drv_spi.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. /*
  2. * Copyright (c) 2006-2022, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2021-08-31 AisinoChip first version
  9. */
  10. #include "board.h"
  11. #include <rtdevice.h>
  12. #ifdef RT_USING_SPI
  13. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2)
  14. #include "spi_config.h"
  15. enum
  16. {
  17. #ifdef BSP_USING_SPI1
  18. SPI1_INDEX,
  19. #endif
  20. #ifdef BSP_USING_SPI2
  21. SPI2_INDEX,
  22. #endif
  23. SPI_MAX_INDEX
  24. };
  25. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  26. struct dma_config
  27. {
  28. DMA_Channel_TypeDef *Instance;
  29. rt_uint32_t dma_rcc;
  30. IRQn_Type dma_irq;
  31. rt_uint32_t channel;
  32. rt_uint32_t request;
  33. };
  34. #endif
  35. struct acm32_hw_spi_cs
  36. {
  37. enum_GPIOx_t GPIOx;
  38. uint16_t GPIO_Pin;
  39. };
  40. struct acm32_spi_config
  41. {
  42. SPI_TypeDef *Instance;
  43. char *bus_name;
  44. IRQn_Type irq_type;
  45. enum_Enable_ID_t enable_id;
  46. #if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  47. struct dma_config *dma_rx;
  48. #endif
  49. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
  50. struct dma_config *dma_tx;
  51. #endif
  52. enum_GPIOx_t cs_port;
  53. rt_uint32_t cs_pin;
  54. rt_uint32_t cs_alternate;
  55. enum_GPIOx_t sck_port;
  56. rt_uint32_t sck_pin;
  57. rt_uint32_t sck_alternate;
  58. enum_GPIOx_t mosi_port;
  59. rt_uint32_t mosi_pin;
  60. rt_uint32_t mosi_alternate;
  61. enum_GPIOx_t miso_port;
  62. rt_uint32_t miso_pin;
  63. rt_uint32_t miso_alternate;
  64. enum_GPIOx_t wp_port;
  65. rt_uint32_t wp_pin;
  66. rt_uint32_t wp_alternate;
  67. enum_GPIOx_t hold_port;
  68. rt_uint32_t hold_pin;
  69. rt_uint32_t hold_alternate;
  70. };
  71. struct acm32_spi_device
  72. {
  73. rt_uint32_t pin;
  74. char *bus_name;
  75. char *device_name;
  76. };
  77. #define SPI_USING_RX_DMA_FLAG (1<<0)
  78. #define SPI_USING_TX_DMA_FLAG (1<<1)
  79. struct acm32_spi
  80. {
  81. SPI_HandleTypeDef handle;
  82. struct acm32_spi_config *config;
  83. struct rt_spi_configuration *cfg;
  84. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  85. struct
  86. {
  87. #if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  88. DMA_HandleTypeDef handle_rx;
  89. #endif
  90. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
  91. DMA_HandleTypeDef handle_tx;
  92. #endif
  93. } dma;
  94. rt_uint8_t spi_dma_flag;
  95. #endif
  96. struct rt_spi_bus spi_bus;
  97. };
  98. static struct acm32_spi_config spi_config[] =
  99. {
  100. #ifdef BSP_USING_SPI1
  101. SPI1_BUS_CONFIG,
  102. #endif
  103. #ifdef BSP_USING_SPI2
  104. SPI2_BUS_CONFIG,
  105. #endif
  106. };
  107. static struct acm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  108. static rt_err_t acm32_spi_init(struct acm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  109. {
  110. RT_ASSERT(spi_drv != RT_NULL);
  111. RT_ASSERT(cfg != RT_NULL);
  112. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  113. if (cfg->mode & RT_SPI_SLAVE)
  114. {
  115. spi_handle->Init.SPI_Mode = SPI_MODE_SLAVE;
  116. }
  117. else
  118. {
  119. spi_handle->Init.SPI_Mode = SPI_MODE_MASTER;
  120. }
  121. spi_handle->Init.X_Mode = SPI_1X_MODE;
  122. if (cfg->mode & RT_SPI_3WIRE)
  123. {
  124. return -RT_EINVAL;
  125. }
  126. if (cfg->data_width != 8)
  127. {
  128. return -RT_EINVAL;
  129. }
  130. switch (cfg->mode & RT_SPI_MODE_3)
  131. {
  132. case RT_SPI_MODE_0:
  133. spi_handle->Init.SPI_Work_Mode = SPI_WORK_MODE_0;
  134. break;
  135. case RT_SPI_MODE_1:
  136. spi_handle->Init.SPI_Work_Mode = SPI_WORK_MODE_1;
  137. break;
  138. case RT_SPI_MODE_2:
  139. spi_handle->Init.SPI_Work_Mode = SPI_WORK_MODE_2;
  140. break;
  141. case RT_SPI_MODE_3:
  142. spi_handle->Init.SPI_Work_Mode = SPI_WORK_MODE_3;
  143. break;
  144. }
  145. if (cfg->mode & RT_SPI_MSB)
  146. {
  147. spi_handle->Init.First_Bit = SPI_FIRSTBIT_MSB;
  148. }
  149. else
  150. {
  151. spi_handle->Init.First_Bit = SPI_FIRSTBIT_LSB;
  152. }
  153. uint32_t SPI_APB_CLOCK;
  154. SPI_APB_CLOCK = System_Get_SystemClock();
  155. if (cfg->max_hz >= SPI_APB_CLOCK / 4)
  156. {
  157. spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_4;
  158. }
  159. else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
  160. {
  161. spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_8;
  162. }
  163. else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
  164. {
  165. spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_16;
  166. }
  167. else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
  168. {
  169. spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_32;
  170. }
  171. else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
  172. {
  173. spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_64;
  174. }
  175. else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
  176. {
  177. spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_128;
  178. }
  179. else
  180. {
  181. /* min prescaler 254 */
  182. spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_254;
  183. }
  184. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  185. {
  186. return -RT_EIO;
  187. }
  188. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  189. #if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  190. /* DMA configuration */
  191. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  192. {
  193. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  194. __HAL_LINK_DMA(spi_drv->handle, HDMA_Rx, spi_drv->dma.handle_rx);
  195. }
  196. #endif
  197. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
  198. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  199. {
  200. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  201. __HAL_LINK_DMA(spi_drv->handle, HDMA_Tx, spi_drv->dma.handle_tx);
  202. }
  203. #endif
  204. #endif
  205. return RT_EOK;
  206. }
  207. static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  208. {
  209. HAL_StatusTypeDef state;
  210. rt_uint8_t *recv_buf;
  211. const rt_uint8_t *send_buf;
  212. rt_uint32_t timeout = 1000;
  213. RT_ASSERT(device != RT_NULL);
  214. RT_ASSERT(device->bus != RT_NULL);
  215. RT_ASSERT(device->bus->parent.user_data != RT_NULL);
  216. RT_ASSERT(message != RT_NULL);
  217. struct acm32_spi *spi_drv = rt_container_of(device->bus, struct acm32_spi, spi_bus);
  218. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  219. struct acm32_hw_spi_cs *cs = device->parent.user_data;
  220. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
  221. {
  222. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_CLEAR);
  223. }
  224. recv_buf = message->recv_buf;
  225. send_buf = message->send_buf;
  226. /* start once data exchange in DMA mode */
  227. if (message->send_buf && message->recv_buf)
  228. {
  229. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  230. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
  231. {
  232. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  233. {
  234. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, message->length);
  235. while (HAL_SPI_GetTxState(spi_handle) != SPI_TX_STATE_IDLE);
  236. }
  237. else
  238. {
  239. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, message->length, timeout);
  240. }
  241. if (state == HAL_OK)
  242. {
  243. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  244. {
  245. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, message->length);
  246. while (HAL_SPI_GetRxState(spi_handle) != SPI_RX_STATE_IDLE);
  247. }
  248. else
  249. {
  250. state = HAL_SPI_Receive_IT(spi_handle, (uint8_t *)recv_buf, message->length);
  251. while (HAL_SPI_GetRxState(spi_handle) != SPI_RX_STATE_IDLE);
  252. }
  253. }
  254. }
  255. else
  256. #endif
  257. {
  258. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, message->length, timeout);
  259. }
  260. if (state != HAL_OK)
  261. {
  262. message->length = 0;
  263. }
  264. }
  265. else if (message->send_buf)
  266. {
  267. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
  268. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  269. {
  270. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, message->length);
  271. while (HAL_SPI_GetTxState(spi_handle) != SPI_TX_STATE_IDLE);
  272. }
  273. else
  274. #endif
  275. {
  276. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, message->length, 0);
  277. }
  278. if (state != HAL_OK)
  279. {
  280. message->length = 0;
  281. }
  282. }
  283. else
  284. {
  285. memset((uint8_t *)recv_buf, 0xff, message->length);
  286. #if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  287. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  288. {
  289. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, message->length);
  290. while (HAL_SPI_GetRxState(spi_handle) != SPI_RX_STATE_IDLE);
  291. }
  292. else
  293. #endif
  294. {
  295. rt_kprintf("expect %d bytes\n", message->length);
  296. state = HAL_SPI_Receive_IT(spi_handle, (uint8_t *)recv_buf, message->length);
  297. while (HAL_SPI_GetRxState(spi_handle) != SPI_RX_STATE_IDLE);
  298. rt_kprintf("recv %d bytes\n", spi_handle->Rx_Count);
  299. }
  300. if (state != HAL_OK)
  301. {
  302. message->length = 0;
  303. }
  304. }
  305. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
  306. {
  307. HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
  308. }
  309. return message->length;
  310. }
  311. static rt_err_t _configure(struct rt_spi_device *device,
  312. struct rt_spi_configuration *configuration)
  313. {
  314. RT_ASSERT(device != RT_NULL);
  315. RT_ASSERT(configuration != RT_NULL);
  316. struct acm32_spi *spi_drv = rt_container_of(device->bus, struct acm32_spi, spi_bus);
  317. spi_drv->cfg = configuration;
  318. return acm32_spi_init(spi_drv, configuration);
  319. }
  320. static const struct rt_spi_ops acm_spi_ops =
  321. {
  322. .configure = _configure,
  323. .xfer = spixfer,
  324. };
  325. static int rt_hw_spi_bus_init(void)
  326. {
  327. rt_err_t result = RT_EOK;
  328. for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  329. {
  330. spi_bus_obj[i].config = &spi_config[i];
  331. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  332. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  333. #if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  334. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  335. {
  336. /* Configure the DMA handler for Transmission process */
  337. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  338. spi_bus_obj[i].dma.handle_rx.Init.Data_Flow = DMA_DATA_FLOW_P2M;
  339. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  340. spi_bus_obj[i].dma.handle_rx.Init.Source_Inc = DMA_SOURCE_ADDR_INCREASE_DISABLE;
  341. spi_bus_obj[i].dma.handle_rx.Init.Desination_Inc = DMA_DST_ADDR_INCREASE_ENABLE;
  342. spi_bus_obj[i].dma.handle_rx.Init.Request_ID = spi_config[i].dma_rx->request;
  343. spi_bus_obj[i].dma.handle_rx.Init.Source_Width = DMA_SRC_WIDTH_BYTE;
  344. spi_bus_obj[i].dma.handle_rx.Init.Desination_Width = DMA_DST_WIDTH_BYTE;
  345. spi_bus_obj[i].dma.handle_rx.DMA_ITC_Callback = NULL;
  346. spi_bus_obj[i].dma.handle_rx.DMA_IE_Callback = NULL;
  347. }
  348. #endif
  349. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
  350. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  351. {
  352. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  353. spi_bus_obj[i].dma.handle_tx.Init.Data_Flow = DMA_DATA_FLOW_M2P;
  354. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  355. spi_bus_obj[i].dma.handle_tx.Init.Source_Inc = DMA_SOURCE_ADDR_INCREASE_ENABLE;
  356. spi_bus_obj[i].dma.handle_tx.Init.Desination_Inc = DMA_DST_ADDR_INCREASE_DISABLE;
  357. spi_bus_obj[i].dma.handle_tx.Init.Request_ID = spi_config[i].dma_tx->request;
  358. spi_bus_obj[i].dma.handle_tx.Init.Source_Width = DMA_SRC_WIDTH_BYTE;
  359. spi_bus_obj[i].dma.handle_tx.Init.Desination_Width = DMA_DST_WIDTH_BYTE;
  360. spi_bus_obj[i].dma.handle_tx.DMA_ITC_Callback = NULL;
  361. spi_bus_obj[i].dma.handle_tx.DMA_IE_Callback = NULL;
  362. }
  363. #endif
  364. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &acm_spi_ops);
  365. RT_ASSERT(result == RT_EOK);
  366. }
  367. return result;
  368. }
  369. #if defined(BSP_USING_SPI1)
  370. void SPI1_IRQHandler(void)
  371. {
  372. /* enter interrupt */
  373. rt_interrupt_enter();
  374. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  375. /* leave interrupt */
  376. rt_interrupt_leave();
  377. }
  378. #endif
  379. #if defined(BSP_USING_SPI2)
  380. void SPI2_IRQHandler(void)
  381. {
  382. /* enter interrupt */
  383. rt_interrupt_enter();
  384. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  385. /* leave interrupt */
  386. rt_interrupt_leave();
  387. }
  388. #endif
  389. static void acm32_get_dma_info(void)
  390. {
  391. #ifdef BSP_SPI1_RX_USING_DMA
  392. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  393. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  394. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  395. #endif
  396. #ifdef BSP_SPI1_TX_USING_DMA
  397. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  398. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  399. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  400. #endif
  401. #ifdef BSP_SPI2_RX_USING_DMA
  402. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  403. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  404. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  405. #endif
  406. #ifdef BSP_SPI2_TX_USING_DMA
  407. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  408. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  409. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  410. #endif
  411. }
  412. int rt_hw_spi_init(void)
  413. {
  414. acm32_get_dma_info();
  415. return rt_hw_spi_bus_init();
  416. }
  417. INIT_BOARD_EXPORT(rt_hw_spi_init);
  418. static uint32_t get_gpio_alternate(enum_GPIOx_t gpio_port, uint16_t gpio_pin)
  419. {
  420. /* SPI1_CS : PA2->AF3 PA4->AF1 PA15->AF1 PB0->AF1 PB11->AF5 */
  421. /* SPI2_CS : PA8->AF4 PB9->AF4 PB12->AF4 */
  422. if (gpio_port == GPIOA || gpio_port == GPIOB)
  423. {
  424. if (gpio_port == GPIOA)
  425. {
  426. switch (gpio_pin)
  427. {
  428. case GPIO_PIN_2:
  429. return GPIO_FUNCTION_3;
  430. case GPIO_PIN_4:
  431. return GPIO_FUNCTION_1;
  432. case GPIO_PIN_8:
  433. return GPIO_FUNCTION_4;
  434. case GPIO_PIN_15:
  435. return GPIO_FUNCTION_1;
  436. default:
  437. return RT_UINT32_MAX;
  438. }
  439. }
  440. else
  441. {
  442. switch (gpio_pin)
  443. {
  444. case GPIO_PIN_0:
  445. return GPIO_FUNCTION_1;
  446. case GPIO_PIN_9:
  447. return GPIO_FUNCTION_4;
  448. case GPIO_PIN_11:
  449. return GPIO_FUNCTION_5;
  450. case GPIO_PIN_12:
  451. return GPIO_FUNCTION_4;
  452. default:
  453. return RT_UINT32_MAX;
  454. }
  455. }
  456. }
  457. return RT_UINT32_MAX;
  458. }
  459. /**
  460. * Attach the spi device to SPI bus, this function must be used after initialization.
  461. */
  462. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, enum_GPIOx_t cs_gpiox, uint16_t cs_gpio_pin)
  463. {
  464. rt_uint32_t alternate;
  465. RT_ASSERT(bus_name != RT_NULL);
  466. RT_ASSERT(device_name != RT_NULL);
  467. rt_err_t result;
  468. struct rt_spi_device *spi_device;
  469. struct acm32_hw_spi_cs *cs_pin;
  470. alternate = get_gpio_alternate(cs_gpiox, cs_gpio_pin);
  471. if (alternate == RT_UINT32_MAX)
  472. {
  473. return -RT_EINVAL;
  474. }
  475. /* initialize the cs pin && select the slave*/
  476. GPIO_InitTypeDef GPIO_Initure;
  477. GPIO_Initure.Pin = cs_gpio_pin;
  478. GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
  479. GPIO_Initure.Pull = GPIO_PULLUP;
  480. GPIO_Initure.Alternate = alternate;
  481. HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
  482. /* attach the device to spi bus*/
  483. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  484. RT_ASSERT(spi_device != RT_NULL);
  485. cs_pin = (struct acm32_hw_spi_cs *)rt_malloc(sizeof(struct acm32_hw_spi_cs));
  486. RT_ASSERT(cs_pin != RT_NULL);
  487. cs_pin->GPIOx = cs_gpiox;
  488. cs_pin->GPIO_Pin = cs_gpio_pin;
  489. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  490. RT_ASSERT(result == RT_EOK);
  491. return result;
  492. }
  493. void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
  494. {
  495. GPIO_InitTypeDef GPIO_Handle;
  496. struct acm32_spi *spi_drv;
  497. struct acm32_spi_config *spi_config;
  498. RT_ASSERT(hspi != RT_NULL);
  499. spi_drv = rt_container_of(hspi, struct acm32_spi, handle);
  500. RT_ASSERT(spi_drv->spi_bus.parent.user_data != RT_NULL);
  501. spi_config = (struct acm32_spi_config *)spi_drv->spi_bus.parent.user_data;
  502. /* Enable Clock */
  503. System_Module_Enable(spi_config->enable_id);
  504. /* SPI CS */
  505. GPIO_Handle.Pin = spi_config->cs_pin;
  506. GPIO_Handle.Mode = GPIO_MODE_AF_PP;
  507. GPIO_Handle.Pull = GPIO_PULLUP;
  508. GPIO_Handle.Alternate = spi_config->cs_alternate ;
  509. HAL_GPIO_Init(spi_config->cs_port, &GPIO_Handle);
  510. /* SPI SCK */
  511. GPIO_Handle.Pin = spi_config->sck_pin;
  512. GPIO_Handle.Mode = GPIO_MODE_AF_PP;
  513. GPIO_Handle.Pull = GPIO_PULLUP;
  514. GPIO_Handle.Alternate = spi_config->sck_alternate ;
  515. HAL_GPIO_Init(spi_config->sck_port, &GPIO_Handle);
  516. /* SPI MOSI */
  517. GPIO_Handle.Pin = spi_config->mosi_pin;
  518. GPIO_Handle.Mode = GPIO_MODE_AF_PP;
  519. GPIO_Handle.Pull = GPIO_PULLUP;
  520. GPIO_Handle.Alternate = spi_config->mosi_alternate ;
  521. HAL_GPIO_Init(spi_config->mosi_port, &GPIO_Handle);
  522. /* SPI MISO */
  523. GPIO_Handle.Pin = spi_config->miso_pin;
  524. GPIO_Handle.Mode = GPIO_MODE_AF_PP;
  525. GPIO_Handle.Pull = GPIO_PULLUP;
  526. GPIO_Handle.Alternate = spi_config->miso_alternate ;
  527. HAL_GPIO_Init(spi_config->miso_port, &GPIO_Handle);
  528. if (hspi->Init.X_Mode == SPI_4X_MODE)
  529. {
  530. /* SPI WP */
  531. GPIO_Handle.Pin = spi_config->wp_pin;
  532. GPIO_Handle.Mode = GPIO_MODE_AF_PP;
  533. GPIO_Handle.Pull = GPIO_PULLUP;
  534. GPIO_Handle.Alternate = spi_config->wp_alternate ;
  535. HAL_GPIO_Init(spi_config->wp_port, &GPIO_Handle);
  536. /* SPI HOLD */
  537. GPIO_Handle.Pin = spi_config->hold_pin;
  538. GPIO_Handle.Mode = GPIO_MODE_AF_PP;
  539. GPIO_Handle.Pull = GPIO_PULLUP;
  540. GPIO_Handle.Alternate = spi_config->hold_alternate ;
  541. HAL_GPIO_Init(spi_config->hold_port, &GPIO_Handle);
  542. }
  543. /* Clear Pending Interrupt */
  544. NVIC_ClearPendingIRQ(spi_config->irq_type);
  545. /* Enable External Interrupt */
  546. NVIC_EnableIRQ(spi_config->irq_type);
  547. }
  548. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 */
  549. #endif /* RT_USING_SPI */