static TxDmaDesc txDmaDesc[ETH_TXBUFNB];
  45. /* Receive DMA descriptors */
  46. #pragma location = RX_DMA_ADD_BASE
  47. __no_init static RxDmaDesc rxDmaDesc[ETH_RXBUFNB];
  48. #elif defined(__ARMCC_VERSION)
  49. /* transmit buffer */
  50. static rt_uint8_t txBuffer[ETH_TXBUFNB][ETH_TX_BUF_SIZE] __attribute__((at(TX_ADD_BASE)));
  51. /* Receive buffer */
  52. static rt_uint8_t rxBuffer[ETH_RXBUFNB][ETH_RX_BUF_SIZE] __attribute__((at(RX_ADD_BASE)));
  53. /* Transmit DMA descriptors */
  54. static TxDmaDesc txDmaDesc[ETH_TXBUFNB] __attribute__((at(TX_DMA_ADD_BASE)));
  55. /* Receive DMA descriptors */
  56. static RxDmaDesc rxDmaDesc[ETH_RXBUFNB] __attribute__((at(RX_DMA_ADD_BASE)));
  57. #elif defined ( __GNUC__ )
  58. /* transmit buffer */
  59. static rt_uint8_t txBuffer[ETH_TXBUFNB][ETH_TX_BUF_SIZE] __attribute__((section(".TxArraySection")));
  60. /* Receive buffer */
  61. static rt_uint8_t rxBuffer[ETH_RXBUFNB][ETH_RX_BUF_SIZE] __attribute__((section(".RxArraySection")));
  62. /* Transmit DMA descriptors */
  63. static TxDmaDesc txDmaDesc[ETH_TXBUFNB] __attribute__((section(".TxDecripSection")));
  64. /* Receive DMA descriptors */
  65. static RxDmaDesc rxDmaDesc[ETH_RXBUFNB] __attribute__((section(".RxDecripSection")));
  66. #endif
  67. //Current transmit descriptor
  68. static rt_uint8_t txIndex = 0;
  69. //Current receive descriptor
  70. static rt_uint8_t rxIndex = 0;
  71. /* eth */
  72. static struct rt_event rx_event = {0};
  73. #define ETH_TIME_OUT 100000
  74. struct rt_stm32_eth
  75. {
  76. /* inherit from ethernet device */
  77. struct eth_device parent;
  78. #ifndef PHY_USING_INTERRUPT_MODE
  79. rt_timer_t poll_link_timer;
  80. #endif
  81. /* interface address info, hw address */
  82. rt_uint8_t dev_addr[MAX_ADDR_LEN];
  83. /* eth speed */
  84. uint32_t eth_speed;
  85. /* eth duplex mode */
  86. uint32_t eth_mode;
  87. };
  88. static struct rt_stm32_eth stm32_eth_device = {0};
  89. #if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
  90. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  91. static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
  92. {
  93. unsigned char *buf = (unsigned char *)ptr;
  94. int i, j;
  95. for (i = 0; i < buflen; i += 16)
  96. {
  97. rt_kprintf("%08X: ", i);
  98. for (j = 0; j < 16; j++)
  99. if (i + j < buflen)
  100. rt_kprintf("%02X ", buf[i + j]);
  101. else
  102. rt_kprintf(" ");
  103. rt_kprintf(" ");
  104. for (j = 0; j < 16; j++)
  105. if (i + j < buflen)
  106. rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
  107. rt_kprintf("\n");
  108. }
  109. }
  110. #endif
  111. static rt_err_t phy_write_reg(uint8_t phy_addr, uint8_t reg_addr, uint16_t reg_value)
  112. {
  113. uint32_t temp;
  114. volatile uint32_t tickstart = 0;
  115. /* Take care not to alter MDC clock configuration */
  116. temp = ETH->MACMDIOAR & ETH_MACMDIOAR_CR;
  117. /* Set up a write operation */
  118. temp |= ETH_MACMDIOAR_GOC_Val(1) | ETH_MACMDIOAR_GB;
  119. /* PHY address */
  120. temp |= (phy_addr << 21) & ETH_MACMDIOAR_PA;
  121. /* Register address */
  122. temp |= (reg_addr << 16) & ETH_MACMDIOAR_RDA;
  123. /* Data to be written in the PHY register */
  124. ETH->MACMDIODR = reg_value & ETH_MACMDIODR_GD;
  125. /* Start a write operation */
  126. ETH->MACMDIOAR = temp;
  127. /* Wait for the write to complete */
  128. tickstart = rt_tick_get();
  129. while((ETH->MACMDIOAR & ETH_MACMDIOAR_GB) != 0)
  130. {
  131. /* judge timeout */
  132. if((rt_tick_get() - tickstart) > ETH_TIME_OUT)
  133. {
  134. LOG_E("PHY write reg %02x date %04x timeout!", reg_addr, reg_value);
  135. return -RT_ETIMEOUT;
  136. }
  137. }
  138. return RT_EOK;
  139. }
  140. static uint16_t phy_read_reg(uint8_t phy_addr, uint8_t reg_addr)
  141. {
  142. uint16_t reg_value = 0;
  143. uint32_t status = 0;
  144. volatile uint32_t tickstart = 0;
  145. /* Take care not to alter MDC clock configuration */
  146. status = ETH->MACMDIOAR & ETH_MACMDIOAR_CR;
  147. /* Set up a read operation */
  148. status |= ETH_MACMDIOAR_GOC_Val(3) | ETH_MACMDIOAR_GB;
  149. /* PHY address */
  150. status |= (phy_addr << 21) & ETH_MACMDIOAR_PA;
  151. /* Register address */
  152. status |= (reg_addr << 16) & ETH_MACMDIOAR_RDA;
  153. /* Start a read operation */
  154. ETH->MACMDIOAR = status;
  155. /* Wait for the read to complete */
  156. tickstart = rt_tick_get();
  157. while((ETH->MACMDIOAR & ETH_MACMDIOAR_GB) != 0)
  158. {
  159. /* judge timeout */
  160. if((rt_tick_get() - tickstart) > ETH_TIME_OUT)
  161. {
  162. LOG_E("PHY read reg %02x timeout!", reg_addr);
  163. return -RT_ETIMEOUT;
  164. }
  165. }
  166. /* Get register value */
  167. reg_value = ETH->MACMDIODR & ETH_MACMDIODR_GD;
  168. return reg_value;
  169. }
  170. static rt_err_t update_mac_mode(void)
  171. {
  172. uint32_t status;
  173. /* Read current MAC configuration */
  174. status = ETH->MACCR;
  175. if (stm32_eth_device.eth_speed & PHY_1000M)
  176. {
  177. status &= ~ETH_MACCR_PS;
  178. status &= ~ETH_MACCR_FES;
  179. }
  180. else if (stm32_eth_device.eth_speed & PHY_100M)
  181. {
  182. status |= ETH_MACCR_PS;
  183. status |= ETH_MACCR_FES;
  184. }
  185. /* 10M */
  186. else
  187. {
  188. status |= ETH_MACCR_PS;
  189. status &= ~ETH_MACCR_FES;
  190. }
  191. if (stm32_eth_device.eth_mode & PHY_FULL_DUPLEX)
  192. {
  193. status |= ETH_MACCR_DM;
  194. }
  195. else
  196. {
  197. status &= ~ETH_MACCR_DM;
  198. }
  199. /* Update MAC configuration register */
  200. ETH->MACCR = status;
  201. return RT_EOK;
  202. }
  203. static void HAL_ETH_MspInit(void)
  204. {
  205. GPIO_InitTypeDef GPIO_InitStruct = {0};
  206. RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  207. if(IS_ENGINEERING_BOOT_MODE())
  208. {
  209. /** Initializes the peripherals clock
  210. */
  211. PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ETH;
  212. PeriphClkInit.EthClockSelection = RCC_ETHCLKSOURCE_PLL4;
  213. if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  214. {
  215. Error_Handler();
  216. }
  217. }
  218. /* Enable SYSCFG clock */
  219. __HAL_RCC_SYSCFG_CLK_ENABLE();
  220. /* Enable GPIO clocks */
  221. __HAL_RCC_GPIOA_CLK_ENABLE();
  222. __HAL_RCC_GPIOB_CLK_ENABLE();
  223. __HAL_RCC_GPIOC_CLK_ENABLE();
  224. __HAL_RCC_GPIOD_CLK_ENABLE();
  225. __HAL_RCC_GPIOE_CLK_ENABLE();
  226. __HAL_RCC_GPIOG_CLK_ENABLE();
  227. /* Select RGMII interface mode */
  228. HAL_SYSCFG_ETHInterfaceSelect(SYSCFG_ETH_RGMII);
  229. /* Enable Ethernet MAC clock */
  230. __HAL_RCC_ETH1MAC_CLK_ENABLE();
  231. __HAL_RCC_ETH1TX_CLK_ENABLE();
  232. __HAL_RCC_ETH1RX_CLK_ENABLE();
  233. /**ETH1 GPIO Configuration
  234. PA1 ------> ETH1_RX_CLK
  235. PA2 ------> ETH1_MDIO
  236. PA7 ------> ETH1_RX_CTL
  237. PB0 ------> ETH1_RXD2
  238. PB1 ------> ETH1_RXD3
  239. PB11 ------> ETH1_TX_CTL
  240. PC1 ------> ETH1_MDC
  241. PC2 ------> ETH1_TXD2
  242. PC4 ------> ETH1_RXD0
  243. PC5 ------> ETH1_RXD1
  244. PE2 ------> ETH1_TXD3
  245. PG4 ------> ETH1_GTX_CLK
  246. PG5 ------> ETH1_CLK125
  247. PG13 ------> ETH1_TXD0
  248. PG14 ------> ETH1_TXD1
  249. */
  250. GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7;
  251. GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  252. GPIO_InitStruct.Pull = GPIO_NOPULL;
  253. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  254. GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
  255. HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  256. GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_11;
  257. HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  258. GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_4|GPIO_PIN_5;
  259. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  260. GPIO_InitStruct.Pin = GPIO_PIN_2;
  261. HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
  262. GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_13|GPIO_PIN_14;
  263. HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
  264. /* ETH interrupt Init */
  265. HAL_NVIC_SetPriority(ETH1_IRQn, 0x01, 0x00);
  266. HAL_NVIC_EnableIRQ(ETH1_IRQn);
  267. /* Configure PHY_RST (PD10) */
  268. GPIO_InitStruct.Pin = GPIO_PIN_10;
  269. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  270. GPIO_InitStruct.Pull = GPIO_PULLUP;
  271. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  272. HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  273. /* Reset PHY transceiver */
  274. HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, GPIO_PIN_RESET);
  275. rt_thread_mdelay(20);
  276. HAL_GPIO_WritePin(GPIOD, GPIO_PIN_10, GPIO_PIN_SET);
  277. rt_thread_mdelay(20);
  278. }
  279. static rt_err_t rt_stm32_eth_init(rt_device_t dev)
  280. {
  281. RT_ASSERT(dev != RT_NULL);
  282. rt_uint32_t status;
  283. int i = 0 ;
  284. volatile uint32_t tickstart = 0;
  285. uint8_t *macAddr = &stm32_eth_device.dev_addr[0];
  286. /* Initialize RX/TX descriptor index */
  287. rxIndex = txIndex = 0;
  288. HAL_ETH_MspInit();
  289. /* Reset Ethernet MAC peripheral */
  290. __HAL_RCC_ETH1MAC_FORCE_RESET();
  291. __HAL_RCC_ETH1MAC_RELEASE_RESET();
  292. /* Ethernet Software reset */
  293. ETH->DMAMR |= ETH_DMAMR_SWR;
  294. /* Wait for the reset to complete */
  295. tickstart = rt_tick_get();
  296. while (READ_BIT(ETH->DMAMR, ETH_DMAMR_SWR))
  297. {
  298. if(((HAL_GetTick() - tickstart ) > ETH_TIME_OUT))
  299. {
  300. LOG_E("ETH software reset timeout!");
  301. return -RT_ERROR;
  302. }
  303. }
  304. /* Adjust MDC clock range depending on HCLK frequency */
  305. ETH->MACMDIOAR = ETH_MACMDIOAR_CR_Val(5);
  306. /* Use default MAC configuration */
  307. ETH->MACCR = ETH_MACCR_DO;
  308. /* Set the MAC address of the station */
  309. ETH->MACA0LR = ((macAddr[3] << 24) | (macAddr[2] << 16) | (macAddr[1] << 8) | macAddr[0]);
  310. ETH->MACA0HR = ((macAddr[5] << 8) | macAddr[4]);
  311. /* The MAC supports 3 additional addresses for unicast perfect filtering */
  312. ETH->MACA1LR = 0;
  313. ETH->MACA1HR = 0;
  314. ETH->MACA2LR = 0;
  315. ETH->MACA2HR = 0;
  316. ETH->MACA3LR = 0;
  317. ETH->MACA3HR = 0;
  318. /* Initialize hash table */
  319. ETH->MACHT0R = 0;
  320. ETH->MACHT1R = 0;
  321. /* Configure the receive filter */
  322. ETH->MACPFR = ETH_MACPFR_HPF | ETH_MACPFR_HMC;
  323. /* Disable flow control */
  324. ETH->MACQ0TXFCR = 0;
  325. ETH->MACRXFCR = 0;
  326. /* Enable the first RX queue */
  327. ETH->MACRXQC0R = ETH_MACRXQC0R_RXQ0EN_Val(1);
  328. /* Configure DMA operating mode */
  329. ETH->DMAMR = ETH_DMAMR_INTM_Val(0) | ETH_DMAMR_PR_Val(0);
  330. /* Configure system bus mode */
  331. ETH->DMASBMR |= ETH_DMASBMR_AAL;
  332. /* The DMA takes the descriptor table as contiguous */
  333. ETH->DMAC0CR = ETH_DMAC0CR_DSL_Val(0);
  334. /* Configure TX features */
  335. ETH->DMAC0TXCR = ETH_DMAC0TXCR_TXPBL_Val(1);
  336. /* Configure RX features */
  337. ETH->DMAC0RXCR = ETH_DMAC0RXCR_RXPBL_Val(1) | ETH_DMAC0RXCR_RBSZ_Val(ETH_RX_BUF_SIZE);
  338. /* Enable store and forward mode for transmission */
  339. ETH->MTLTXQ0OMR = ETH_MTLTXQ0OMR_TQS_Val(7) | ETH_MTLTXQ0OMR_TXQEN_Val(2) | ETH_MTLTXQ0OMR_TSF;
  340. /* Enable store and forward mode for reception */
  341. ETH->MTLRXQ0OMR = ETH_MTLRXQ0OMR_RQS_Val(7) | ETH_MTLRXQ0OMR_RSF;
  342. /* Initialize TX DMA descriptor list */
  343. for (i = 0; i < ETH_TXBUFNB; i++)
  344. {
  345. /* The descriptor is initially owned by the application */
  346. txDmaDesc[i].tdes0 = 0;
  347. txDmaDesc[i].tdes1 = 0;
  348. txDmaDesc[i].tdes2 = 0;
  349. txDmaDesc[i].tdes3 = 0;
  350. }
  351. /* Initialize RX DMA descriptor list */
  352. for (i = 0; i < ETH_RXBUFNB; i++)
  353. {
  354. /* The descriptor is initially owned by the DMA */
  355. rxDmaDesc[i].rdes0 = (uint32_t)rxBuffer[i];
  356. rxDmaDesc[i].rdes1 = 0;
  357. rxDmaDesc[i].rdes2 = 0;
  358. rxDmaDesc[i].rdes3 = ETH_RDES3_OWN | ETH_RDES3_IOC | ETH_RDES3_BUF1V;
  359. }
  360. /* Set Transmit Descriptor List Address Register */
  361. ETH->DMAC0TXDLAR = (uint32_t)&txDmaDesc[0];
  362. /* Length of the transmit descriptor ring */
  363. ETH->DMAC0TXRLR = ETH_TXBUFNB - 1;
  364. /* Set Receive Descriptor List Address Register */
  365. ETH->DMAC0RXDLAR = (uint32_t)&rxDmaDesc[0];
  366. /* Length of the receive descriptor ring */
  367. ETH->DMAC0RXRLR = ETH_RXBUFNB - 1;
  368. /* Prevent interrupts from being generated when the transmit statistic
  369. * counters reach half their maximum value */
  370. ETH->MMCTXIMR = ETH_MMCTXIMR_TXLPITRCIM | ETH_MMCTXIMR_TXLPIUSCIM | ETH_MMCTXIMR_TXGPKTIM | ETH_MMCTXIMR_TXMCOLGPIM | ETH_MMCTXIMR_TXSCOLGPIM;
  371. /* Prevent interrupts from being generated when the receive statistic
  372. * counters reach half their maximum value */
  373. ETH->MMCRXIMR = ETH_MMCRXIMR_RXLPITRCIM | ETH_MMCRXIMR_RXLPIUSCIM | ETH_MMCRXIMR_RXUCGPIM | ETH_MMCRXIMR_RXALGNERPIM | ETH_MMCRXIMR_RXCRCERPIM;
  374. /* Disable MAC interrupts */
  375. ETH->MACIER = 0;
  376. /* Enable the desired DMA interrupts */
  377. ETH->DMAC0IER = ETH_DMAC0IER_NIE | ETH_DMAC0IER_RIE | ETH_DMAC0IER_TIE;
  378. /* Enable MAC transmission and reception */
  379. ETH->MACCR |= ETH_MACCR_TE | ETH_MACCR_RE;
  380. /* Enable DMA transmission and reception */
  381. ETH->DMAC0TXCR |= ETH_DMAC0TXCR_ST;
  382. ETH->DMAC0RXCR |= ETH_DMAC0RXCR_SR;
  383. /* Reset PHY transceiver */
  384. phy_write_reg(RTL8211E_PHY_ADDR, RTL8211E_BMCR, RTL8211E_BMCR_RESET);
  385. status = phy_read_reg(RTL8211E_PHY_ADDR, RTL8211E_BMCR);
  386. /* Wait for the reset to complete */
  387. tickstart = rt_tick_get();
  388. while (status & RTL8211E_BMCR_RESET)
  389. {
  390. if((rt_tick_get() - tickstart) > ETH_TIME_OUT)
  391. {
  392. LOG_E("PHY software reset timeout!");
  393. return -RT_ETIMEOUT;
  394. }
  395. else
  396. {
  397. status = phy_read_reg(RTL8211E_PHY_ADDR, RTL8211E_BMCR);
  398. }
  399. }
  400. /* The PHY will generate interrupts when link status changes are detected */
  401. phy_write_reg(RTL8211E_PHY_ADDR, RTL8211E_INER, RTL8211E_INER_AN_COMPLETE | RTL8211E_INER_LINK_STATUS);
  402. return RT_EOK;
  403. }
  404. static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
  405. {
  406. LOG_D("emac open");
  407. return RT_EOK;
  408. }
  409. static rt_err_t rt_stm32_eth_close(rt_device_t dev)
  410. {
  411. LOG_D("emac close");
  412. return RT_EOK;
  413. }
  414. static rt_ssize_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  415. {
  416. LOG_D("emac read");
  417. rt_set_errno(-RT_ENOSYS);
  418. return 0;
  419. }
  420. static rt_ssize_t rt_stm32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  421. {
  422. LOG_D("emac write");
  423. rt_set_errno(-RT_ENOSYS);
  424. return 0;
  425. }
  426. static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
  427. {
  428. switch (cmd)
  429. {
  430. case NIOCTL_GADDR:
  431. /* get mac address */
  432. if (args)
  433. {
  434. rt_memcpy(args, stm32_eth_device.dev_addr, 6);
  435. }
  436. else
  437. {
  438. return -RT_ERROR;
  439. }
  440. break;
  441. default :
  442. break;
  443. }
  444. return RT_EOK;
  445. }
  446. rt_err_t rt_stm32_eth_tx(rt_device_t dev, struct pbuf *p)
  447. {
  448. uint32_t framelen = 0;
  449. struct pbuf *q = RT_NULL;
  450. /* Copy user data to the transmit buffer */
  451. for (q = p; q != NULL; q = q->next)
  452. {
  453. /* Make sure the current buffer is available for writing */
  454. if((txDmaDesc[txIndex].tdes3 & ETH_TDES3_OWN) != 0)
  455. {
  456. LOG_D("buffer not valid");
  457. return ERR_USE;
  458. }
  459. level = rt_hw_interrupt_disable();
  460. rt_memcpy(&txBuffer[txIndex][framelen], q->payload, q->len);
  461. framelen += q->len;
  462. rt_hw_interrupt_enable(level);
  463. /* Check the frame length */
  464. if (framelen > ETH_TX_BUF_SIZE - 1)
  465. {
  466. LOG_D(" tx buffer frame length over : %d", framelen);
  467. return ERR_USE;
  468. }
  469. }
  470. #ifdef ETH_TX_DUMP
  471. rt_kprintf("Tx dump, len= %d\r\n", framelen);
  472. dump_hex(txBuffer[txIndex], framelen);
  473. #endif
  474. /* Set the start address of the buffer */
  475. txDmaDesc[txIndex].tdes0 = (uint32_t)txBuffer[txIndex];
  476. /* Write the number of bytes to send */
  477. txDmaDesc[txIndex].tdes2 = ETH_TDES2_IOC | (framelen & ETH_TDES2_B1L);
  478. /* Give the ownership of the descriptor to the DMA */
  479. txDmaDesc[txIndex].tdes3 = ETH_TDES3_OWN | ETH_TDES3_FD | ETH_TDES3_LD;
  480. /* Data synchronization barrier */
  481. __DSB();
  482. /* Clear TBU flag to resume processing */
  483. ETH->DMAC0SR = ETH_DMAC0SR_TBU;
  484. /* Instruct the DMA to poll the transmit descriptor list */
  485. ETH->DMAC0TXDTPR = 0;
  486. if (++txIndex > ETH_TXBUFNB - 1)
  487. {
  488. txIndex = 0;
  489. }
  490. return ERR_OK;
  491. }
  492. struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
  493. {
  494. rt_uint32_t framelength = 0;
  495. uint32_t framelen = 0;
  496. struct pbuf *p = RT_NULL, *q = RT_NULL;
  497. /* The current buffer is available for reading */
  498. if (!(rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_OWN))
  499. {
  500. /* FD and LD flags should be set */
  501. if ((rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_FD) && (rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_LD))
  502. {
  503. /* Make sure no error occurred */
  504. if(!(rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_ES))
  505. {
  506. /* Retrieve the length of the frame */
  507. framelength = rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_PL;
  508. /* check the frame length */
  509. framelength = (framelength > ETH_RX_BUF_SIZE) ? ETH_RX_BUF_SIZE : framelength;
  510. p = pbuf_alloc(PBUF_RAW, framelength, PBUF_RAM);
  511. if (p != NULL)
  512. {
  513. for (q = p; q != NULL; q = q->next)
  514. {
  515. level=rt_hw_interrupt_disable();
  516. rt_memcpy(q->payload, &rxBuffer[rxIndex][framelen], q->len);
  517. framelen += q->len;
  518. rt_hw_interrupt_enable(level);
  519. if (framelen > framelength)
  520. {
  521. LOG_E("frame len is too long!");
  522. return RT_NULL;
  523. }
  524. }
  525. }
  526. }
  527. else
  528. {
  529. /* The received packet contains an error */
  530. LOG_D("the received packet contains an error!");
  531. return RT_NULL;
  532. }
  533. }
  534. else
  535. {
  536. /* The packet is not valid */
  537. LOG_D("the packet is not valid");
  538. return RT_NULL;
  539. }
  540. /* Set the start address of the buffer */
  541. rxDmaDesc[rxIndex].rdes0 = (uint32_t)rxBuffer[rxIndex];
  542. /* Give the ownership of the descriptor back to the DMA */
  543. rxDmaDesc[rxIndex].rdes3 = ETH_RDES3_OWN | ETH_RDES3_IOC | ETH_RDES3_BUF1V;
  544. #ifdef ETH_RX_DUMP
  545. rt_kprintf("Rx dump, len= %d\r\n", framelen);
  546. dump_hex(rxBuffer[rxIndex], framelen);
  547. #endif
  548. /* Increment index and wrap around if necessary */
  549. if (++rxIndex > ETH_RXBUFNB - 1)
  550. {
  551. rxIndex = 0;
  552. }
  553. /* Clear RBU flag to resume processing */
  554. ETH->DMAC0SR = ETH_DMAC0SR_RBU;
  555. /* Instruct the DMA to poll the receive descriptor list */
  556. ETH->DMAC0RXDTPR = 0;
  557. }
  558. return p;
  559. }
  560. void ETH1_IRQHandler(void)
  561. {
  562. rt_uint32_t status = 0;
  563. /* enter interrupt */
  564. rt_interrupt_enter();
  565. /* Read DMA status register */
  566. status = ETH->DMAC0SR;
  567. /* Frame transmitted */
  568. if (status & ETH_DMAC0SR_TI)
  569. {
  570. /* Clear the Eth DMA Tx IT pending bits */
  571. ETH->DMAC0SR = ETH_DMAC0SR_TI;
  572. }
  573. /* Frame received */
  574. else if (status & ETH_DMAC0SR_RI)
  575. {
  576. /* Disable RIE interrupt */
  577. ETH->DMAC0IER &= ~ETH_DMAC0IER_RIE;
  578. rt_event_send(&rx_event, status);
  579. }
  580. /* ETH DMA Error */
  581. if (status & ETH_DMAC0SR_AIS)
  582. {
  583. ETH->DMAC0IER &= ~ETH_DMAC0IER_AIE;
  584. LOG_E("eth dam err");
  585. }
  586. /* Clear the interrupt flags */
  587. ETH->DMAC0SR = ETH_DMAC0SR_NIS;
  588. /* leave interrupt */
  589. rt_interrupt_leave();
  590. }
  591. static void phy_linkchange()
  592. {
  593. rt_uint32_t status = 0;
  594. /* Read status register to acknowledge the interrupt */
  595. status = phy_read_reg(RTL8211E_PHY_ADDR, RTL8211E_INSR);
  596. if (status & (RTL8211E_INSR_AN_COMPLETE | RTL8211E_INSR_LINK_STATUS))
  597. {
  598. status = phy_read_reg(RTL8211E_PHY_ADDR, RTL8211E_BMSR);
  599. status = phy_read_reg(RTL8211E_PHY_ADDR, RTL8211E_BMSR);
  600. if (status & RTL8211E_BMSR_LINK_STATUS)
  601. {
  602. LOG_D("link up");
  603. status = phy_read_reg(RTL8211E_PHY_ADDR, RTL8211E_PHYSR);
  604. switch (status & RTL8211E_PHYSR_SPEED)
  605. {
  606. case RTL8211E_PHYSR_SPEED_10MBPS:
  607. {
  608. LOG_D("speed: 10M");
  609. stm32_eth_device.eth_speed |= PHY_10M;
  610. break;
  611. }
  612. case RTL8211E_PHYSR_SPEED_100MBPS:
  613. {
  614. LOG_D("speed: 100M");
  615. stm32_eth_device.eth_speed |= PHY_100M;
  616. break;
  617. }
  618. case RTL8211E_PHYSR_SPEED_1000MBPS:
  619. {
  620. LOG_D("speed: 1000M");
  621. stm32_eth_device.eth_speed |= PHY_1000M;
  622. break;
  623. }
  624. /* Unknown speed */
  625. default:
  626. rt_kprintf("Invalid speed.");
  627. break;
  628. }
  629. stm32_eth_device.eth_mode = (status & RTL8211E_PHYSR_DUPLEX)? PHY_FULL_DUPLEX : PHY_HALF_DUPLEX;
  630. update_mac_mode();
  631. /* send link up. */
  632. eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
  633. }
  634. else
  635. {
  636. LOG_D("link down");
  637. eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
  638. }
  639. }
  640. }
  641. #ifdef PHY_USING_INTERRUPT_MODE
  642. static void eth_phy_isr(void *args)
  643. {
  644. rt_uint32_t status = 0;
  645. phy_read_reg(RTL8211E_PHY_ADDR, PHY_INTERRUPT_FLAG_REG, (uint32_t *)&status);
  646. LOG_D("phy interrupt status reg is 0x%X", status);
  647. phy_linkchange();
  648. }
  649. #endif /* PHY_USING_INTERRUPT_MODE */
  650. static void phy_monitor_thread_entry(void *parameter)
  651. {
  652. rt_uint32_t status = 0;
  653. phy_linkchange();
  654. #ifdef PHY_USING_INTERRUPT_MODE
  655. /* configuration intterrupt pin */
  656. rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
  657. rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_isr, (void *)"callbackargs");
  658. rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE);
  659. /* enable phy interrupt */
  660. phy_write_reg(RTL8211E_PHY_ADDR, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK);
  661. #if defined(PHY_INTERRUPT_CTRL_REG)
  662. phy_write_reg( RTL8211E_PHY_ADDR, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN);
  663. #endif
  664. #else /* PHY_USING_INTERRUPT_MODE */
  665. stm32_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
  666. NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
  667. if (!stm32_eth_device.poll_link_timer || rt_timer_start(stm32_eth_device.poll_link_timer) != RT_EOK)
  668. {
  669. LOG_E("Start link change detection timer failed");
  670. }
  671. #endif /* PHY_USING_INTERRUPT_MODE */
  672. while(1)
  673. {
  674. if (rt_event_recv(&rx_event, 0xffffffff, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
  675. RT_WAITING_FOREVER, &status) == RT_EOK)
  676. {
  677. /* check dma rx buffer */
  678. if (ETH->DMAC0SR & ETH_DMAC0SR_RI)
  679. {
  680. /* Clear interrupt flag */
  681. ETH->DMAC0SR = ETH_DMAC0SR_RI;
  682. /* Process all pending packets */
  683. while (rxDmaDesc[rxIndex].rdes3 & ETH_RDES3_PL)
  684. {
  685. /* trigger lwip receive thread */
  686. eth_device_ready(&(stm32_eth_device.parent));
  687. }
  688. }
  689. /* enable DMA interrupts */
  690. ETH->DMAC0IER = ETH_DMAC0IER_NIE | ETH_DMAC0IER_RIE | ETH_DMAC0IER_TIE;
  691. }
  692. }
  693. }
  694. /* Register the EMAC device */
  695. static int rt_hw_stm32_eth_init(void)
  696. {
  697. rt_err_t state = RT_EOK;
  698. /* OUI 00-80-E1 STMICROELECTRONICS. */
  699. stm32_eth_device.dev_addr[0] = 0x00;
  700. stm32_eth_device.dev_addr[1] = 0x80;
  701. stm32_eth_device.dev_addr[2] = 0xE1;
  702. /* generate MAC addr from 96bit unique ID. */
  703. stm32_eth_device.dev_addr[3] = *(rt_uint8_t *)(UID_BASE + 4);
  704. stm32_eth_device.dev_addr[4] = *(rt_uint8_t *)(UID_BASE + 2);
  705. stm32_eth_device.dev_addr[5] = *(rt_uint8_t *)(UID_BASE + 0);
  706. stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
  707. stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
  708. stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
  709. stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
  710. stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
  711. stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
  712. stm32_eth_device.parent.parent.user_data = RT_NULL;
  713. stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
  714. stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
  715. rt_event_init(&rx_event, "eth_rx", RT_IPC_FLAG_FIFO);
  716. /* register eth device */
  717. state = eth_device_init(&(stm32_eth_device.parent), "e0");
  718. if (RT_EOK == state)
  719. {
  720. LOG_D("emac device init success");
  721. }
  722. else
  723. {
  724. LOG_E("emac device init faild: %d", state);
  725. state = -RT_ERROR;
  726. }
  727. /* start phy monitor */
  728. rt_thread_t tid;
  729. tid = rt_thread_create("phy",
  730. phy_monitor_thread_entry,
  731. RT_NULL,
  732. 1024,
  733. RT_THREAD_PRIORITY_MAX - 2,
  734. 2);
  735. if (tid != RT_NULL)
  736. {
  737. rt_thread_startup(tid);
  738. }
  739. else
  740. {
  741. state = -RT_ERROR;
  742. }
  743. return state;
  744. }
  745. INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);
  746. #endif