drv_hwtimer.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-08-26 AisinoChip first version
  9. */
  10. #include <board.h>
  11. #include <rtthread.h>
  12. #include <rtdevice.h>
  13. #ifdef RT_USING_HWTIMER
  14. #include "tim_config.h"
  15. enum
  16. {
  17. #ifdef BSP_USING_TIM1
  18. TIM1_INDEX,
  19. #endif
  20. #ifdef BSP_USING_TIM3
  21. TIM3_INDEX,
  22. #endif
  23. #ifdef BSP_USING_TIM6
  24. TIM6_INDEX,
  25. #endif
  26. #ifdef BSP_USING_TIM14
  27. TIM14_INDEX,
  28. #endif
  29. #ifdef BSP_USING_TIM15
  30. TIM15_INDEX,
  31. #endif
  32. #ifdef BSP_USING_TIM16
  33. TIM16_INDEX,
  34. #endif
  35. #ifdef BSP_USING_TIM17
  36. TIM17_INDEX,
  37. #endif
  38. };
  39. struct acm32_hwtimer
  40. {
  41. rt_hwtimer_t time_device;
  42. TIM_HandleTypeDef tim_handle;
  43. IRQn_Type tim_irqn;
  44. char *name;
  45. };
  46. static struct acm32_hwtimer acm32_hwtimer_obj[] =
  47. {
  48. #ifdef BSP_USING_TIM1
  49. TIM1_CONFIG,
  50. #endif
  51. #ifdef BSP_USING_TIM3
  52. TIM3_CONFIG,
  53. #endif
  54. #ifdef BSP_USING_TIM6
  55. TIM6_CONFIG,
  56. #endif
  57. #ifdef BSP_USING_TIM14
  58. TIM14_CONFIG,
  59. #endif
  60. #ifdef BSP_USING_TIM15
  61. TIM15_CONFIG,
  62. #endif
  63. #ifdef BSP_USING_TIM16
  64. TIM16_CONFIG,
  65. #endif
  66. #ifdef BSP_USING_TIM17
  67. TIM17_CONFIG,
  68. #endif
  69. };
  70. static void timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
  71. {
  72. rt_uint32_t timer_clock = 0;
  73. TIM_HandleTypeDef *tim = RT_NULL;
  74. RT_ASSERT(timer != RT_NULL);
  75. if (state)
  76. {
  77. tim = (TIM_HandleTypeDef *)timer->parent.user_data;
  78. /* time init */
  79. timer_clock = System_Get_APBClock();
  80. if (System_Get_SystemClock() != System_Get_APBClock()) /* if hclk/pclk != 1, then timer clk = pclk * 2 */
  81. {
  82. timer_clock = System_Get_APBClock() << 1;
  83. }
  84. tim->Init.Period = (timer->freq) - 1;
  85. tim->Init.Prescaler = (timer_clock / timer->freq) - 1 ;
  86. tim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  87. if (timer->info->cntmode == HWTIMER_CNTMODE_UP)
  88. {
  89. tim->Init.CounterMode = TIM_COUNTERMODE_UP;
  90. }
  91. else
  92. {
  93. tim->Init.CounterMode = TIM_COUNTERMODE_DOWN;
  94. }
  95. tim->Init.RepetitionCounter = 0;
  96. tim->Init.ARRPreLoadEn = TIM_ARR_PRELOAD_ENABLE;
  97. HAL_TIMER_MSP_Init(tim);
  98. HAL_TIMER_Base_Init(tim);
  99. }
  100. }
  101. static rt_err_t timer_start(rt_hwtimer_t *timer, rt_uint32_t t, rt_hwtimer_mode_t opmode)
  102. {
  103. TIM_HandleTypeDef *tim = RT_NULL;
  104. RT_ASSERT(timer != RT_NULL);
  105. tim = (TIM_HandleTypeDef *)timer->parent.user_data;
  106. /* set tim cnt */
  107. tim->Instance->CNT = 0;
  108. /* set tim arr */
  109. tim->Instance->ARR = t - 1;
  110. if (opmode == HWTIMER_MODE_ONESHOT)
  111. {
  112. /* set timer to single mode */
  113. SET_BIT(tim->Instance->CR1, BIT3);
  114. }
  115. else
  116. {
  117. /* set timer to period mode */
  118. CLEAR_BIT(tim->Instance->CR1, BIT3);
  119. }
  120. /* enable IRQ */
  121. HAL_TIM_ENABLE_IT(tim, TIMER_INT_EN_UPD);
  122. /* start timer */
  123. HAL_TIMER_Base_Start(tim->Instance);
  124. return RT_EOK;
  125. }
  126. static void timer_stop(rt_hwtimer_t *timer)
  127. {
  128. TIM_HandleTypeDef *tim = RT_NULL;
  129. RT_ASSERT(timer != RT_NULL);
  130. tim = (TIM_HandleTypeDef *)timer->parent.user_data;
  131. /* stop timer */
  132. HAL_TIMER_Base_Stop(tim->Instance);
  133. }
  134. static rt_err_t timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
  135. {
  136. TIM_HandleTypeDef *tim = RT_NULL;
  137. rt_err_t result = RT_EOK;
  138. RT_ASSERT(timer != RT_NULL);
  139. RT_ASSERT(arg != RT_NULL);
  140. tim = (TIM_HandleTypeDef *)timer->parent.user_data;
  141. switch (cmd)
  142. {
  143. case HWTIMER_CTRL_FREQ_SET:
  144. {
  145. rt_uint32_t freq;
  146. rt_uint32_t timer_clock;
  147. rt_uint16_t val;
  148. /* set timer frequence */
  149. freq = *((rt_uint32_t *)arg);
  150. timer_clock = System_Get_APBClock();
  151. if (System_Get_SystemClock() != System_Get_APBClock()) /* if hclk/pclk != 1, then timer clk = pclk * 2 */
  152. {
  153. timer_clock = System_Get_APBClock() << 1;
  154. }
  155. val = timer_clock / freq;
  156. tim->Instance->PSC = val - 1;
  157. /* Update frequency value */
  158. tim->Instance->CR1 = BIT2; /* CEN=0, URS=1, OPM = 0 */
  159. tim->Instance->EGR |= TIM_EVENTSOURCE_UPDATE;
  160. }
  161. break;
  162. default:
  163. {
  164. result = -RT_ENOSYS;
  165. }
  166. break;
  167. }
  168. return result;
  169. }
  170. static rt_uint32_t timer_counter_get(rt_hwtimer_t *timer)
  171. {
  172. RT_ASSERT(timer != RT_NULL);
  173. return ((TIM_HandleTypeDef *)timer->parent.user_data)->Instance->CNT;
  174. }
  175. static const struct rt_hwtimer_info _info = TIM_DEV_INFO_CONFIG;
  176. static const struct rt_hwtimer_ops _ops =
  177. {
  178. .init = timer_init,
  179. .start = timer_start,
  180. .stop = timer_stop,
  181. .count_get = timer_counter_get,
  182. .control = timer_ctrl,
  183. };
  184. #ifdef BSP_USING_TIM1
  185. void TIM1_BRK_UP_TRG_COM_IRQHandler(void)
  186. {
  187. /* enter interrupt */
  188. rt_interrupt_enter();
  189. /* interrupt service routine */
  190. if (TIM1->SR & TIMER_SR_UIF)
  191. {
  192. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM1_INDEX].time_device);
  193. }
  194. TIM1->SR = 0; /* write 0 to clear hardware flag */
  195. /* leave interrupt */
  196. rt_interrupt_leave();
  197. }
  198. #endif
  199. #ifdef BSP_USING_TIM3
  200. void TIM3_IRQHandler(void)
  201. {
  202. /* enter interrupt */
  203. rt_interrupt_enter();
  204. if (TIM3->SR & TIMER_SR_UIF)
  205. {
  206. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM3_INDEX].time_device);
  207. }
  208. TIM3->SR = 0; /* write 0 to clear hardware flag */
  209. /* leave interrupt */
  210. rt_interrupt_leave();
  211. }
  212. #endif
  213. #ifdef BSP_USING_TIM6
  214. void TIM6_IRQHandler(void)
  215. {
  216. /* enter interrupt */
  217. rt_interrupt_enter();
  218. /* interrupt service routine */
  219. if (TIM6->SR & TIMER_SR_UIF)
  220. {
  221. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM6_INDEX].time_device);
  222. }
  223. TIM6->SR = 0; /* write 0 to clear hardware flag */
  224. /* leave interrupt */
  225. rt_interrupt_leave();
  226. }
  227. #endif
  228. #ifdef BSP_USING_TIM14
  229. void TIM14_IRQHandler(void)
  230. {
  231. /* enter interrupt */
  232. rt_interrupt_enter();
  233. /* interrupt service routine */
  234. if (TIM14->SR & TIMER_SR_UIF)
  235. {
  236. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM14_INDEX].time_device);
  237. }
  238. TIM14->SR = 0; /* write 0 to clear hardware flag */
  239. /* leave interrupt */
  240. rt_interrupt_leave();
  241. }
  242. #endif
  243. #ifdef BSP_USING_TIM15
  244. void TIM15_IRQHandler(void)
  245. {
  246. /* enter interrupt */
  247. rt_interrupt_enter();
  248. /* interrupt service routine */
  249. if (TIM15->SR & TIMER_SR_UIF)
  250. {
  251. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM15_INDEX].time_device);
  252. }
  253. TIM15->SR = 0; /* write 0 to clear hardware flag */
  254. /* leave interrupt */
  255. rt_interrupt_leave();
  256. }
  257. #endif
  258. #ifdef BSP_USING_TIM16
  259. void TIM16_IRQHandler(void)
  260. {
  261. /* enter interrupt */
  262. rt_interrupt_enter();
  263. if (TIM16->SR & TIMER_SR_UIF)
  264. {
  265. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM16_INDEX].time_device);
  266. }
  267. TIM16->SR = 0; /* write 0 to clear hardware flag */
  268. /* leave interrupt */
  269. rt_interrupt_leave();
  270. }
  271. #endif
  272. #ifdef BSP_USING_TIM17
  273. void TIM17_IRQHandler(void)
  274. {
  275. /* enter interrupt */
  276. rt_interrupt_enter();
  277. if (TIM17->SR & TIMER_SR_UIF)
  278. {
  279. rt_device_hwtimer_isr(&acm32_hwtimer_obj[TIM17_INDEX].time_device);
  280. }
  281. TIM17->SR = 0; /* write 0 to clear hardware flag */
  282. /* leave interrupt */
  283. rt_interrupt_leave();
  284. }
  285. #endif
  286. static int acm32_hwtimer_init(void)
  287. {
  288. int i = 0;
  289. int result = RT_EOK;
  290. for (i = 0; i < sizeof(acm32_hwtimer_obj) / sizeof(acm32_hwtimer_obj[0]); i++)
  291. {
  292. acm32_hwtimer_obj[i].time_device.info = &_info;
  293. acm32_hwtimer_obj[i].time_device.ops = &_ops;
  294. result = rt_device_hwtimer_register(&acm32_hwtimer_obj[i].time_device,
  295. acm32_hwtimer_obj[i].name,
  296. &acm32_hwtimer_obj[i].tim_handle);
  297. if (result != RT_EOK)
  298. {
  299. result = -RT_ERROR;
  300. break;
  301. }
  302. }
  303. return result;
  304. }
  305. INIT_BOARD_EXPORT(acm32_hwtimer_init);
  306. #endif /* RT_USING_HWTIMER */