board.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. /*
  2. * Copyright (c) 2021-2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_femc_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_pwm_drv.h"
  21. #include "hpm_trgm_drv.h"
  22. #include "hpm_pllctl_drv.h"
  23. #include "hpm_enet_drv.h"
  24. #include "hpm_pcfg_drv.h"
  25. static board_timer_cb timer_cb;
  26. /**
  27. * @brief FLASH configuration option definitions:
  28. * option[0]:
  29. * [31:16] 0xfcf9 - FLASH configuration option tag
  30. * [15:4] 0 - Reserved
  31. * [3:0] option words (exclude option[0])
  32. * option[1]:
  33. * [31:28] Flash probe type
  34. * 0 - SFDP SDR / 1 - SFDP DDR
  35. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  36. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  37. * 6 - OctaBus DDR (SPI -> OPI DDR)
  38. * 8 - Xccela DDR (SPI -> OPI DDR)
  39. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  40. * [27:24] Command Pads after Power-on Reset
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [23:20] Command Pads after Configuring FLASH
  43. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  44. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  45. * 0 - Not needed
  46. * 1 - QE bit is at bit 6 in Status Register 1
  47. * 2 - QE bit is at bit1 in Status Register 2
  48. * 3 - QE bit is at bit7 in Status Register 2
  49. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  50. * [15:8] Dummy cycles
  51. * 0 - Auto-probed / detected / default value
  52. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  53. * [7:4] Misc.
  54. * 0 - Not used
  55. * 1 - SPI mode
  56. * 2 - Internal loopback
  57. * 3 - External DQS
  58. * [3:0] Frequency option
  59. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  60. *
  61. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  62. * [31:20] Reserved
  63. * [19:16] IO voltage
  64. * 0 - 3V / 1 - 1.8V
  65. * [15:12] Pin group
  66. * 0 - 1st group / 1 - 2nd group
  67. * [11:8] Connection selection
  68. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  69. * [7:0] Drive Strength
  70. * 0 - Default value
  71. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  72. * JESD216)
  73. * [31:16] reserved
  74. * [15:12] Sector Erase Command Option, not required here
  75. * [11:8] Sector Size Option, not required here
  76. * [7:0] Flash Size Option
  77. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  78. */
  79. #if defined(FLASH_XIP) && FLASH_XIP
  80. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  81. #endif
  82. #if defined(FLASH_UF2) && FLASH_UF2
  83. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  84. #endif
  85. void board_init_console(void)
  86. {
  87. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  88. console_config_t cfg;
  89. /* Configure the UART clock to 24MHz */
  90. clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
  91. cfg.type = BOARD_CONSOLE_TYPE;
  92. cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
  93. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
  94. cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
  95. init_uart_pins((UART_Type *) cfg.base);
  96. if (status_success != console_init(&cfg)) {
  97. /* failed to initialize debug console */
  98. while (1) {
  99. }
  100. }
  101. #else
  102. while(1);
  103. #endif
  104. }
  105. void board_print_clock_freq(void)
  106. {
  107. printf("==============================\n");
  108. printf(" %s clock summary\n", BOARD_NAME);
  109. printf("==============================\n");
  110. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  111. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  112. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  113. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  114. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  115. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  116. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  117. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  118. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  119. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  120. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  121. printf("display:\t %luHz\n", clock_get_frequency(clock_display));
  122. printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
  123. printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
  124. printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
  125. printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
  126. printf("==============================\n");
  127. }
  128. void board_init_uart(UART_Type *ptr)
  129. {
  130. init_uart_pins(ptr);
  131. board_init_uart_clock(ptr);
  132. }
  133. void board_init_ahb(void)
  134. {
  135. clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
  136. }
  137. void board_print_banner(void)
  138. {
  139. const uint8_t banner[] = {"\n\
  140. ----------------------------------------------------------------------\n\
  141. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  142. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  143. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  144. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  145. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  146. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  147. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  148. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  149. ----------------------------------------------------------------------\n"};
  150. printf("%s", banner);
  151. }
  152. static void board_turnoff_rgb_led(void)
  153. {
  154. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  155. HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
  156. HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
  157. HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
  158. HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
  159. HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
  160. HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
  161. }
  162. void board_ungate_mchtmr_at_lp_mode(void)
  163. {
  164. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  165. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  166. }
  167. void board_init(void)
  168. {
  169. board_turnoff_rgb_led();
  170. board_init_clock();
  171. board_init_console();
  172. board_init_pmp();
  173. board_init_ahb();
  174. #if BOARD_SHOW_CLOCK
  175. board_print_clock_freq();
  176. #endif
  177. #if BOARD_SHOW_BANNER
  178. board_print_banner();
  179. #endif
  180. }
  181. void board_init_sdram_pins(void)
  182. {
  183. init_sdram_pins();
  184. }
  185. uint32_t board_init_femc_clock(void)
  186. {
  187. clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
  188. /* clock_set_source_divider(clock_femc, clk_src_pll1_clk1, 2U); [> 200Mhz <] */
  189. return clock_get_frequency(clock_femc);
  190. }
  191. void board_power_cycle_lcd(void)
  192. {
  193. /* turn off backlight */
  194. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  195. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 0);
  196. board_delay_ms(150);
  197. /* power recycle */
  198. gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
  199. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 0);
  200. board_delay_ms(150);
  201. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 1);
  202. board_delay_ms(150);
  203. /* turn on backlight */
  204. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 1);
  205. }
  206. void board_init_lcd(void)
  207. {
  208. board_init_lcd_clock();
  209. init_lcd_pins(BOARD_LCD_BASE);
  210. board_power_cycle_lcd();
  211. }
  212. void board_panel_para_to_lcdc(lcdc_config_t *config)
  213. {
  214. const uint16_t panel_timing_para[] = BOARD_PANEL_TIMING_PARA;
  215. config->resolution_x = BOARD_LCD_WIDTH;
  216. config->resolution_y = BOARD_LCD_HEIGHT;
  217. config->hsync.pulse_width = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HSPW_INDEX];
  218. config->hsync.back_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HBP_INDEX];
  219. config->hsync.front_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HFP_INDEX];
  220. config->vsync.pulse_width = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VSPW_INDEX];
  221. config->vsync.back_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VBP_INDEX];
  222. config->vsync.front_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VFP_INDEX];
  223. config->control.invert_hsync = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HSSP_INDEX];
  224. config->control.invert_vsync = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VSSP_INDEX];
  225. config->control.invert_href = panel_timing_para[BOARD_PANEL_TIMEING_PARA_DESP_INDEX];
  226. config->control.invert_pixel_data = panel_timing_para[BOARD_PANEL_TIMEING_PARA_PDSP_INDEX];
  227. config->control.invert_pixel_clock = panel_timing_para[BOARD_PANEL_TIMEING_PARA_PCSP_INDEX];
  228. }
  229. void board_delay_ms(uint32_t ms)
  230. {
  231. clock_cpu_delay_ms(ms);
  232. }
  233. void board_timer_isr(void)
  234. {
  235. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  236. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  237. timer_cb();
  238. }
  239. }
  240. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  241. void board_timer_create(uint32_t ms, board_timer_cb cb)
  242. {
  243. uint32_t gptmr_freq;
  244. gptmr_channel_config_t config;
  245. timer_cb = cb;
  246. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  247. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  248. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  249. config.reload = gptmr_freq / 1000 * ms;
  250. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  251. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  252. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  253. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  254. }
  255. void board_i2c_bus_clear(I2C_Type *ptr)
  256. {
  257. init_i2c_pins_as_gpio(ptr);
  258. if (ptr == BOARD_CAP_I2C_BASE) {
  259. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  260. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  261. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  262. printf("CLK is low, please power cycle the board\n");
  263. while (1) {}
  264. }
  265. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  266. printf("SDA is low, try to issue I2C bus clear\n");
  267. } else {
  268. printf("I2C bus is ready\n");
  269. return;
  270. }
  271. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  272. while (1) {
  273. for (uint32_t i = 0; i < 9; i++) {
  274. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  275. board_delay_ms(10);
  276. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  277. board_delay_ms(10);
  278. }
  279. board_delay_ms(100);
  280. }
  281. printf("I2C bus is cleared\n");
  282. }
  283. }
  284. void board_init_i2c(I2C_Type *ptr)
  285. {
  286. hpm_stat_t stat;
  287. uint32_t freq;
  288. i2c_config_t config;
  289. board_i2c_bus_clear(ptr);
  290. init_i2c_pins(ptr);
  291. clock_add_to_group(clock_i2c0, 0);
  292. clock_add_to_group(clock_i2c1, 0);
  293. clock_add_to_group(clock_i2c2, 0);
  294. clock_add_to_group(clock_i2c3, 0);
  295. /* Configure the I2C clock to 24MHz */
  296. clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  297. config.i2c_mode = i2c_mode_normal;
  298. config.is_10bit_addressing = false;
  299. freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
  300. stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
  301. if (stat != status_success) {
  302. printf("failed to initialize i2c 0x%x\n", (uint32_t)BOARD_CAP_I2C_BASE);
  303. while (1) {}
  304. }
  305. }
  306. uint32_t board_init_uart_clock(UART_Type *ptr)
  307. {
  308. uint32_t freq = 0;
  309. clock_name_t clock_name = clock_uart0;
  310. bool need_init_clock = true;
  311. if (ptr == HPM_UART0) {
  312. clock_name = clock_uart0;
  313. } else if (ptr == HPM_UART1) {
  314. clock_name = clock_uart1;
  315. } else if (ptr == HPM_UART2) {
  316. clock_name = clock_uart2;
  317. } else if (ptr == HPM_UART3) {
  318. clock_name = clock_uart3;
  319. } else if (ptr == HPM_UART4) {
  320. clock_name = clock_uart4;
  321. } else if (ptr == HPM_UART5) {
  322. clock_name = clock_uart5;
  323. } else if (ptr == HPM_UART6) {
  324. clock_name = clock_uart6;
  325. } else if (ptr == HPM_UART7) {
  326. clock_name = clock_uart7;
  327. } else if (ptr == HPM_UART8) {
  328. clock_name = clock_uart8;
  329. } else if (ptr == HPM_UART9) {
  330. clock_name = clock_uart9;
  331. } else if (ptr == HPM_UART10) {
  332. clock_name = clock_uart10;
  333. } else if (ptr == HPM_UART11) {
  334. clock_name = clock_uart11;
  335. } else if (ptr == HPM_UART12) {
  336. clock_name = clock_uart12;
  337. } else if (ptr == HPM_UART13) {
  338. clock_name = clock_uart13;
  339. } else if (ptr == HPM_UART14) {
  340. clock_name = clock_uart14;
  341. } else if (ptr == HPM_UART15) {
  342. clock_name = clock_uart15;
  343. } else {
  344. /* Unsupported instance */
  345. need_init_clock = false;
  346. }
  347. if (need_init_clock) {
  348. clock_set_source_divider(clock_name, clk_src_osc24m, 1);
  349. clock_add_to_group(clock_name, 0);
  350. freq = clock_get_frequency(clock_name);
  351. }
  352. return freq;
  353. }
  354. uint32_t board_init_spi_clock(SPI_Type *ptr)
  355. {
  356. if (ptr == HPM_SPI2) {
  357. /* SPI2 clock configure */
  358. clock_add_to_group(clock_spi2, 0);
  359. clock_set_source_divider(clock_spi2, clk_src_osc24m, 1U);
  360. return clock_get_frequency(clock_spi2);
  361. }
  362. return 0;
  363. }
  364. void board_init_cap_touch(void)
  365. {
  366. init_cap_pins();
  367. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  368. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  369. board_delay_ms(1);
  370. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
  371. board_delay_ms(10);
  372. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  373. gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  374. board_init_i2c(BOARD_CAP_I2C_BASE);
  375. }
  376. void board_init_gpio_pins(void)
  377. {
  378. init_gpio_pins();
  379. }
  380. void board_init_spi_pins(SPI_Type *ptr)
  381. {
  382. init_spi_pins(ptr);
  383. }
  384. void board_init_led_pins(void)
  385. {
  386. init_led_pins_as_gpio();
  387. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  388. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  389. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  390. }
  391. void board_led_toggle(void)
  392. {
  393. #ifdef BOARD_LED_TOGGLE_RGB
  394. static uint8_t i;
  395. gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_R_GPIO_PIN);
  396. i++;
  397. i = i % 3;
  398. #else
  399. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  400. #endif
  401. }
  402. void board_led_write(uint8_t state)
  403. {
  404. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  405. }
  406. void board_init_cam_pins(void)
  407. {
  408. init_cam_pins();
  409. /* enable cam RST pin out with high level */
  410. gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
  411. }
  412. void board_write_cam_rst(uint8_t state)
  413. {
  414. gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
  415. }
  416. void board_init_usb_pins(void)
  417. {
  418. /* set pull-up for USBx OC pins and ID pins */
  419. init_usb_pins();
  420. /* configure USBx ID pins as input function */
  421. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  422. gpio_set_pin_input(BOARD_USB1_ID_PORT, BOARD_USB1_ID_GPIO_INDEX, BOARD_USB1_ID_GPIO_PIN);
  423. /* configure USBx OC Flag pins as input function */
  424. gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
  425. gpio_set_pin_input(BOARD_USB1_OC_PORT, BOARD_USB1_OC_GPIO_INDEX, BOARD_USB1_OC_GPIO_PIN);
  426. }
  427. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  428. {
  429. }
  430. void board_init_pmp(void)
  431. {
  432. extern uint32_t __noncacheable_start__[];
  433. extern uint32_t __noncacheable_end__[];
  434. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  435. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  436. uint32_t length = end_addr - start_addr;
  437. if (length == 0) {
  438. return;
  439. }
  440. /* Ensure the address and the length are power of 2 aligned */
  441. assert((length & (length - 1U)) == 0U);
  442. assert((start_addr & (length - 1U)) == 0U);
  443. pmp_entry_t pmp_entry[1];
  444. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  445. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  446. pmp_entry[0].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  447. pmp_entry[0].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  448. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  449. }
  450. void board_init_clock(void)
  451. {
  452. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  453. hpm_core_clock = cpu0_freq;
  454. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  455. /* Configure the External OSC ramp-up time: ~9ms */
  456. pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
  457. /* Select clock setting preset1 */
  458. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  459. }
  460. /* Add most Clocks to group 0 */
  461. clock_add_to_group(clock_cpu0, 0);
  462. clock_add_to_group(clock_mchtmr0, 0);
  463. clock_add_to_group(clock_axi0, 0);
  464. clock_add_to_group(clock_axi1, 0);
  465. clock_add_to_group(clock_axi2, 0);
  466. clock_add_to_group(clock_ahb, 0);
  467. clock_add_to_group(clock_femc, 0);
  468. clock_add_to_group(clock_xpi0, 0);
  469. clock_add_to_group(clock_xpi1, 0);
  470. clock_add_to_group(clock_gptmr0, 0);
  471. clock_add_to_group(clock_gptmr1, 0);
  472. clock_add_to_group(clock_gptmr2, 0);
  473. clock_add_to_group(clock_gptmr3, 0);
  474. clock_add_to_group(clock_gptmr4, 0);
  475. clock_add_to_group(clock_gptmr5, 0);
  476. clock_add_to_group(clock_gptmr6, 0);
  477. clock_add_to_group(clock_gptmr7, 0);
  478. clock_add_to_group(clock_uart0, 0);
  479. clock_add_to_group(clock_i2c0, 0);
  480. clock_add_to_group(clock_i2c1, 0);
  481. clock_add_to_group(clock_i2c2, 0);
  482. clock_add_to_group(clock_i2c3, 0);
  483. clock_add_to_group(clock_spi0, 0);
  484. clock_add_to_group(clock_spi1, 0);
  485. clock_add_to_group(clock_spi2, 0);
  486. clock_add_to_group(clock_spi3, 0);
  487. clock_add_to_group(clock_can0, 0);
  488. clock_add_to_group(clock_can1, 0);
  489. clock_add_to_group(clock_can2, 0);
  490. clock_add_to_group(clock_can3, 0);
  491. clock_add_to_group(clock_display, 0);
  492. clock_add_to_group(clock_sdxc0, 0);
  493. clock_add_to_group(clock_sdxc1, 0);
  494. clock_add_to_group(clock_camera0, 0);
  495. clock_add_to_group(clock_camera1, 0);
  496. clock_add_to_group(clock_ptpc, 0);
  497. clock_add_to_group(clock_ref0, 0);
  498. clock_add_to_group(clock_ref1, 0);
  499. clock_add_to_group(clock_watchdog0, 0);
  500. clock_add_to_group(clock_eth0, 0);
  501. clock_add_to_group(clock_eth1, 0);
  502. clock_add_to_group(clock_sdp, 0);
  503. clock_add_to_group(clock_xdma, 0);
  504. clock_add_to_group(clock_ram0, 0);
  505. clock_add_to_group(clock_ram1, 0);
  506. clock_add_to_group(clock_usb0, 0);
  507. clock_add_to_group(clock_usb1, 0);
  508. clock_add_to_group(clock_jpeg, 0);
  509. clock_add_to_group(clock_pdma, 0);
  510. clock_add_to_group(clock_kman, 0);
  511. clock_add_to_group(clock_gpio, 0);
  512. clock_add_to_group(clock_mbx0, 0);
  513. clock_add_to_group(clock_hdma, 0);
  514. clock_add_to_group(clock_rng, 0);
  515. clock_add_to_group(clock_mot0, 0);
  516. clock_add_to_group(clock_mot1, 0);
  517. clock_add_to_group(clock_mot2, 0);
  518. clock_add_to_group(clock_mot3, 0);
  519. clock_add_to_group(clock_acmp, 0);
  520. clock_add_to_group(clock_dao, 0);
  521. clock_add_to_group(clock_msyn, 0);
  522. clock_add_to_group(clock_lmm0, 0);
  523. clock_add_to_group(clock_lmm1, 0);
  524. clock_add_to_group(clock_pdm, 0);
  525. clock_add_to_group(clock_adc0, 0);
  526. clock_add_to_group(clock_adc1, 0);
  527. clock_add_to_group(clock_adc2, 0);
  528. clock_add_to_group(clock_adc3, 0);
  529. clock_add_to_group(clock_i2s0, 0);
  530. clock_add_to_group(clock_i2s1, 0);
  531. clock_add_to_group(clock_i2s2, 0);
  532. clock_add_to_group(clock_i2s3, 0);
  533. /* Connect Group0 to CPU0 */
  534. clock_connect_group_to_cpu(0, 0);
  535. /* Add the CPU1 clock to Group1 */
  536. clock_add_to_group(clock_mchtmr1, 1);
  537. clock_add_to_group(clock_mbx1, 1);
  538. /* Connect Group1 to CPU1 */
  539. clock_connect_group_to_cpu(1, 1);
  540. /* Bump up DCDC voltage to 1200mv */
  541. pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
  542. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  543. printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
  544. while (1) {
  545. }
  546. }
  547. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  548. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  549. /* Connect Group1 to CPU1 */
  550. clock_connect_group_to_cpu(1, 1);
  551. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 44100*n sample rate */
  552. }
  553. uint32_t board_init_cam_clock(CAM_Type *ptr)
  554. {
  555. uint32_t freq = 0;
  556. if (ptr == HPM_CAM0) {
  557. /* Configure camera clock to 24MHz */
  558. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  559. freq = clock_get_frequency(clock_camera0);
  560. } else if (ptr == HPM_CAM1) {
  561. /* Configure camera clock to 24MHz */
  562. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  563. freq = clock_get_frequency(clock_camera1);
  564. } else {
  565. /* Invalid camera instance */
  566. }
  567. return freq;
  568. }
  569. uint32_t board_init_lcd_clock(void)
  570. {
  571. uint32_t freq;
  572. clock_add_to_group(clock_display, 0);
  573. /* Configure LCDC clock to 29.7MHz */
  574. clock_set_source_divider(clock_display, clock_source_pll4_clk0, 20U);
  575. freq = clock_get_frequency(clock_display);
  576. return freq;
  577. }
  578. uint32_t board_init_adc12_clock(ADC12_Type *ptr)
  579. {
  580. uint32_t freq = 0;
  581. switch ((uint32_t) ptr) {
  582. case HPM_ADC0_BASE:
  583. /* Configure the ADC clock to 200MHz */
  584. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  585. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  586. freq = clock_get_frequency(clock_adc0);
  587. break;
  588. case HPM_ADC1_BASE:
  589. /* Configure the ADC clock to 200MHz */
  590. clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
  591. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  592. freq = clock_get_frequency(clock_adc1);
  593. break;
  594. case HPM_ADC2_BASE:
  595. /* Configure the ADC clock to 200MHz */
  596. clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
  597. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  598. freq = clock_get_frequency(clock_adc2);
  599. break;
  600. default:
  601. /* Invalid ADC instance */
  602. break;
  603. }
  604. return freq;
  605. }
  606. uint32_t board_init_dao_clock(void)
  607. {
  608. clock_add_to_group(clock_dao, 0);
  609. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  610. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud0_clk);
  611. return clock_get_frequency(clock_dao);
  612. }
  613. uint32_t board_init_pdm_clock(void)
  614. {
  615. clock_add_to_group(clock_pdm, 0);
  616. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  617. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  618. return clock_get_frequency(clock_pdm);
  619. }
  620. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  621. {
  622. if (ptr == HPM_I2S0) {
  623. clock_add_to_group(clock_i2s0, 0);
  624. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  625. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  626. return clock_get_frequency(clock_i2s0);
  627. }
  628. return 0;
  629. }
  630. uint32_t board_init_adc16_clock(ADC16_Type *ptr)
  631. {
  632. uint32_t freq = 0;
  633. if (ptr == HPM_ADC3) {
  634. /* Configure the ADC clock to 200MHz */
  635. clock_set_adc_source(clock_adc3, clk_adc_src_ana1);
  636. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  637. freq = clock_get_frequency(clock_adc3);
  638. }
  639. return freq;
  640. }
  641. void board_init_can(CAN_Type *ptr)
  642. {
  643. init_can_pins(ptr);
  644. }
  645. uint32_t board_init_can_clock(CAN_Type *ptr)
  646. {
  647. uint32_t freq = 0;
  648. if (ptr == HPM_CAN0) {
  649. /* Set the CAN0 peripheral clock to 80MHz */
  650. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  651. freq = clock_get_frequency(clock_can0);
  652. } else if (ptr == HPM_CAN1) {
  653. /* Set the CAN1 peripheral clock to 80MHz */
  654. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  655. freq = clock_get_frequency(clock_can1);
  656. } else if (ptr == HPM_CAN2) {
  657. /* Set the CAN2 peripheral clock to 80MHz */
  658. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  659. freq = clock_get_frequency(clock_can2);
  660. } else if (ptr == HPM_CAN3) {
  661. /* Set the CAN3 peripheral clock to 80MHz */
  662. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  663. freq = clock_get_frequency(clock_can3);
  664. } else {
  665. /* Invalid CAN instance */
  666. }
  667. return freq;
  668. }
  669. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  670. {
  671. uint32_t freq = 0;
  672. if (ptr == HPM_GPTMR0) {
  673. clock_add_to_group(clock_gptmr0, 0);
  674. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  675. freq = clock_get_frequency(clock_gptmr0);
  676. }
  677. else if (ptr == HPM_GPTMR1) {
  678. clock_add_to_group(clock_gptmr1, 0);
  679. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  680. freq = clock_get_frequency(clock_gptmr1);
  681. }
  682. else if (ptr == HPM_GPTMR2) {
  683. clock_add_to_group(clock_gptmr2, 0);
  684. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  685. freq = clock_get_frequency(clock_gptmr2);
  686. }
  687. else if (ptr == HPM_GPTMR3) {
  688. clock_add_to_group(clock_gptmr3, 0);
  689. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  690. freq = clock_get_frequency(clock_gptmr3);
  691. }
  692. else if (ptr == HPM_GPTMR4) {
  693. clock_add_to_group(clock_gptmr4, 0);
  694. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
  695. freq = clock_get_frequency(clock_gptmr4);
  696. }
  697. else if (ptr == HPM_GPTMR5) {
  698. clock_add_to_group(clock_gptmr5, 0);
  699. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
  700. freq = clock_get_frequency(clock_gptmr5);
  701. }
  702. else if (ptr == HPM_GPTMR6) {
  703. clock_add_to_group(clock_gptmr6, 0);
  704. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
  705. freq = clock_get_frequency(clock_gptmr6);
  706. }
  707. else if (ptr == HPM_GPTMR7) {
  708. clock_add_to_group(clock_gptmr7, 0);
  709. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
  710. freq = clock_get_frequency(clock_gptmr7);
  711. }
  712. else {
  713. /* Invalid instance */
  714. }
  715. }
  716. /*
  717. * this function will be called during startup to initialize external memory for data use
  718. */
  719. void _init_ext_ram(void)
  720. {
  721. uint32_t femc_clk_in_hz;
  722. clock_add_to_group(clock_femc, 0);
  723. board_init_sdram_pins();
  724. femc_clk_in_hz = board_init_femc_clock();
  725. femc_config_t config = {0};
  726. femc_sdram_config_t sdram_config = {0};
  727. femc_default_config(HPM_FEMC, &config);
  728. config.dqs = FEMC_DQS_INTERNAL;
  729. femc_init(HPM_FEMC, &config);
  730. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  731. sdram_config.prescaler = 0x3;
  732. sdram_config.burst_len_in_byte = 8;
  733. sdram_config.auto_refresh_count_in_one_burst = 1;
  734. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  735. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  736. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  737. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  738. sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
  739. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  740. sdram_config.cke_off_in_ns = 42; /* Trcd */
  741. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  742. sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
  743. sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
  744. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  745. sdram_config.idle_timeout_in_ns = 6;
  746. sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
  747. sdram_config.cs = BOARD_SDRAM_CS;
  748. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  749. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  750. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  751. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  752. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  753. sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
  754. sdram_config.delay_cell_value = 29;
  755. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  756. }
  757. void board_init_sd_pins(SDXC_Type *ptr)
  758. {
  759. init_sdxc_pins(ptr, false);
  760. init_sdxc_card_detection_pin(ptr);
  761. }
  762. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  763. {
  764. /* This feature is not supported on current board */
  765. }
  766. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq)
  767. {
  768. uint32_t actual_freq = 0;
  769. do {
  770. if (ptr != HPM_SDXC1) {
  771. break;
  772. }
  773. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  774. sdxc_enable_inverse_clock(ptr, false);
  775. sdxc_enable_sd_clock(ptr, false);
  776. /* Configure the clock below 400KHz for the identification state */
  777. if (freq <= 400000UL) {
  778. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  779. }
  780. /* configure the clock to 24MHz for the SDR12/Default speed */
  781. else if (freq <= 25000000UL) {
  782. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  783. }
  784. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  785. else if (freq <= 50000000UL) {
  786. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  787. }
  788. /* Configure the clock to 100MHz for the SDR50 */
  789. else if (freq <= 100000000UL) {
  790. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  791. }
  792. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  793. else if (freq <= 208000000UL) {
  794. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  795. }
  796. /* For other unsupported clock ranges, configure the clock to 24MHz */
  797. else {
  798. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  799. }
  800. sdxc_enable_inverse_clock(ptr, true);
  801. sdxc_enable_sd_clock(ptr, true);
  802. actual_freq = clock_get_frequency(sdxc_clk);
  803. } while (false);
  804. return actual_freq;
  805. }
  806. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  807. {
  808. /* This feature is not supported */
  809. }
  810. bool board_sd_detect_card(SDXC_Type *ptr)
  811. {
  812. return ((BOARD_APP_SDCARD_CDN_GPIO_CTRL->DI[GPIO_DI_GPIOD].VALUE & (1UL << BOARD_APP_SDCARD_CDN_GPIO_PIN)) == 0U);
  813. }
  814. static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
  815. {
  816. pwm_cmp_config_t cmp_config = {0};
  817. pwm_output_channel_t ch_config = {0};
  818. pwm_stop_counter(ptr);
  819. pwm_get_default_cmp_config(ptr, &cmp_config);
  820. pwm_get_default_output_channel_config(ptr, &ch_config);
  821. pwm_set_reload(ptr, 0, 0xF);
  822. pwm_set_start_count(ptr, 0, 0);
  823. cmp_config.mode = pwm_cmp_mode_output_compare;
  824. cmp_config.cmp = 0x10;
  825. cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
  826. pwm_config_cmp(ptr, cmp_index, &cmp_config);
  827. ch_config.cmp_start_index = cmp_index;
  828. ch_config.cmp_end_index = cmp_index;
  829. ch_config.invert_output = false;
  830. pwm_config_output_channel(ptr, pin, &ch_config);
  831. }
  832. void board_init_rgb_pwm_pins(void)
  833. {
  834. trgm_output_t config = {0};
  835. board_turnoff_rgb_led();
  836. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
  837. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
  838. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
  839. init_rgb_pwm_pins();
  840. config.type = 0;
  841. config.invert = false;
  842. /* Red: TRGM1 P1 */
  843. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
  844. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
  845. /* Green: TRGM0 P6 */
  846. config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
  847. trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
  848. /* Blue: TRGM1 P3 */
  849. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
  850. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
  851. }
  852. void board_disable_output_rgb_led(uint8_t color)
  853. {
  854. switch (color) {
  855. case BOARD_RGB_RED:
  856. trgm_disable_io_output(HPM_TRGM1, 1 << 1);
  857. break;
  858. case BOARD_RGB_GREEN:
  859. trgm_disable_io_output(HPM_TRGM0, 1 << 6);
  860. break;
  861. case BOARD_RGB_BLUE:
  862. trgm_disable_io_output(HPM_TRGM1, 1 << 3);
  863. break;
  864. default:
  865. while (1) {
  866. ;
  867. }
  868. }
  869. }
  870. void board_enable_output_rgb_led(uint8_t color)
  871. {
  872. switch (color) {
  873. case BOARD_RGB_RED:
  874. trgm_enable_io_output(HPM_TRGM1, 1 << 1);
  875. break;
  876. case BOARD_RGB_GREEN:
  877. trgm_enable_io_output(HPM_TRGM0, 1 << 6);
  878. break;
  879. case BOARD_RGB_BLUE:
  880. trgm_enable_io_output(HPM_TRGM1, 1 << 3);
  881. break;
  882. default:
  883. while (1) {
  884. ;
  885. }
  886. }
  887. }
  888. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  889. {
  890. /* set clock source */
  891. if (ptr == HPM_ENET0) {
  892. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  893. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  894. } else if (ptr == HPM_ENET1) {
  895. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
  896. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  897. } else {
  898. return status_invalid_argument;
  899. }
  900. return status_success;
  901. }
  902. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  903. {
  904. if (internal == false) {
  905. return status_success;
  906. }
  907. /* Configure Enet clock to output reference clock */
  908. if (ptr == HPM_ENET0) {
  909. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet0 */
  910. clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5);
  911. } else if (ptr == HPM_ENET1) {
  912. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet1 */
  913. clock_set_source_divider(clock_eth1, clk_src_pll2_clk1, 5); /* set 50MHz for enet1 */
  914. } else {
  915. return status_invalid_argument;
  916. }
  917. return status_success;
  918. }
  919. void board_init_adc12_pins(void)
  920. {
  921. init_adc12_pins();
  922. }
  923. void board_init_adc16_pins(void)
  924. {
  925. init_adc16_pins();
  926. }
  927. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  928. {
  929. init_enet_pins(ptr);
  930. if (ptr == HPM_ENET0) {
  931. gpio_set_pin_output_with_initial(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 0);
  932. } else if (ptr == HPM_ENET1) {
  933. gpio_set_pin_output_with_initial(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  934. } else {
  935. return status_invalid_argument;
  936. }
  937. return status_success;
  938. }
  939. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  940. {
  941. if (ptr == HPM_ENET0) {
  942. gpio_write_pin(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 0);
  943. board_delay_ms(BOARD_ENET0_PHY_RST_TIME);
  944. gpio_write_pin(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 1);
  945. } else if (ptr == HPM_ENET1) {
  946. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  947. board_delay_ms(BOARD_ENET1_PHY_RST_TIME);
  948. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 1);
  949. } else {
  950. return status_invalid_argument;
  951. }
  952. return status_success;
  953. }
  954. uint8_t board_enet_get_dma_pbl(ENET_Type *ptr)
  955. {
  956. return enet_pbl_32;
  957. }