mmu.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-01-30 lizhirui first version
  9. * 2022-12-13 WangXiaoyao Port to new mm
  10. */
  11. #include <rtthread.h>
  12. #include <stddef.h>
  13. #include <stdint.h>
  14. #define DBG_TAG "hw.mmu"
  15. #define DBG_LVL DBG_WARNING
  16. #include <rtdbg.h>
  17. #include <cache.h>
  18. #include <mm_aspace.h>
  19. #include <mm_page.h>
  20. #include <mmu.h>
  21. #include <riscv_mmu.h>
  22. #include <tlb.h>
  23. #ifdef RT_USING_SMART
  24. #include <board.h>
  25. #include <ioremap.h>
  26. #include <lwp_user_mm.h>
  27. #endif
  28. #ifndef RT_USING_SMART
  29. #define USER_VADDR_START 0
  30. #endif
  31. static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr, size_t size);
  32. static void *current_mmu_table = RT_NULL;
  33. volatile __attribute__((aligned(4 * 1024)))
  34. rt_ubase_t MMUTable[__SIZE(VPN2_BIT)];
  35. static rt_uint8_t ASID_BITS = 0;
  36. static rt_uint32_t next_asid;
  37. static rt_uint64_t global_asid_generation;
  38. #define ASID_MASK ((1 << ASID_BITS) - 1)
  39. #define ASID_FIRST_GENERATION (1 << ASID_BITS)
  40. #define MAX_ASID ASID_FIRST_GENERATION
  41. static void _asid_init()
  42. {
  43. unsigned int satp_reg = read_csr(satp);
  44. satp_reg |= (((rt_uint64_t)0xffff) << PPN_BITS);
  45. write_csr(satp, satp_reg);
  46. unsigned short valid_asid_bit = ((read_csr(satp) >> PPN_BITS) & 0xffff);
  47. // The maximal value of ASIDLEN, is 9 for Sv32 or 16 for Sv39, Sv48, and Sv57
  48. for (unsigned i = 0; i < 16; i++)
  49. {
  50. if (!(valid_asid_bit & 0x1))
  51. {
  52. break;
  53. }
  54. valid_asid_bit >>= 1;
  55. ASID_BITS++;
  56. }
  57. global_asid_generation = ASID_FIRST_GENERATION;
  58. next_asid = 1;
  59. }
  60. static rt_uint64_t _asid_check_switch(rt_aspace_t aspace)
  61. {
  62. if ((aspace->asid ^ global_asid_generation) >> ASID_BITS) // not same generation
  63. {
  64. if (next_asid != MAX_ASID)
  65. {
  66. aspace->asid = global_asid_generation | next_asid;
  67. next_asid++;
  68. }
  69. else
  70. {
  71. // scroll to next generation
  72. global_asid_generation += ASID_FIRST_GENERATION;
  73. next_asid = 1;
  74. rt_hw_tlb_invalidate_all_local();
  75. aspace->asid = global_asid_generation | next_asid;
  76. next_asid++;
  77. }
  78. }
  79. return aspace->asid & ASID_MASK;
  80. }
  81. void rt_hw_aspace_switch(rt_aspace_t aspace)
  82. {
  83. uintptr_t page_table = (uintptr_t)rt_kmem_v2p(aspace->page_table);
  84. current_mmu_table = aspace->page_table;
  85. rt_uint64_t asid = _asid_check_switch(aspace);
  86. write_csr(satp, (((size_t)SATP_MODE) << SATP_MODE_OFFSET) |
  87. (asid << PPN_BITS) |
  88. ((rt_ubase_t)page_table >> PAGE_OFFSET_BIT));
  89. asm volatile("sfence.vma x0,%0"::"r"(asid):"memory");
  90. }
  91. void *rt_hw_mmu_tbl_get()
  92. {
  93. return current_mmu_table;
  94. }
  95. static int _map_one_page(struct rt_aspace *aspace, void *va, void *pa,
  96. size_t attr)
  97. {
  98. rt_size_t l1_off, l2_off, l3_off;
  99. rt_size_t *mmu_l1, *mmu_l2, *mmu_l3;
  100. l1_off = GET_L1((size_t)va);
  101. l2_off = GET_L2((size_t)va);
  102. l3_off = GET_L3((size_t)va);
  103. mmu_l1 = ((rt_size_t *)aspace->page_table) + l1_off;
  104. if (PTE_USED(*mmu_l1))
  105. {
  106. mmu_l2 = (rt_size_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
  107. }
  108. else
  109. {
  110. mmu_l2 = (rt_size_t *)rt_pages_alloc(0);
  111. if (mmu_l2)
  112. {
  113. rt_memset(mmu_l2, 0, PAGE_SIZE);
  114. rt_hw_cpu_dcache_clean(mmu_l2, PAGE_SIZE);
  115. *mmu_l1 = COMBINEPTE((rt_size_t)VPN_TO_PPN(mmu_l2, PV_OFFSET),
  116. PAGE_DEFAULT_ATTR_NEXT);
  117. rt_hw_cpu_dcache_clean(mmu_l1, sizeof(*mmu_l1));
  118. }
  119. else
  120. {
  121. return -1;
  122. }
  123. }
  124. if (PTE_USED(*(mmu_l2 + l2_off)))
  125. {
  126. RT_ASSERT(!PAGE_IS_LEAF(*(mmu_l2 + l2_off)));
  127. mmu_l3 =
  128. (rt_size_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)), PV_OFFSET);
  129. }
  130. else
  131. {
  132. mmu_l3 = (rt_size_t *)rt_pages_alloc(0);
  133. if (mmu_l3)
  134. {
  135. rt_memset(mmu_l3, 0, PAGE_SIZE);
  136. rt_hw_cpu_dcache_clean(mmu_l3, PAGE_SIZE);
  137. *(mmu_l2 + l2_off) =
  138. COMBINEPTE((rt_size_t)VPN_TO_PPN(mmu_l3, PV_OFFSET),
  139. PAGE_DEFAULT_ATTR_NEXT);
  140. rt_hw_cpu_dcache_clean(mmu_l2, sizeof(*mmu_l2));
  141. // declares a reference to parent page table
  142. rt_page_ref_inc((void *)mmu_l2, 0);
  143. }
  144. else
  145. {
  146. return -1;
  147. }
  148. }
  149. RT_ASSERT(!PTE_USED(*(mmu_l3 + l3_off)));
  150. // declares a reference to parent page table
  151. rt_page_ref_inc((void *)mmu_l3, 0);
  152. *(mmu_l3 + l3_off) = COMBINEPTE((rt_size_t)pa, attr);
  153. rt_hw_cpu_dcache_clean(mmu_l3 + l3_off, sizeof(*(mmu_l3 + l3_off)));
  154. return 0;
  155. }
  156. /** rt_hw_mmu_map will never override existed page table entry */
  157. void *rt_hw_mmu_map(struct rt_aspace *aspace, void *v_addr, void *p_addr,
  158. size_t size, size_t attr)
  159. {
  160. int ret = -1;
  161. void *unmap_va = v_addr;
  162. size_t npages = size >> ARCH_PAGE_SHIFT;
  163. // TODO trying with HUGEPAGE here
  164. while (npages--)
  165. {
  166. MM_PGTBL_LOCK(aspace);
  167. ret = _map_one_page(aspace, v_addr, p_addr, attr);
  168. MM_PGTBL_UNLOCK(aspace);
  169. if (ret != 0)
  170. {
  171. /* error, undo map */
  172. while (unmap_va != v_addr)
  173. {
  174. MM_PGTBL_LOCK(aspace);
  175. _unmap_area(aspace, unmap_va, ARCH_PAGE_SIZE);
  176. MM_PGTBL_UNLOCK(aspace);
  177. unmap_va += ARCH_PAGE_SIZE;
  178. }
  179. break;
  180. }
  181. v_addr += ARCH_PAGE_SIZE;
  182. p_addr += ARCH_PAGE_SIZE;
  183. }
  184. if (ret == 0)
  185. {
  186. return unmap_va;
  187. }
  188. return NULL;
  189. }
  190. static void _unmap_pte(rt_size_t *pentry, rt_size_t *lvl_entry[], int level)
  191. {
  192. int loop_flag = 1;
  193. while (loop_flag)
  194. {
  195. loop_flag = 0;
  196. *pentry = 0;
  197. rt_hw_cpu_dcache_clean(pentry, sizeof(*pentry));
  198. // we don't handle level 0, which is maintained by caller
  199. if (level > 0)
  200. {
  201. void *page = (void *)((rt_ubase_t)pentry & ~ARCH_PAGE_MASK);
  202. // decrease reference from child page to parent
  203. rt_pages_free(page, 0);
  204. int free = rt_page_ref_get(page, 0);
  205. if (free == 1)
  206. {
  207. rt_pages_free(page, 0);
  208. pentry = lvl_entry[--level];
  209. loop_flag = 1;
  210. }
  211. }
  212. }
  213. }
  214. static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr, size_t size)
  215. {
  216. rt_size_t loop_va = __UMASKVALUE((rt_size_t)v_addr, PAGE_OFFSET_MASK);
  217. size_t unmapped = 0;
  218. int i = 0;
  219. rt_size_t lvl_off[3];
  220. rt_size_t *lvl_entry[3];
  221. lvl_off[0] = (rt_size_t)GET_L1(loop_va);
  222. lvl_off[1] = (rt_size_t)GET_L2(loop_va);
  223. lvl_off[2] = (rt_size_t)GET_L3(loop_va);
  224. unmapped = 1 << (ARCH_PAGE_SHIFT + ARCH_INDEX_WIDTH * 2ul);
  225. rt_size_t *pentry;
  226. lvl_entry[i] = ((rt_size_t *)aspace->page_table + lvl_off[i]);
  227. pentry = lvl_entry[i];
  228. // find leaf page table entry
  229. while (PTE_USED(*pentry) && !PAGE_IS_LEAF(*pentry))
  230. {
  231. i += 1;
  232. lvl_entry[i] = ((rt_size_t *)PPN_TO_VPN(GET_PADDR(*pentry), PV_OFFSET) +
  233. lvl_off[i]);
  234. pentry = lvl_entry[i];
  235. unmapped >>= ARCH_INDEX_WIDTH;
  236. }
  237. // clear PTE & setup its
  238. if (PTE_USED(*pentry))
  239. {
  240. _unmap_pte(pentry, lvl_entry, i);
  241. }
  242. return unmapped;
  243. }
  244. /** unmap is different from map that it can handle multiple pages */
  245. void rt_hw_mmu_unmap(struct rt_aspace *aspace, void *v_addr, size_t size)
  246. {
  247. // caller guarantee that v_addr & size are page aligned
  248. if (!aspace->page_table)
  249. {
  250. return;
  251. }
  252. size_t unmapped = 0;
  253. while (size > 0)
  254. {
  255. MM_PGTBL_LOCK(aspace);
  256. unmapped = _unmap_area(aspace, v_addr, size);
  257. MM_PGTBL_UNLOCK(aspace);
  258. // when unmapped == 0, region not exist in pgtbl
  259. if (!unmapped || unmapped > size)
  260. break;
  261. size -= unmapped;
  262. v_addr += unmapped;
  263. }
  264. }
  265. #ifdef RT_USING_SMART
  266. static inline void _init_region(void *vaddr, size_t size)
  267. {
  268. rt_ioremap_start = vaddr;
  269. rt_ioremap_size = size;
  270. rt_mpr_start = rt_ioremap_start - rt_mpr_size;
  271. LOG_D("rt_ioremap_start: %p, rt_mpr_start: %p", rt_ioremap_start, rt_mpr_start);
  272. }
  273. #else
  274. static inline void _init_region(void *vaddr, size_t size)
  275. {
  276. rt_mpr_start = vaddr - rt_mpr_size;
  277. }
  278. #endif
  279. int rt_hw_mmu_map_init(rt_aspace_t aspace, void *v_address, rt_size_t size,
  280. rt_size_t *vtable, rt_size_t pv_off)
  281. {
  282. size_t l1_off, va_s, va_e;
  283. rt_base_t level;
  284. if ((!aspace) || (!vtable))
  285. {
  286. return -1;
  287. }
  288. va_s = (rt_size_t)v_address;
  289. va_e = ((rt_size_t)v_address) + size - 1;
  290. if (va_e < va_s)
  291. {
  292. return -1;
  293. }
  294. // convert address to PPN2 index
  295. va_s = GET_L1(va_s);
  296. va_e = GET_L1(va_e);
  297. if (va_s == 0)
  298. {
  299. return -1;
  300. }
  301. // vtable initialization check
  302. for (l1_off = va_s; l1_off <= va_e; l1_off++)
  303. {
  304. size_t v = vtable[l1_off];
  305. if (v)
  306. {
  307. return -1;
  308. }
  309. }
  310. rt_aspace_init(&rt_kernel_space, (void *)0x1000, USER_VADDR_START - 0x1000,
  311. vtable);
  312. _init_region(v_address, size);
  313. return 0;
  314. }
  315. const static int max_level =
  316. (ARCH_VADDR_WIDTH - ARCH_PAGE_SHIFT) / ARCH_INDEX_WIDTH;
  317. static inline uintptr_t _get_level_size(int level)
  318. {
  319. return 1ul << (ARCH_PAGE_SHIFT + (max_level - level) * ARCH_INDEX_WIDTH);
  320. }
  321. static rt_size_t *_query(struct rt_aspace *aspace, void *vaddr, int *level)
  322. {
  323. rt_size_t l1_off, l2_off, l3_off;
  324. rt_size_t *mmu_l1, *mmu_l2, *mmu_l3;
  325. rt_size_t pa;
  326. l1_off = GET_L1((rt_size_t)vaddr);
  327. l2_off = GET_L2((rt_size_t)vaddr);
  328. l3_off = GET_L3((rt_size_t)vaddr);
  329. if (!aspace)
  330. {
  331. LOG_W("%s: no aspace", __func__);
  332. return RT_NULL;
  333. }
  334. mmu_l1 = ((rt_size_t *)aspace->page_table) + l1_off;
  335. if (PTE_USED(*mmu_l1))
  336. {
  337. if (*mmu_l1 & PTE_XWR_MASK)
  338. {
  339. *level = 1;
  340. return mmu_l1;
  341. }
  342. mmu_l2 = (rt_size_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
  343. if (PTE_USED(*(mmu_l2 + l2_off)))
  344. {
  345. if (*(mmu_l2 + l2_off) & PTE_XWR_MASK)
  346. {
  347. *level = 2;
  348. return mmu_l2 + l2_off;
  349. }
  350. mmu_l3 = (rt_size_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)),
  351. PV_OFFSET);
  352. if (PTE_USED(*(mmu_l3 + l3_off)))
  353. {
  354. *level = 3;
  355. return mmu_l3 + l3_off;
  356. }
  357. }
  358. }
  359. return RT_NULL;
  360. }
  361. void *rt_hw_mmu_v2p(struct rt_aspace *aspace, void *vaddr)
  362. {
  363. int level;
  364. uintptr_t *pte = _query(aspace, vaddr, &level);
  365. uintptr_t paddr;
  366. if (pte)
  367. {
  368. paddr = GET_PADDR(*pte);
  369. paddr |= ((intptr_t)vaddr & (_get_level_size(level) - 1));
  370. }
  371. else
  372. {
  373. LOG_I("%s: failed at %p", __func__, vaddr);
  374. paddr = (uintptr_t)ARCH_MAP_FAILED;
  375. }
  376. return (void *)paddr;
  377. }
  378. static int _noncache(uintptr_t *pte)
  379. {
  380. return 0;
  381. }
  382. static int _cache(uintptr_t *pte)
  383. {
  384. return 0;
  385. }
  386. static int (*control_handler[MMU_CNTL_DUMMY_END])(uintptr_t *pte) = {
  387. [MMU_CNTL_CACHE] = _cache,
  388. [MMU_CNTL_NONCACHE] = _noncache,
  389. };
  390. int rt_hw_mmu_control(struct rt_aspace *aspace, void *vaddr, size_t size,
  391. enum rt_mmu_cntl cmd)
  392. {
  393. int level;
  394. int err = -RT_EINVAL;
  395. void *vend = vaddr + size;
  396. int (*handler)(uintptr_t * pte);
  397. if (cmd >= 0 && cmd < MMU_CNTL_DUMMY_END)
  398. {
  399. handler = control_handler[cmd];
  400. while (vaddr < vend)
  401. {
  402. uintptr_t *pte = _query(aspace, vaddr, &level);
  403. void *range_end = vaddr + _get_level_size(level);
  404. RT_ASSERT(range_end <= vend);
  405. if (pte)
  406. {
  407. err = handler(pte);
  408. RT_ASSERT(err == RT_EOK);
  409. }
  410. vaddr = range_end;
  411. }
  412. }
  413. else
  414. {
  415. err = -RT_ENOSYS;
  416. }
  417. return err;
  418. }
  419. /**
  420. * @brief setup Page Table for kernel space. It's a fixed map
  421. * and all mappings cannot be changed after initialization.
  422. *
  423. * Memory region in struct mem_desc must be page aligned,
  424. * otherwise is a failure and no report will be
  425. * returned.
  426. *
  427. * @param aspace
  428. * @param mdesc
  429. * @param desc_nr
  430. */
  431. void rt_hw_mmu_setup(rt_aspace_t aspace, struct mem_desc *mdesc, int desc_nr)
  432. {
  433. void *err;
  434. for (size_t i = 0; i < desc_nr; i++)
  435. {
  436. size_t attr;
  437. switch (mdesc->attr)
  438. {
  439. case NORMAL_MEM:
  440. attr = MMU_MAP_K_RWCB;
  441. break;
  442. case NORMAL_NOCACHE_MEM:
  443. attr = MMU_MAP_K_RWCB;
  444. break;
  445. case DEVICE_MEM:
  446. attr = MMU_MAP_K_DEVICE;
  447. break;
  448. default:
  449. attr = MMU_MAP_K_DEVICE;
  450. }
  451. struct rt_mm_va_hint hint = {.flags = MMF_MAP_FIXED,
  452. .limit_start = aspace->start,
  453. .limit_range_size = aspace->size,
  454. .map_size = mdesc->vaddr_end -
  455. mdesc->vaddr_start + 1,
  456. .prefer = (void *)mdesc->vaddr_start};
  457. if (mdesc->paddr_start == (rt_size_t)ARCH_MAP_FAILED)
  458. mdesc->paddr_start = mdesc->vaddr_start + PV_OFFSET;
  459. rt_aspace_map_phy_static(aspace, &mdesc->varea, &hint, attr,
  460. mdesc->paddr_start >> MM_PAGE_SHIFT, &err);
  461. mdesc++;
  462. }
  463. _asid_init();
  464. rt_hw_aspace_switch(&rt_kernel_space);
  465. rt_page_cleanup();
  466. }
  467. void rt_hw_mmu_kernel_map_init(rt_aspace_t aspace, rt_size_t vaddr_start, rt_size_t size)
  468. {
  469. rt_size_t paddr_start =
  470. __UMASKVALUE(VPN_TO_PPN(vaddr_start, PV_OFFSET), PAGE_OFFSET_MASK);
  471. rt_size_t va_s = GET_L1(vaddr_start);
  472. rt_size_t va_e = GET_L1(vaddr_start + size - 1);
  473. rt_size_t i;
  474. for (i = va_s; i <= va_e; i++)
  475. {
  476. MMUTable[i] =
  477. COMBINEPTE(paddr_start, PAGE_ATTR_RWX | PTE_G | PTE_V | PTE_CACHE |
  478. PTE_SHARE | PTE_BUF | PTE_A | PTE_D);
  479. paddr_start += L1_PAGE_SIZE;
  480. }
  481. rt_hw_tlb_invalidate_all_local();
  482. }