dfs_elm.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2008-02-22 QiuYi The first version.
  9. * 2011-10-08 Bernard fixed the block size in statfs.
  10. * 2011-11-23 Bernard fixed the rename issue.
  11. * 2012-07-26 aozima implement ff_memalloc and ff_memfree.
  12. * 2012-12-19 Bernard fixed the O_APPEND and lseek issue.
  13. * 2013-03-01 aozima fixed the stat(st_mtime) issue.
  14. * 2014-01-26 Bernard Check the sector size before mount.
  15. * 2017-02-13 Hichard Update Fatfs version to 0.12b, support exFAT.
  16. * 2017-04-11 Bernard fix the st_blksize issue.
  17. * 2017-05-26 Urey fix f_mount error when mount more fats
  18. */
  19. #include <rtthread.h>
  20. #include "ffconf.h"
  21. #include "ff.h"
  22. #include <string.h>
  23. #include <sys/time.h>
  24. /* ELM FatFs provide a DIR struct */
  25. #define HAVE_DIR_STRUCTURE
  26. #include <dfs.h>
  27. #include <dfs_fs.h>
  28. #include <dfs_dentry.h>
  29. #include <dfs_file.h>
  30. #include <dfs_mnt.h>
  31. #undef SS
  32. #if FF_MAX_SS == FF_MIN_SS
  33. #define SS(fs) ((UINT)FF_MAX_SS) /* Fixed sector size */
  34. #else
  35. #define SS(fs) ((fs)->ssize) /* Variable sector size */
  36. #endif
  37. static rt_device_t disk[FF_VOLUMES] = {0};
  38. int dfs_elm_unmount(struct dfs_mnt *mnt);
  39. static int elm_result_to_dfs(FRESULT result)
  40. {
  41. int status = RT_EOK;
  42. switch (result)
  43. {
  44. case FR_OK:
  45. break;
  46. case FR_NO_FILE:
  47. case FR_NO_PATH:
  48. case FR_NO_FILESYSTEM:
  49. status = -ENOENT;
  50. break;
  51. case FR_INVALID_NAME:
  52. status = -EINVAL;
  53. break;
  54. case FR_EXIST:
  55. case FR_INVALID_OBJECT:
  56. status = -EEXIST;
  57. break;
  58. case FR_DISK_ERR:
  59. case FR_NOT_READY:
  60. case FR_INT_ERR:
  61. status = -EIO;
  62. break;
  63. case FR_WRITE_PROTECTED:
  64. case FR_DENIED:
  65. status = -EROFS;
  66. break;
  67. case FR_MKFS_ABORTED:
  68. status = -EINVAL;
  69. break;
  70. default:
  71. status = -1;
  72. break;
  73. }
  74. return status;
  75. }
  76. /* results:
  77. * -1, no space to install fatfs driver
  78. * >= 0, there is an space to install fatfs driver
  79. */
  80. static int get_disk(rt_device_t id)
  81. {
  82. int index;
  83. for (index = 0; index < FF_VOLUMES; index ++)
  84. {
  85. if (disk[index] == id)
  86. return index;
  87. }
  88. return -1;
  89. }
  90. static int dfs_elm_mount(struct dfs_mnt *mnt, unsigned long rwflag, const void *data)
  91. {
  92. FATFS *fat;
  93. FRESULT result;
  94. int index;
  95. struct rt_device_blk_geometry geometry;
  96. char logic_nbr[3] = {'0',':', 0};
  97. /* open device, but do not check the status of device */
  98. if (mnt->dev_id == RT_NULL
  99. || rt_device_open(mnt->dev_id, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
  100. {
  101. return -ENODEV;
  102. }
  103. /* get an empty position */
  104. index = get_disk(RT_NULL);
  105. if (index == -1)
  106. {
  107. rt_device_close(mnt->dev_id);
  108. return -ENOENT;
  109. }
  110. logic_nbr[0] = '0' + index;
  111. /* save device */
  112. disk[index] = mnt->dev_id;
  113. /* check sector size */
  114. if (rt_device_control(mnt->dev_id, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry) == RT_EOK)
  115. {
  116. if (geometry.bytes_per_sector > FF_MAX_SS)
  117. {
  118. rt_kprintf("The sector size of device is greater than the sector size of FAT.\n");
  119. rt_device_close(mnt->dev_id);
  120. return -EINVAL;
  121. }
  122. }
  123. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  124. if (fat == RT_NULL)
  125. {
  126. disk[index] = RT_NULL;
  127. rt_device_close(mnt->dev_id);
  128. return -ENOMEM;
  129. }
  130. /* mount fatfs, always 0 logic driver */
  131. result = f_mount(fat, (const TCHAR *)logic_nbr, 1);
  132. if (result == FR_OK)
  133. {
  134. char drive[8];
  135. DIR *dir;
  136. rt_snprintf(drive, sizeof(drive), "%d:/", index);
  137. dir = (DIR *)rt_malloc(sizeof(DIR));
  138. if (dir == RT_NULL)
  139. {
  140. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  141. disk[index] = RT_NULL;
  142. rt_free(fat);
  143. rt_device_close(mnt->dev_id);
  144. return -ENOMEM;
  145. }
  146. /* open the root directory to test whether the fatfs is valid */
  147. result = f_opendir(dir, drive);
  148. if (result != FR_OK)
  149. goto __err;
  150. /* mount succeed! */
  151. mnt->data = fat;
  152. rt_free(dir);
  153. return RT_EOK;
  154. }
  155. __err:
  156. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  157. disk[index] = RT_NULL;
  158. rt_free(fat);
  159. rt_device_close(mnt->dev_id);
  160. return elm_result_to_dfs(result);
  161. }
  162. int dfs_elm_unmount(struct dfs_mnt *mnt)
  163. {
  164. FATFS *fat;
  165. FRESULT result;
  166. int index;
  167. char logic_nbr[3] = {'0',':', 0};
  168. fat = (FATFS *)mnt->data;
  169. RT_ASSERT(fat != RT_NULL);
  170. /* find the device index and then umount it */
  171. index = get_disk(mnt->dev_id);
  172. if (index == -1) /* not found */
  173. return -ENOENT;
  174. logic_nbr[0] = '0' + index;
  175. result = f_mount(RT_NULL, logic_nbr, (BYTE)0);
  176. if (result != FR_OK)
  177. return elm_result_to_dfs(result);
  178. mnt->data = RT_NULL;
  179. disk[index] = RT_NULL;
  180. rt_free(fat);
  181. rt_device_close(mnt->dev_id);
  182. return RT_EOK;
  183. }
  184. int dfs_elm_mkfs(rt_device_t dev_id, const char *fs_name)
  185. {
  186. #define FSM_STATUS_INIT 0
  187. #define FSM_STATUS_USE_TEMP_DRIVER 1
  188. FATFS *fat = RT_NULL;
  189. BYTE *work;
  190. int flag;
  191. FRESULT result;
  192. int index;
  193. char logic_nbr[3] = {'0',':', 0};
  194. MKFS_PARM opt;
  195. work = rt_malloc(FF_MAX_SS);
  196. if(RT_NULL == work) {
  197. return -ENOMEM;
  198. }
  199. if (dev_id == RT_NULL)
  200. {
  201. rt_free(work); /* release memory */
  202. return -EINVAL;
  203. }
  204. /* if the device is already mounted, then just do mkfs to the drv,
  205. * while if it is not mounted yet, then find an empty drive to do mkfs
  206. */
  207. flag = FSM_STATUS_INIT;
  208. index = get_disk(dev_id);
  209. if (index == -1)
  210. {
  211. /* not found the device id */
  212. index = get_disk(RT_NULL);
  213. if (index == -1)
  214. {
  215. /* no space to store an temp driver */
  216. rt_kprintf("sorry, there is no space to do mkfs! \n");
  217. rt_free(work); /* release memory */
  218. return -ENOSPC;
  219. }
  220. else
  221. {
  222. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  223. if (fat == RT_NULL)
  224. {
  225. rt_free(work); /* release memory */
  226. return -ENOMEM;
  227. }
  228. flag = FSM_STATUS_USE_TEMP_DRIVER;
  229. disk[index] = dev_id;
  230. /* try to open device */
  231. rt_device_open(dev_id, RT_DEVICE_OFLAG_RDWR);
  232. /* just fill the FatFs[vol] in ff.c, or mkfs will failded!
  233. * consider this condition: you just umount the elm fat,
  234. * then the space in FatFs[index] is released, and now do mkfs
  235. * on the disk, you will get a failure. so we need f_mount here,
  236. * just fill the FatFS[index] in elm fatfs to make mkfs work.
  237. */
  238. logic_nbr[0] = '0' + index;
  239. f_mount(fat, logic_nbr, (BYTE)index);
  240. }
  241. }
  242. else
  243. {
  244. logic_nbr[0] = '0' + index;
  245. }
  246. /* [IN] Logical drive number */
  247. /* [IN] Format options */
  248. /* [-] Working buffer */
  249. /* [IN] Size of working buffer */
  250. rt_memset(&opt, 0, sizeof(opt));
  251. opt.fmt = FM_ANY|FM_SFD;
  252. result = f_mkfs(logic_nbr, &opt, work, FF_MAX_SS);
  253. rt_free(work); work = RT_NULL;
  254. /* check flag status, we need clear the temp driver stored in disk[] */
  255. if (flag == FSM_STATUS_USE_TEMP_DRIVER)
  256. {
  257. rt_free(fat);
  258. f_mount(RT_NULL, logic_nbr, (BYTE)index);
  259. disk[index] = RT_NULL;
  260. /* close device */
  261. rt_device_close(dev_id);
  262. }
  263. if (result != FR_OK)
  264. {
  265. rt_kprintf("format error, result=%d\n", result);
  266. return elm_result_to_dfs(result);
  267. }
  268. return RT_EOK;
  269. }
  270. int dfs_elm_statfs(struct dfs_mnt *mnt, struct statfs *buf)
  271. {
  272. FATFS *f;
  273. FRESULT res;
  274. char driver[4];
  275. DWORD fre_clust, fre_sect, tot_sect;
  276. RT_ASSERT(mnt != RT_NULL);
  277. RT_ASSERT(buf != RT_NULL);
  278. f = (FATFS *)mnt->data;
  279. rt_snprintf(driver, sizeof(driver), "%d:", f->pdrv);
  280. res = f_getfree(driver, &fre_clust, &f);
  281. if (res)
  282. return elm_result_to_dfs(res);
  283. /* Get total sectors and free sectors */
  284. tot_sect = (f->n_fatent - 2) * f->csize;
  285. fre_sect = fre_clust * f->csize;
  286. buf->f_bfree = fre_sect;
  287. buf->f_blocks = tot_sect;
  288. #if FF_MAX_SS != 512
  289. buf->f_bsize = f->ssize;
  290. #else
  291. buf->f_bsize = 512;
  292. #endif
  293. return 0;
  294. }
  295. int dfs_elm_open(struct dfs_file *file)
  296. {
  297. FIL *fd;
  298. BYTE mode;
  299. FRESULT result;
  300. char *drivers_fn;
  301. #if (FF_VOLUMES > 1)
  302. int vol;
  303. struct dfs_mnt *mnt = file->vnode->mnt;
  304. extern int elm_get_vol(FATFS * fat);
  305. RT_ASSERT(file->vnode->ref_count > 0);
  306. if (file->vnode->ref_count > 1)
  307. {
  308. if (file->vnode->type == FT_DIRECTORY
  309. && !(file->flags & O_DIRECTORY))
  310. {
  311. return -ENOENT;
  312. }
  313. file->fpos = 0;
  314. return 0;
  315. }
  316. if (mnt == NULL)
  317. return -ENOENT;
  318. /* add path for ELM FatFS driver support */
  319. vol = elm_get_vol((FATFS *)mnt->data);
  320. if (vol < 0)
  321. return -ENOENT;
  322. drivers_fn = (char *)rt_malloc(256);
  323. if (drivers_fn == RT_NULL)
  324. return -ENOMEM;
  325. rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->dentry->pathname);
  326. #else
  327. drivers_fn = file->dentry->pathname;
  328. #endif
  329. if (file->flags & O_DIRECTORY)
  330. {
  331. DIR *dir;
  332. if (file->flags & O_CREAT)
  333. {
  334. result = f_mkdir(drivers_fn);
  335. if (result != FR_OK)
  336. {
  337. #if FF_VOLUMES > 1
  338. rt_free(drivers_fn);
  339. #endif
  340. return elm_result_to_dfs(result);
  341. }
  342. }
  343. /* open directory */
  344. dir = (DIR *)rt_malloc(sizeof(DIR));
  345. if (dir == RT_NULL)
  346. {
  347. #if FF_VOLUMES > 1
  348. rt_free(drivers_fn);
  349. #endif
  350. return -ENOMEM;
  351. }
  352. result = f_opendir(dir, drivers_fn);
  353. #if FF_VOLUMES > 1
  354. rt_free(drivers_fn);
  355. #endif
  356. if (result != FR_OK)
  357. {
  358. rt_free(dir);
  359. return elm_result_to_dfs(result);
  360. }
  361. file->vnode->data = dir;
  362. return RT_EOK;
  363. }
  364. else
  365. {
  366. mode = FA_READ;
  367. if (file->flags & O_WRONLY)
  368. mode |= FA_WRITE;
  369. if ((file->flags & O_ACCMODE) & O_RDWR)
  370. mode |= FA_WRITE;
  371. /* Opens the file, if it is existing. If not, a new file is created. */
  372. if (file->flags & O_CREAT)
  373. mode |= FA_OPEN_ALWAYS;
  374. /* Creates a new file. If the file is existing, it is truncated and overwritten. */
  375. if (file->flags & O_TRUNC)
  376. mode |= FA_CREATE_ALWAYS;
  377. /* Creates a new file. The function fails if the file is already existing. */
  378. if (file->flags & O_EXCL)
  379. mode |= FA_CREATE_NEW;
  380. /* allocate a fd */
  381. fd = (FIL *)rt_malloc(sizeof(FIL));
  382. if (fd == RT_NULL)
  383. {
  384. #if FF_VOLUMES > 1
  385. rt_free(drivers_fn);
  386. #endif
  387. return -ENOMEM;
  388. }
  389. result = f_open(fd, drivers_fn, mode);
  390. #if FF_VOLUMES > 1
  391. rt_free(drivers_fn);
  392. #endif
  393. if (result == FR_OK)
  394. {
  395. file->fpos = fd->fptr;
  396. file->vnode->size = f_size(fd);
  397. file->vnode->type = FT_REGULAR;
  398. file->vnode->data = fd;
  399. if (file->flags & O_APPEND)
  400. {
  401. /* seek to the end of file */
  402. f_lseek(fd, f_size(fd));
  403. file->fpos = fd->fptr;
  404. }
  405. }
  406. else
  407. {
  408. /* open failed, return */
  409. rt_free(fd);
  410. return elm_result_to_dfs(result);
  411. }
  412. }
  413. return RT_EOK;
  414. }
  415. int dfs_elm_close(struct dfs_file *file)
  416. {
  417. FRESULT result;
  418. RT_ASSERT(file->vnode->ref_count > 0);
  419. if (file->vnode->ref_count > 1)
  420. {
  421. return 0;
  422. }
  423. result = FR_OK;
  424. if (file->vnode->type == FT_DIRECTORY)
  425. {
  426. DIR *dir = RT_NULL;
  427. dir = (DIR *)(file->vnode->data);
  428. RT_ASSERT(dir != RT_NULL);
  429. /* release memory */
  430. rt_free(dir);
  431. }
  432. else if (file->vnode->type == FT_REGULAR)
  433. {
  434. FIL *fd = RT_NULL;
  435. fd = (FIL *)(file->vnode->data);
  436. RT_ASSERT(fd != RT_NULL);
  437. f_close(fd);
  438. /* release memory */
  439. rt_free(fd);
  440. }
  441. return elm_result_to_dfs(result);
  442. }
  443. int dfs_elm_ioctl(struct dfs_file *file, int cmd, void *args)
  444. {
  445. switch (cmd)
  446. {
  447. case RT_FIOFTRUNCATE:
  448. {
  449. FIL *fd;
  450. FSIZE_t fptr, length;
  451. FRESULT result = FR_OK;
  452. fd = (FIL *)(file->vnode->data);
  453. RT_ASSERT(fd != RT_NULL);
  454. /* save file read/write point */
  455. fptr = fd->fptr;
  456. length = *(off_t*)args;
  457. if (length <= fd->obj.objsize)
  458. {
  459. fd->fptr = length;
  460. result = f_truncate(fd);
  461. }
  462. else
  463. {
  464. result = f_lseek(fd, length);
  465. }
  466. /* restore file read/write point */
  467. fd->fptr = fptr;
  468. return elm_result_to_dfs(result);
  469. }
  470. case F_GETLK:
  471. return 0;
  472. case F_SETLK:
  473. return 0;
  474. }
  475. return -ENOSYS;
  476. }
  477. ssize_t dfs_elm_read(struct dfs_file *file, void *buf, size_t len, off_t *pos)
  478. {
  479. FIL *fd;
  480. FRESULT result;
  481. UINT byte_read;
  482. if (file->vnode->type == FT_DIRECTORY)
  483. {
  484. return -EISDIR;
  485. }
  486. fd = (FIL *)(file->vnode->data);
  487. RT_ASSERT(fd != RT_NULL);
  488. result = f_read(fd, buf, len, &byte_read);
  489. /* update position */
  490. *pos = fd->fptr;
  491. if (result == FR_OK)
  492. return byte_read;
  493. return elm_result_to_dfs(result);
  494. }
  495. ssize_t dfs_elm_write(struct dfs_file *file, const void *buf, size_t len, off_t *pos)
  496. {
  497. FIL *fd;
  498. FRESULT result;
  499. UINT byte_write;
  500. if (file->vnode->type == FT_DIRECTORY)
  501. {
  502. return -EISDIR;
  503. }
  504. fd = (FIL *)(file->vnode->data);
  505. RT_ASSERT(fd != RT_NULL);
  506. result = f_write(fd, buf, len, &byte_write);
  507. /* update position and file size */
  508. *pos = fd->fptr;
  509. file->vnode->size = f_size(fd);
  510. if (result == FR_OK)
  511. return byte_write;
  512. return elm_result_to_dfs(result);
  513. }
  514. int dfs_elm_flush(struct dfs_file *file)
  515. {
  516. FIL *fd;
  517. FRESULT result;
  518. fd = (FIL *)(file->vnode->data);
  519. RT_ASSERT(fd != RT_NULL);
  520. result = f_sync(fd);
  521. return elm_result_to_dfs(result);
  522. }
  523. off_t dfs_elm_lseek(struct dfs_file *file, off_t offset, int wherece)
  524. {
  525. FRESULT result = FR_OK;
  526. switch (wherece)
  527. {
  528. case SEEK_SET:
  529. break;
  530. case SEEK_CUR:
  531. offset += file->fpos;
  532. break;
  533. case SEEK_END:
  534. offset += file->vnode->size;
  535. break;
  536. default:
  537. return -EINVAL;
  538. }
  539. if (file->vnode->type == FT_REGULAR)
  540. {
  541. FIL *fd;
  542. /* regular file type */
  543. fd = (FIL *)(file->vnode->data);
  544. RT_ASSERT(fd != RT_NULL);
  545. result = f_lseek(fd, offset);
  546. if (result == FR_OK)
  547. {
  548. /* return current position */
  549. return fd->fptr;
  550. }
  551. }
  552. else if (file->vnode->type == FT_DIRECTORY)
  553. {
  554. /* which is a directory */
  555. DIR *dir = RT_NULL;
  556. dir = (DIR *)(file->vnode->data);
  557. RT_ASSERT(dir != RT_NULL);
  558. result = f_seekdir(dir, offset / sizeof(struct dirent));
  559. if (result == FR_OK)
  560. {
  561. /* update file position */
  562. return offset;
  563. }
  564. }
  565. return elm_result_to_dfs(result);
  566. }
  567. int dfs_elm_getdents(struct dfs_file *file, struct dirent *dirp, uint32_t count)
  568. {
  569. DIR *dir;
  570. FILINFO fno;
  571. FRESULT result;
  572. rt_uint32_t index;
  573. struct dirent *d;
  574. dir = (DIR *)(file->vnode->data);
  575. RT_ASSERT(dir != RT_NULL);
  576. /* make integer count */
  577. count = (count / sizeof(struct dirent)) * sizeof(struct dirent);
  578. if (count == 0)
  579. return -EINVAL;
  580. index = 0;
  581. while (1)
  582. {
  583. char *fn;
  584. d = dirp + index;
  585. result = f_readdir(dir, &fno);
  586. if (result != FR_OK || fno.fname[0] == 0)
  587. break;
  588. #if FF_USE_LFN
  589. fn = *fno.fname ? fno.fname : fno.altname;
  590. #else
  591. fn = fno.fname;
  592. #endif
  593. d->d_type = DT_UNKNOWN;
  594. if (fno.fattrib & AM_DIR)
  595. d->d_type = DT_DIR;
  596. else
  597. d->d_type = DT_REG;
  598. d->d_namlen = (rt_uint8_t)rt_strlen(fn);
  599. d->d_reclen = (rt_uint16_t)sizeof(struct dirent);
  600. rt_strncpy(d->d_name, fn, DFS_PATH_MAX);
  601. index ++;
  602. if (index * sizeof(struct dirent) >= count)
  603. break;
  604. }
  605. if (index == 0)
  606. return elm_result_to_dfs(result);
  607. file->fpos += index * sizeof(struct dirent);
  608. return index * sizeof(struct dirent);
  609. }
  610. int dfs_elm_unlink(struct dfs_dentry *dentry)
  611. {
  612. FRESULT result;
  613. #if FF_VOLUMES > 1
  614. int vol;
  615. char *drivers_fn;
  616. extern int elm_get_vol(FATFS * fat);
  617. /* add path for ELM FatFS driver support */
  618. vol = elm_get_vol((FATFS *)dentry->mnt->data);
  619. if (vol < 0)
  620. return -ENOENT;
  621. drivers_fn = (char *)rt_malloc(256);
  622. if (drivers_fn == RT_NULL)
  623. return -ENOMEM;
  624. rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
  625. #else
  626. const char *drivers_fn;
  627. drivers_fn = path;
  628. #endif
  629. result = f_unlink(drivers_fn);
  630. #if FF_VOLUMES > 1
  631. rt_free(drivers_fn);
  632. #endif
  633. return elm_result_to_dfs(result);
  634. }
  635. int dfs_elm_rename(struct dfs_dentry *old_dentry, struct dfs_dentry *new_dentry)
  636. {
  637. FRESULT result;
  638. #if FF_VOLUMES > 1
  639. char *drivers_oldfn;
  640. const char *drivers_newfn;
  641. int vol;
  642. extern int elm_get_vol(FATFS * fat);
  643. /* add path for ELM FatFS driver support */
  644. vol = elm_get_vol((FATFS *)old_dentry->mnt->data);
  645. if (vol < 0)
  646. return -ENOENT;
  647. drivers_oldfn = (char *)rt_malloc(256);
  648. if (drivers_oldfn == RT_NULL)
  649. return -ENOMEM;
  650. drivers_newfn = new_dentry->pathname;
  651. rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, old_dentry->pathname);
  652. #else
  653. const char *drivers_oldfn, *drivers_newfn;
  654. drivers_oldfn = old_dentry->pathname;
  655. drivers_newfn = new_dentry->pathname;
  656. #endif
  657. result = f_rename(drivers_oldfn, drivers_newfn);
  658. #if FF_VOLUMES > 1
  659. rt_free(drivers_oldfn);
  660. #endif
  661. return elm_result_to_dfs(result);
  662. }
  663. int dfs_elm_stat(struct dfs_dentry *dentry, struct stat *st)
  664. {
  665. FATFS *fat;
  666. FILINFO file_info;
  667. FRESULT result;
  668. fat = (FATFS *)dentry->mnt->data;
  669. #if FF_VOLUMES > 1
  670. int vol;
  671. char *drivers_fn;
  672. extern int elm_get_vol(FATFS * fat);
  673. /* add path for ELM FatFS driver support */
  674. vol = elm_get_vol(fat);
  675. if (vol < 0)
  676. return -ENOENT;
  677. drivers_fn = (char *)rt_malloc(256);
  678. if (drivers_fn == RT_NULL)
  679. return -ENOMEM;
  680. rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
  681. #else
  682. const char *drivers_fn;
  683. drivers_fn = dentry->pathname;
  684. #endif
  685. result = f_stat(drivers_fn, &file_info);
  686. #if FF_VOLUMES > 1
  687. rt_free(drivers_fn);
  688. #endif
  689. if (result == FR_OK)
  690. {
  691. /* convert to dfs stat structure */
  692. st->st_dev = (dev_t)(size_t)(dentry->mnt->dev_id);
  693. st->st_ino = (ino_t)dfs_dentry_full_path_crc32(dentry);
  694. st->st_mode = S_IFREG | S_IRUSR | S_IRGRP | S_IROTH |
  695. S_IWUSR | S_IWGRP | S_IWOTH;
  696. if (file_info.fattrib & AM_DIR)
  697. {
  698. st->st_mode &= ~S_IFREG;
  699. st->st_mode |= S_IFDIR | S_IXUSR | S_IXGRP | S_IXOTH;
  700. }
  701. if (file_info.fattrib & AM_RDO)
  702. st->st_mode &= ~(S_IWUSR | S_IWGRP | S_IWOTH);
  703. st->st_size = file_info.fsize;
  704. st->st_blksize = fat->csize * SS(fat);
  705. if (file_info.fattrib & AM_ARC)
  706. {
  707. st->st_blocks = file_info.fsize ? ((file_info.fsize - 1) / SS(fat) / fat->csize + 1) : 0;
  708. st->st_blocks *= (st->st_blksize / 512); // man say st_blocks is number of 512B blocks allocated
  709. }
  710. else
  711. {
  712. st->st_blocks = fat->csize;
  713. }
  714. /* get st_mtime. */
  715. {
  716. struct tm tm_file;
  717. int year, mon, day, hour, min, sec;
  718. WORD tmp;
  719. tmp = file_info.fdate;
  720. day = tmp & 0x1F; /* bit[4:0] Day(1..31) */
  721. tmp >>= 5;
  722. mon = tmp & 0x0F; /* bit[8:5] Month(1..12) */
  723. tmp >>= 4;
  724. year = (tmp & 0x7F) + 1980; /* bit[15:9] Year origin from 1980(0..127) */
  725. tmp = file_info.ftime;
  726. sec = (tmp & 0x1F) * 2; /* bit[4:0] Second/2(0..29) */
  727. tmp >>= 5;
  728. min = tmp & 0x3F; /* bit[10:5] Minute(0..59) */
  729. tmp >>= 6;
  730. hour = tmp & 0x1F; /* bit[15:11] Hour(0..23) */
  731. rt_memset(&tm_file, 0, sizeof(tm_file));
  732. tm_file.tm_year = year - 1900; /* Years since 1900 */
  733. tm_file.tm_mon = mon - 1; /* Months *since* january: 0-11 */
  734. tm_file.tm_mday = day; /* Day of the month: 1-31 */
  735. tm_file.tm_hour = hour; /* Hours since midnight: 0-23 */
  736. tm_file.tm_min = min; /* Minutes: 0-59 */
  737. tm_file.tm_sec = sec; /* Seconds: 0-59 */
  738. st->st_mtime = timegm(&tm_file);
  739. } /* get st_mtime. */
  740. }
  741. return elm_result_to_dfs(result);
  742. }
  743. static struct dfs_vnode *dfs_elm_lookup(struct dfs_dentry *dentry)
  744. {
  745. struct stat st;
  746. struct dfs_vnode *vnode = RT_NULL;
  747. if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
  748. {
  749. return NULL;
  750. }
  751. if (dfs_elm_stat(dentry, &st) != 0)
  752. {
  753. return vnode;
  754. }
  755. vnode = dfs_vnode_create();
  756. if (vnode)
  757. {
  758. if (S_ISDIR(st.st_mode))
  759. {
  760. vnode->mode = S_IFDIR | (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);
  761. vnode->type = FT_DIRECTORY;
  762. }
  763. else
  764. {
  765. vnode->mode = S_IFREG | (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);
  766. vnode->type = FT_REGULAR;
  767. }
  768. vnode->mnt = dentry->mnt;
  769. vnode->data = NULL;
  770. vnode->size = 0;
  771. }
  772. return vnode;
  773. }
  774. static struct dfs_vnode *dfs_elm_create_vnode(struct dfs_dentry *dentry, int type, mode_t mode)
  775. {
  776. struct dfs_vnode *vnode = RT_NULL;
  777. if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
  778. {
  779. return NULL;
  780. }
  781. vnode = dfs_vnode_create();
  782. if (vnode)
  783. {
  784. if (type == FT_DIRECTORY)
  785. {
  786. vnode->mode = S_IFDIR | mode;
  787. vnode->type = FT_DIRECTORY;
  788. }
  789. else
  790. {
  791. vnode->mode = S_IFREG | mode;
  792. vnode->type = FT_REGULAR;
  793. }
  794. vnode->mnt = dentry->mnt;
  795. vnode->data = NULL;
  796. vnode->size = 0;
  797. }
  798. return vnode;
  799. }
  800. static int dfs_elm_free_vnode(struct dfs_vnode *vnode)
  801. {
  802. /* nothing to be freed */
  803. if (vnode && vnode->ref_count <= 1)
  804. {
  805. vnode->data = NULL;
  806. }
  807. return 0;
  808. }
  809. static const struct dfs_file_ops dfs_elm_fops =
  810. {
  811. .open = dfs_elm_open,
  812. .close = dfs_elm_close,
  813. .ioctl = dfs_elm_ioctl,
  814. .read = dfs_elm_read,
  815. .write = dfs_elm_write,
  816. .flush = dfs_elm_flush,
  817. .lseek = dfs_elm_lseek,
  818. .getdents = dfs_elm_getdents,
  819. };
  820. static const struct dfs_filesystem_ops dfs_elm =
  821. {
  822. "elm",
  823. FS_NEED_DEVICE,
  824. &dfs_elm_fops,
  825. .mount = dfs_elm_mount,
  826. .umount = dfs_elm_unmount,
  827. .mkfs = dfs_elm_mkfs,
  828. .statfs = dfs_elm_statfs,
  829. .unlink = dfs_elm_unlink,
  830. .stat = dfs_elm_stat,
  831. .rename = dfs_elm_rename,
  832. .lookup = dfs_elm_lookup,
  833. .create_vnode = dfs_elm_create_vnode,
  834. .free_vnode = dfs_elm_free_vnode
  835. };
  836. static struct dfs_filesystem_type _elmfs =
  837. {
  838. .fs_ops = &dfs_elm,
  839. };
  840. int elm_init(void)
  841. {
  842. /* register fatfs file system */
  843. dfs_register(&_elmfs);
  844. return 0;
  845. }
  846. INIT_COMPONENT_EXPORT(elm_init);
  847. /*
  848. * RT-Thread Device Interface for ELM FatFs
  849. */
  850. #include "diskio.h"
  851. /* Initialize a Drive */
  852. DSTATUS disk_initialize(BYTE drv)
  853. {
  854. return 0;
  855. }
  856. /* Return Disk Status */
  857. DSTATUS disk_status(BYTE drv)
  858. {
  859. return 0;
  860. }
  861. /* Read Sector(s) */
  862. DRESULT disk_read(BYTE drv, BYTE *buff, DWORD sector, UINT count)
  863. {
  864. rt_size_t result;
  865. rt_device_t device = disk[drv];
  866. result = rt_device_read(device, sector, buff, count);
  867. if (result == count)
  868. {
  869. return RES_OK;
  870. }
  871. return RES_ERROR;
  872. }
  873. /* Write Sector(s) */
  874. DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, UINT count)
  875. {
  876. rt_size_t result;
  877. rt_device_t device = disk[drv];
  878. result = rt_device_write(device, sector, buff, count);
  879. if (result == count)
  880. {
  881. return RES_OK;
  882. }
  883. return RES_ERROR;
  884. }
  885. /* Miscellaneous Functions */
  886. DRESULT disk_ioctl(BYTE drv, BYTE ctrl, void *buff)
  887. {
  888. rt_device_t device = disk[drv];
  889. if (device == RT_NULL)
  890. return RES_ERROR;
  891. if (ctrl == GET_SECTOR_COUNT)
  892. {
  893. struct rt_device_blk_geometry geometry;
  894. rt_memset(&geometry, 0, sizeof(geometry));
  895. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  896. *(DWORD *)buff = geometry.sector_count;
  897. if (geometry.sector_count == 0)
  898. return RES_ERROR;
  899. }
  900. else if (ctrl == GET_SECTOR_SIZE)
  901. {
  902. struct rt_device_blk_geometry geometry;
  903. rt_memset(&geometry, 0, sizeof(geometry));
  904. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  905. *(WORD *)buff = (WORD)(geometry.bytes_per_sector);
  906. }
  907. else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */
  908. {
  909. struct rt_device_blk_geometry geometry;
  910. rt_memset(&geometry, 0, sizeof(geometry));
  911. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  912. *(DWORD *)buff = geometry.block_size / geometry.bytes_per_sector;
  913. }
  914. else if (ctrl == CTRL_SYNC)
  915. {
  916. rt_device_control(device, RT_DEVICE_CTRL_BLK_SYNC, RT_NULL);
  917. }
  918. else if (ctrl == CTRL_TRIM)
  919. {
  920. rt_device_control(device, RT_DEVICE_CTRL_BLK_ERASE, buff);
  921. }
  922. return RES_OK;
  923. }
  924. DWORD get_fattime(void)
  925. {
  926. DWORD fat_time = 0;
  927. time_t now;
  928. struct tm tm_now;
  929. now = time(RT_NULL);
  930. gmtime_r(&now, &tm_now);
  931. fat_time = (DWORD)(tm_now.tm_year - 80) << 25 |
  932. (DWORD)(tm_now.tm_mon + 1) << 21 |
  933. (DWORD)tm_now.tm_mday << 16 |
  934. (DWORD)tm_now.tm_hour << 11 |
  935. (DWORD)tm_now.tm_min << 5 |
  936. (DWORD)tm_now.tm_sec / 2 ;
  937. return fat_time;
  938. }
  939. #if FF_FS_REENTRANT
  940. int ff_cre_syncobj(BYTE drv, FF_SYNC_t *m)
  941. {
  942. char name[8];
  943. rt_mutex_t mutex;
  944. rt_snprintf(name, sizeof(name), "fat%d", drv);
  945. mutex = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
  946. if (mutex != RT_NULL)
  947. {
  948. *m = mutex;
  949. return RT_TRUE;
  950. }
  951. return RT_FALSE;
  952. }
  953. int ff_del_syncobj(FF_SYNC_t m)
  954. {
  955. if (m != RT_NULL)
  956. rt_mutex_delete(m);
  957. return RT_TRUE;
  958. }
  959. int ff_req_grant(FF_SYNC_t m)
  960. {
  961. if (rt_mutex_take(m, FF_FS_TIMEOUT) == RT_EOK)
  962. return RT_TRUE;
  963. return RT_FALSE;
  964. }
  965. void ff_rel_grant(FF_SYNC_t m)
  966. {
  967. rt_mutex_release(m);
  968. }
  969. #endif
  970. /* Memory functions */
  971. #if FF_USE_LFN == 3
  972. /* Allocate memory block */
  973. void *ff_memalloc(UINT size)
  974. {
  975. return rt_malloc(size);
  976. }
  977. /* Free memory block */
  978. void ff_memfree(void *mem)
  979. {
  980. rt_free(mem);
  981. }
  982. #endif /* FF_USE_LFN == 3 */