sensor_cmd.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2019-07-16 WillianChan Increase the output of sensor information
  10. * 2020-02-22 luhuadong Add vendor info and sensor types for cmd
  11. * 2022-12-17 Meco Man re-implement sensor framework
  12. */
  13. #include <drivers/sensor.h>
  14. #define DBG_TAG "sensor.cmd"
  15. #define DBG_LVL DBG_INFO
  16. #include <rtdbg.h>
  17. #include <stdlib.h>
  18. #include <string.h>
  19. static rt_sem_t sensor_rx_sem = RT_NULL;
  20. static const char *sensor_get_type_name(rt_sensor_info_t info)
  21. {
  22. switch(info->type)
  23. {
  24. case RT_SENSOR_TYPE_ACCE:
  25. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ACCE);
  26. case RT_SENSOR_TYPE_GYRO:
  27. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_GYRO);
  28. case RT_SENSOR_TYPE_MAG:
  29. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_MAG);
  30. case RT_SENSOR_TYPE_TEMP:
  31. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TEMP);
  32. case RT_SENSOR_TYPE_HUMI:
  33. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_HUMI);
  34. case RT_SENSOR_TYPE_BARO:
  35. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_BARO);
  36. case RT_SENSOR_TYPE_LIGHT:
  37. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_LIGHT);
  38. case RT_SENSOR_TYPE_PROXIMITY:
  39. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_PROXIMITY);
  40. case RT_SENSOR_TYPE_HR:
  41. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_HR);
  42. case RT_SENSOR_TYPE_TVOC:
  43. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TVOC);
  44. case RT_SENSOR_TYPE_NOISE:
  45. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_NOISE);
  46. case RT_SENSOR_TYPE_STEP:
  47. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_STEP);
  48. case RT_SENSOR_TYPE_FORCE:
  49. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_FORCE);
  50. case RT_SENSOR_TYPE_DUST:
  51. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_DUST);
  52. case RT_SENSOR_TYPE_ECO2:
  53. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ECO2);
  54. case RT_SENSOR_TYPE_GNSS:
  55. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_GNSS);
  56. case RT_SENSOR_TYPE_TOF:
  57. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TOF);
  58. case RT_SENSOR_TYPE_SPO2:
  59. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_SPO2);
  60. case RT_SENSOR_TYPE_IAQ:
  61. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_IAQ);
  62. case RT_SENSOR_TYPE_ETOH:
  63. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ETOH);
  64. case RT_SENSOR_TYPE_BP:
  65. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_BP);
  66. case RT_SENSOR_TYPE_VOLTAGE:
  67. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_VOLTAGE);
  68. case RT_SENSOR_TYPE_CURRENT:
  69. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_CURRENT);
  70. case RT_SENSOR_TYPE_NONE:
  71. default:
  72. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_NONE);
  73. }
  74. }
  75. static const char *sensor_get_vendor_name(rt_sensor_info_t info)
  76. {
  77. switch(info->vendor)
  78. {
  79. case RT_SENSOR_VENDOR_VIRTUAL:
  80. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_VIRTUAL);
  81. case RT_SENSOR_VENDOR_ONCHIP:
  82. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_ONCHIP);
  83. case RT_SENSOR_VENDOR_STM:
  84. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_STM);
  85. case RT_SENSOR_VENDOR_BOSCH:
  86. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_BOSCH);
  87. case RT_SENSOR_VENDOR_INVENSENSE:
  88. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_INVENSENSE);
  89. case RT_SENSOR_VENDOR_SEMTECH:
  90. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SEMTECH);
  91. case RT_SENSOR_VENDOR_GOERTEK:
  92. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_GOERTEK);
  93. case RT_SENSOR_VENDOR_MIRAMEMS:
  94. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MIRAMEMS);
  95. case RT_SENSOR_VENDOR_DALLAS:
  96. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_DALLAS);
  97. case RT_SENSOR_VENDOR_ASAIR:
  98. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_ASAIR);
  99. case RT_SENSOR_VENDOR_SHARP:
  100. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SHARP);
  101. case RT_SENSOR_VENDOR_SENSIRION:
  102. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SENSIRION);
  103. case RT_SENSOR_VENDOR_TI:
  104. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_TI);
  105. case RT_SENSOR_VENDOR_PLANTOWER:
  106. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_PLANTOWER);
  107. case RT_SENSOR_VENDOR_AMS:
  108. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_AMS);
  109. case RT_SENSOR_VENDOR_MAXIM:
  110. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MAXIM);
  111. case RT_SENSOR_VENDOR_MELEXIS:
  112. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MELEXIS);
  113. case RT_SENSOR_VENDOR_LSC:
  114. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_LSC);
  115. case RT_SENSOR_VENDOR_UNKNOWN:
  116. default:
  117. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_UNKNOWN);
  118. }
  119. }
  120. static const char *sensor_get_unit_name(rt_sensor_info_t info)
  121. {
  122. switch(info->unit)
  123. {
  124. case RT_SENSOR_UNIT_MG:
  125. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MG);
  126. case RT_SENSOR_UNIT_MDPS:
  127. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MDPS);
  128. case RT_SENSOR_UNIT_MGAUSS:
  129. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MGAUSS);
  130. case RT_SENSOR_UNIT_LUX:
  131. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_LUX);
  132. case RT_SENSOR_UNIT_M:
  133. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_M);
  134. case RT_SENSOR_UNIT_CM:
  135. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_CM);
  136. case RT_SENSOR_UNIT_MM:
  137. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MM);
  138. case RT_SENSOR_UNIT_PA:
  139. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PA);
  140. case RT_SENSOR_UNIT_MMHG:
  141. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MMHG);
  142. case RT_SENSOR_UNIT_PERCENTAGE:
  143. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PERCENTAGE);
  144. case RT_SENSOR_UNIT_PERMILLAGE:
  145. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PERMILLAGE);
  146. case RT_SENSOR_UNIT_CELSIUS:
  147. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_CELSIUS);
  148. case RT_SENSOR_UNIT_FAHRENHEIT:
  149. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_FAHRENHEIT);
  150. case RT_SENSOR_UNIT_KELVIN:
  151. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_KELVIN);
  152. case RT_SENSOR_UNIT_HZ:
  153. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_HZ);
  154. case RT_SENSOR_UNIT_V:
  155. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_V);
  156. case RT_SENSOR_UNIT_MV:
  157. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MV);
  158. case RT_SENSOR_UNIT_A:
  159. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_A);
  160. case RT_SENSOR_UNIT_MA:
  161. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MA);
  162. case RT_SENSOR_UNIT_N:
  163. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_N);
  164. case RT_SENSOR_UNIT_MN:
  165. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MN);
  166. case RT_SENSOR_UNIT_BPM:
  167. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_BPM);
  168. case RT_SENSOR_UNIT_PPM:
  169. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PPM);
  170. case RT_SENSOR_UNIT_PPB:
  171. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PPB);
  172. case RT_SENSOR_UNIT_DMS:
  173. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_DMS);
  174. case RT_SENSOR_UNIT_DD:
  175. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_DD);
  176. case RT_SENSOR_UNIT_MGM3:
  177. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MGM3);
  178. case RT_SENSOR_UNIT_NONE:
  179. default:
  180. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_NONE);
  181. }
  182. }
  183. static const char* sensor_get_accuracy_mode_name(rt_sensor_info_t info)
  184. {
  185. switch(RT_SENSOR_MODE_GET_ACCURACY(info->mode))
  186. {
  187. case RT_SENSOR_MODE_ACCURACY_HIGHEST:
  188. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_HIGHEST);
  189. case RT_SENSOR_MODE_ACCURACY_HIGH:
  190. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_HIGH);
  191. case RT_SENSOR_MODE_ACCURACY_MEDIUM:
  192. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_MEDIUM);
  193. case RT_SENSOR_MODE_ACCURACY_LOW:
  194. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_LOW);
  195. case RT_SENSOR_MODE_ACCURACY_LOWEST:
  196. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_LOWEST);
  197. case RT_SENSOR_MODE_ACCURACY_NOTRUST:
  198. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_NOTRUST);
  199. default:
  200. rt_kprintf("accuracy mode illegal!\n");
  201. return "";
  202. }
  203. }
  204. static const char* sensor_get_power_mode_name(rt_sensor_info_t info)
  205. {
  206. switch(RT_SENSOR_MODE_GET_POWER(info->mode))
  207. {
  208. case RT_SENSOR_MODE_POWER_HIGHEST:
  209. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_HIGHEST);
  210. case RT_SENSOR_MODE_POWER_HIGH:
  211. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_HIGH);
  212. case RT_SENSOR_MODE_POWER_MEDIUM:
  213. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_MEDIUM);
  214. case RT_SENSOR_MODE_POWER_LOW:
  215. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_LOW);
  216. case RT_SENSOR_MODE_POWER_LOWEST:
  217. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_LOWEST);
  218. case RT_SENSOR_MODE_POWER_DOWN:
  219. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_DOWN);
  220. default:
  221. rt_kprintf("power mode illegal!\n");
  222. return "";
  223. }
  224. }
  225. static const char* sensor_get_fetch_mode_name(rt_sensor_info_t info)
  226. {
  227. switch(RT_SENSOR_MODE_GET_FETCH(info->mode))
  228. {
  229. case RT_SENSOR_MODE_FETCH_POLLING:
  230. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_POLLING);
  231. case RT_SENSOR_MODE_FETCH_INT:
  232. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_INT);
  233. case RT_SENSOR_MODE_FETCH_FIFO:
  234. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_FIFO);
  235. default:
  236. rt_kprintf("fetch data mode illegal!\n");
  237. return "";
  238. }
  239. }
  240. static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
  241. {
  242. const char *unit_name = sensor_get_unit_name(&sensor->info);
  243. switch (sensor->info.type)
  244. {
  245. case RT_SENSOR_TYPE_ACCE:
  246. rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, unit_name, sensor_data->timestamp);
  247. break;
  248. case RT_SENSOR_TYPE_GYRO:
  249. rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.gyro.x, sensor_data->data.gyro.y, sensor_data->data.gyro.z, unit_name, sensor_data->timestamp);
  250. break;
  251. case RT_SENSOR_TYPE_MAG:
  252. rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, unit_name, sensor_data->timestamp);
  253. break;
  254. case RT_SENSOR_TYPE_GNSS:
  255. rt_kprintf("num:%d, lon:%f, lat:%f %s, timestamp:%u\n", num, sensor_data->data.coord.longitude, sensor_data->data.coord.latitude, unit_name, sensor_data->timestamp);
  256. break;
  257. case RT_SENSOR_TYPE_TEMP:
  258. rt_kprintf("num:%d, temp:%f%s, timestamp:%u\n", num, sensor_data->data.temp, unit_name, sensor_data->timestamp);
  259. break;
  260. case RT_SENSOR_TYPE_HUMI:
  261. rt_kprintf("num:%d, humi:%f%s, timestamp:%u\n", num, sensor_data->data.humi, unit_name, sensor_data->timestamp);
  262. break;
  263. case RT_SENSOR_TYPE_BARO:
  264. rt_kprintf("num:%d, press:%f%s, timestamp:%u\n", num, sensor_data->data.baro, unit_name, sensor_data->timestamp);
  265. break;
  266. case RT_SENSOR_TYPE_LIGHT:
  267. rt_kprintf("num:%d, light:%f%s, timestamp:%u\n", num, sensor_data->data.light, unit_name, sensor_data->timestamp);
  268. break;
  269. case RT_SENSOR_TYPE_PROXIMITY:
  270. case RT_SENSOR_TYPE_TOF:
  271. rt_kprintf("num:%d, distance:%f%s, timestamp:%u\n", num, sensor_data->data.proximity, unit_name, sensor_data->timestamp);
  272. break;
  273. case RT_SENSOR_TYPE_HR:
  274. rt_kprintf("num:%d, heart rate:%f%s, timestamp:%u\n", num, sensor_data->data.hr, unit_name, sensor_data->timestamp);
  275. break;
  276. case RT_SENSOR_TYPE_TVOC:
  277. rt_kprintf("num:%d, tvoc:%f%s, timestamp:%u\n", num, sensor_data->data.tvoc, unit_name, sensor_data->timestamp);
  278. break;
  279. case RT_SENSOR_TYPE_NOISE:
  280. rt_kprintf("num:%d, noise:%f%s, timestamp:%u\n", num, sensor_data->data.noise, unit_name, sensor_data->timestamp);
  281. break;
  282. case RT_SENSOR_TYPE_STEP:
  283. rt_kprintf("num:%d, step:%f%s, timestamp:%u\n", num, sensor_data->data.step, unit_name, sensor_data->timestamp);
  284. break;
  285. case RT_SENSOR_TYPE_FORCE:
  286. rt_kprintf("num:%d, force:%f%s, timestamp:%u\n", num, sensor_data->data.force, unit_name, sensor_data->timestamp);
  287. break;
  288. case RT_SENSOR_TYPE_DUST:
  289. rt_kprintf("num:%d, dust:%f%s, timestamp:%u\n", num, sensor_data->data.dust, unit_name, sensor_data->timestamp);
  290. break;
  291. case RT_SENSOR_TYPE_ECO2:
  292. rt_kprintf("num:%d, eco2:%f%s, timestamp:%u\n", num, sensor_data->data.eco2, unit_name, sensor_data->timestamp);
  293. break;
  294. case RT_SENSOR_TYPE_IAQ:
  295. rt_kprintf("num:%d, IAQ:%f%s, timestamp:%u\n", num, sensor_data->data.iaq, unit_name, sensor_data->timestamp);
  296. break;
  297. case RT_SENSOR_TYPE_ETOH:
  298. rt_kprintf("num:%d, EtOH:%f%s, timestamp:%u\n", num, sensor_data->data.etoh, unit_name, sensor_data->timestamp);
  299. break;
  300. case RT_SENSOR_TYPE_BP:
  301. rt_kprintf("num:%d, bp.sbp:%f, bp.dbp:%f %s, timestamp:%u\n", num, sensor_data->data.bp.sbp, sensor_data->data.bp.dbp, unit_name, sensor_data->timestamp);
  302. break;
  303. case RT_SENSOR_TYPE_NONE:
  304. default:
  305. rt_kprintf("Unknown type of sensor!\n");
  306. break;
  307. }
  308. }
  309. static const char* sensor_get_intf_name(rt_sensor_t sensor)
  310. {
  311. rt_uint8_t type = sensor->config.intf.type;
  312. if (type | RT_SENSOR_INTF_I2C)
  313. {
  314. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_I2C);
  315. }
  316. else if (type | RT_SENSOR_INTF_SPI)
  317. {
  318. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_SPI);
  319. }
  320. else if (type | RT_SENSOR_INTF_UART)
  321. {
  322. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_UART);
  323. }
  324. else if (type | RT_SENSOR_INTF_ONEWIRE)
  325. {
  326. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_ONEWIRE);
  327. }
  328. else if (type | RT_SENSOR_INTF_CAN)
  329. {
  330. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_CAN);
  331. }
  332. else if (type | RT_SENSOR_INTF_MODBUS)
  333. {
  334. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_MODBUS);
  335. }
  336. else
  337. {
  338. return "";
  339. }
  340. }
  341. static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
  342. {
  343. rt_sem_release(sensor_rx_sem);
  344. return 0;
  345. }
  346. static void sensor_fifo_rx_entry(void *parameter)
  347. {
  348. rt_sensor_t sensor = (rt_sensor_t)parameter;
  349. struct rt_sensor_data *data = RT_NULL;
  350. rt_size_t res, i;
  351. data = (struct rt_sensor_data *)rt_calloc(sensor->info.fifo_max, sizeof(struct rt_sensor_data));
  352. if (data == RT_NULL)
  353. {
  354. LOG_E("Memory allocation failed!");
  355. }
  356. while (1)
  357. {
  358. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  359. res = rt_device_read((rt_device_t)sensor, 0, data, sensor->info.fifo_max);
  360. for (i = 0; i < res; i++)
  361. {
  362. sensor_show_data(i, sensor, &data[i]);
  363. }
  364. }
  365. }
  366. static void sensor_fifo(int argc, char **argv)
  367. {
  368. static rt_thread_t tid1 = RT_NULL;
  369. rt_device_t dev = RT_NULL;
  370. rt_sensor_t sensor;
  371. dev = rt_device_find(argv[1]);
  372. if (dev == RT_NULL)
  373. {
  374. LOG_E("Can't find device:%s", argv[1]);
  375. return;
  376. }
  377. sensor = (rt_sensor_t)dev;
  378. if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
  379. {
  380. LOG_E("open device failed!");
  381. return;
  382. }
  383. if (sensor_rx_sem == RT_NULL)
  384. {
  385. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  386. }
  387. else
  388. {
  389. LOG_E("The thread is running, please reboot and try again");
  390. return;
  391. }
  392. tid1 = rt_thread_create("sen_rx_thread",
  393. sensor_fifo_rx_entry, sensor,
  394. 1024,
  395. 15, 5);
  396. if (tid1 != RT_NULL)
  397. rt_thread_startup(tid1);
  398. rt_device_set_rx_indicate(dev, rx_callback);
  399. }
  400. MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
  401. static void sensor_irq_rx_entry(void *parameter)
  402. {
  403. rt_device_t dev = (rt_device_t)parameter;
  404. rt_sensor_t sensor = (rt_sensor_t)parameter;
  405. struct rt_sensor_data data;
  406. rt_size_t res, i = 0;
  407. while (1)
  408. {
  409. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  410. res = rt_device_read(dev, 0, &data, 1);
  411. if (res == 1)
  412. {
  413. sensor_show_data(i++, sensor, &data);
  414. }
  415. }
  416. }
  417. static void sensor_int(int argc, char **argv)
  418. {
  419. static rt_thread_t tid1 = RT_NULL;
  420. rt_device_t dev = RT_NULL;
  421. rt_sensor_t sensor;
  422. dev = rt_device_find(argv[1]);
  423. if (dev == RT_NULL)
  424. {
  425. LOG_E("Can't find device:%s", argv[1]);
  426. return;
  427. }
  428. sensor = (rt_sensor_t)dev;
  429. if (sensor_rx_sem == RT_NULL)
  430. {
  431. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  432. }
  433. else
  434. {
  435. LOG_E("The thread is running, please reboot and try again");
  436. return;
  437. }
  438. tid1 = rt_thread_create("sen_rx_thread",
  439. sensor_irq_rx_entry, sensor,
  440. 1024,
  441. 15, 5);
  442. if (tid1 != RT_NULL)
  443. rt_thread_startup(tid1);
  444. rt_device_set_rx_indicate(dev, rx_callback);
  445. if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
  446. {
  447. LOG_E("open device failed!");
  448. return;
  449. }
  450. }
  451. MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
  452. static void sensor_polling(int argc, char **argv)
  453. {
  454. rt_uint16_t num = 10;
  455. rt_device_t dev = RT_NULL;
  456. rt_sensor_t sensor;
  457. struct rt_sensor_data data;
  458. rt_size_t res, i;
  459. rt_int32_t delay;
  460. rt_err_t result;
  461. dev = rt_device_find(argv[1]);
  462. if (dev == RT_NULL)
  463. {
  464. LOG_E("Can't find device:%s", argv[1]);
  465. return;
  466. }
  467. if (argc > 2)
  468. num = atoi(argv[2]);
  469. sensor = (rt_sensor_t)dev;
  470. delay = sensor->info.acquire_min > 100 ? sensor->info.acquire_min : 100;
  471. result = rt_device_open(dev, RT_DEVICE_FLAG_RDONLY);
  472. if (result != RT_EOK)
  473. {
  474. LOG_E("open device failed! error code : %d", result);
  475. return;
  476. }
  477. for (i = 0; i < num; i++)
  478. {
  479. res = rt_device_read(dev, 0, &data, 1);
  480. if (res != 1)
  481. {
  482. LOG_E("read data failed!size is %d", res);
  483. }
  484. else
  485. {
  486. sensor_show_data(i, sensor, &data);
  487. }
  488. rt_thread_mdelay(delay);
  489. }
  490. rt_device_close(dev);
  491. }
  492. MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
  493. static void sensor_cmd_warning_unknown(void)
  494. {
  495. LOG_W("Unknown command, please enter 'sensor' get help information!");
  496. rt_kprintf("sensor [OPTION] [PARAM]\n");
  497. rt_kprintf(" list list all sensor devices\n");
  498. rt_kprintf(" probe <dev_name> probe sensor by given name\n");
  499. rt_kprintf(" info get sensor information\n");
  500. rt_kprintf(" read [num] read [num] times sensor (default 5)\n");
  501. rt_kprintf(" power [mode] set or get power mode\n");
  502. rt_kprintf(" accuracy [mode] set or get accuracy mode\n");
  503. rt_kprintf(" fetch [mode] set or get fetch data mode\n");
  504. rt_kprintf(" reset reset sensor chip\n");
  505. }
  506. static void sensor_cmd_warning_probe(void)
  507. {
  508. LOG_W("Please probe sensor device first!");
  509. }
  510. static void sensor(int argc, char **argv)
  511. {
  512. static rt_device_t dev = RT_NULL;
  513. struct rt_sensor_data data;
  514. rt_sensor_t sensor;
  515. rt_size_t res, i;
  516. rt_int32_t delay;
  517. /* If the number of arguments less than 2 */
  518. if (argc < 2)
  519. {
  520. sensor_cmd_warning_unknown();
  521. return;
  522. }
  523. else if (!rt_strcmp(argv[1], "info"))
  524. {
  525. if (dev == RT_NULL)
  526. {
  527. sensor_cmd_warning_probe();
  528. return ;
  529. }
  530. sensor = (rt_sensor_t)dev;
  531. rt_kprintf("name :%s\n", sensor->info.name);
  532. rt_kprintf("type: :%s\n", sensor_get_type_name(&sensor->info));
  533. rt_kprintf("vendor :%s\n", sensor_get_vendor_name(&sensor->info));
  534. rt_kprintf("unit :%s\n", sensor_get_unit_name(&sensor->info));
  535. rt_kprintf("fetch data:%s\n", sensor_get_fetch_mode_name(&sensor->info));
  536. rt_kprintf("power :%s\n", sensor_get_power_mode_name(&sensor->info));
  537. rt_kprintf("accuracy :%s\n", sensor_get_accuracy_mode_name(&sensor->info));
  538. rt_kprintf("range max :%f\n", sensor->info.scale.range_max);
  539. rt_kprintf("range min :%f\n", sensor->info.scale.range_min);
  540. rt_kprintf("resolution:%f\n", sensor->info.accuracy.resolution);
  541. rt_kprintf("error :%f\n", sensor->info.accuracy.error);
  542. rt_kprintf("acquire min:%fms\n", sensor->info.acquire_min);
  543. rt_kprintf("fifo max :%d\n", sensor->info.fifo_max);
  544. rt_kprintf("interface type :%s\n", sensor_get_intf_name(sensor));
  545. rt_kprintf("interface device :%s\n", sensor->config.intf.dev_name);
  546. }
  547. else if (!rt_strcmp(argv[1], "read"))
  548. {
  549. rt_uint16_t num = 5;
  550. if (dev == RT_NULL)
  551. {
  552. sensor_cmd_warning_probe();
  553. return;
  554. }
  555. if (argc == 3)
  556. {
  557. num = atoi(argv[2]);
  558. }
  559. sensor = (rt_sensor_t)dev;
  560. delay = sensor->info.acquire_min > 100 ? sensor->info.acquire_min : 100;
  561. for (i = 0; i < num; i++)
  562. {
  563. res = rt_device_read(dev, 0, &data, 1);
  564. if (res != 1)
  565. {
  566. LOG_E("read data failed!size is %d", res);
  567. }
  568. else
  569. {
  570. sensor_show_data(i, sensor, &data);
  571. }
  572. rt_thread_mdelay(delay);
  573. }
  574. }
  575. else if (!rt_strcmp(argv[1], "list"))
  576. {
  577. struct rt_object *object;
  578. struct rt_list_node *node;
  579. struct rt_object_information *information;
  580. rt_sensor_t sensor_dev;
  581. information = rt_object_get_information(RT_Object_Class_Device);
  582. if(information == RT_NULL)
  583. return;
  584. rt_kprintf("device name sensor name sensor type mode resolution range\n");
  585. rt_kprintf("----------- ------------- ------------------ ---- ---------- ----------\n");
  586. for (node = information->object_list.next;
  587. node != &(information->object_list);
  588. node = node->next)
  589. {
  590. object = rt_list_entry(node, struct rt_object, list);
  591. sensor_dev = (rt_sensor_t)object;
  592. if (sensor_dev->parent.type != RT_Device_Class_Sensor)
  593. continue;
  594. rt_kprintf("%-*.*s %-*s %-*s %u%u%u %-*f %.*f - %.*f%-*s\n",
  595. RT_NAME_MAX+3, RT_NAME_MAX, sensor_dev->parent.parent.name,
  596. 13, sensor_dev->info.name,
  597. 18, sensor_get_type_name(&sensor_dev->info),
  598. RT_SENSOR_MODE_GET_ACCURACY(sensor_dev->info.mode), RT_SENSOR_MODE_GET_POWER(sensor_dev->info.mode), RT_SENSOR_MODE_GET_FETCH(sensor_dev->info.mode),
  599. 10, sensor_dev->info.accuracy.resolution,
  600. 2, sensor_dev->info.scale.range_min, 2, sensor_dev->info.scale.range_max, 5, sensor_get_unit_name(&sensor_dev->info));
  601. }
  602. }
  603. else if (!rt_strcmp(argv[1], "reset"))
  604. {
  605. if (dev == RT_NULL)
  606. {
  607. sensor_cmd_warning_probe();
  608. return;
  609. }
  610. if (rt_device_control(dev, RT_SENSOR_CTRL_SOFT_RESET, RT_NULL) != RT_EOK)
  611. {
  612. LOG_E("This sensor doesn't support this command!");
  613. }
  614. }
  615. else if (!rt_strcmp(argv[1], "probe"))
  616. {
  617. rt_uint8_t reg = 0xFF;
  618. rt_device_t new_dev;
  619. if (argc < 3)
  620. {
  621. sensor_cmd_warning_unknown();
  622. return;
  623. }
  624. new_dev = rt_device_find(argv[2]);
  625. if (new_dev == RT_NULL)
  626. {
  627. LOG_E("Can't find device:%s", argv[2]);
  628. return;
  629. }
  630. if (rt_device_open(new_dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  631. {
  632. LOG_E("open device failed!");
  633. return;
  634. }
  635. if (rt_device_control(new_dev, RT_SENSOR_CTRL_GET_ID, &reg) == RT_EOK)
  636. {
  637. rt_kprintf("Sensor Chip ID: %#x\n", reg);
  638. }
  639. if (dev)
  640. {
  641. rt_device_close(dev);
  642. }
  643. dev = new_dev;
  644. }
  645. else if (!rt_strcmp(argv[1], "power"))
  646. {
  647. rt_uint32_t mode;
  648. if (dev == RT_NULL)
  649. {
  650. sensor_cmd_warning_probe();
  651. return;
  652. }
  653. sensor = (rt_sensor_t)dev;
  654. if (argc == 2)
  655. {
  656. rt_kprintf("current power mode: %s\n", sensor_get_power_mode_name(&sensor->info));
  657. }
  658. else if (argc == 3)
  659. {
  660. mode = atoi(argv[2]);
  661. if (rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER_MODE, (void *)mode) == RT_EOK)
  662. {
  663. rt_kprintf("set new power mode as: %s\n", sensor_get_power_mode_name(&sensor->info));
  664. }
  665. else
  666. {
  667. LOG_E("Don't support! Set new power mode error!");
  668. }
  669. }
  670. else
  671. {
  672. sensor_cmd_warning_unknown();
  673. }
  674. }
  675. else if (!rt_strcmp(argv[1], "accuracy"))
  676. {
  677. rt_uint32_t mode;
  678. if (dev == RT_NULL)
  679. {
  680. sensor_cmd_warning_probe();
  681. return;
  682. }
  683. sensor = (rt_sensor_t)dev;
  684. if (argc == 2)
  685. {
  686. rt_kprintf("current accuracy mode: %s\n", sensor_get_accuracy_mode_name(&sensor->info));
  687. }
  688. else if (argc == 3)
  689. {
  690. mode = atoi(argv[2]);
  691. if (rt_device_control(dev, RT_SENSOR_CTRL_SET_ACCURACY_MODE, (void *)mode) == RT_EOK)
  692. {
  693. rt_kprintf("set new accuracy mode as: %s\n", sensor_get_accuracy_mode_name(&sensor->info));
  694. }
  695. else
  696. {
  697. LOG_E("Don't support! Set new accuracy mode error!");
  698. }
  699. }
  700. else
  701. {
  702. sensor_cmd_warning_unknown();
  703. }
  704. }
  705. else if (!rt_strcmp(argv[1], "fetch"))
  706. {
  707. rt_uint32_t mode;
  708. if (dev == RT_NULL)
  709. {
  710. sensor_cmd_warning_probe();
  711. return;
  712. }
  713. sensor = (rt_sensor_t)dev;
  714. if (argc == 2)
  715. {
  716. rt_kprintf("current fetch data mode: %s\n", sensor_get_fetch_mode_name(&sensor->info));
  717. }
  718. else if (argc == 3)
  719. {
  720. mode = atoi(argv[2]);
  721. if (rt_device_control(dev, RT_SENSOR_CTRL_SET_FETCH_MODE, (void *)mode) == RT_EOK)
  722. {
  723. rt_kprintf("set new fetch data mode as: %s\n", sensor_get_fetch_mode_name(&sensor->info));
  724. }
  725. else
  726. {
  727. LOG_E("Don't support! Set new fetch data mode error!");
  728. }
  729. }
  730. else
  731. {
  732. sensor_cmd_warning_unknown();
  733. }
  734. }
  735. else
  736. {
  737. sensor_cmd_warning_unknown();
  738. }
  739. }
  740. MSH_CMD_EXPORT(sensor, sensor test function);