board.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. /*
  2. * Copyright (c) 2021-2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_femc_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_sdxc_soc_drv.h"
  21. #include "hpm_pllctl_drv.h"
  22. #include "hpm_pcfg_drv.h"
  23. static board_timer_cb timer_cb;
  24. /**
  25. * @brief FLASH configuration option definitions:
  26. * option[0]:
  27. * [31:16] 0xfcf9 - FLASH configuration option tag
  28. * [15:4] 0 - Reserved
  29. * [3:0] option words (exclude option[0])
  30. * option[1]:
  31. * [31:28] Flash probe type
  32. * 0 - SFDP SDR / 1 - SFDP DDR
  33. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  34. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  35. * 6 - OctaBus DDR (SPI -> OPI DDR)
  36. * 8 - Xccela DDR (SPI -> OPI DDR)
  37. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  38. * [27:24] Command Pads after Power-on Reset
  39. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  40. * [23:20] Command Pads after Configuring FLASH
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  43. * 0 - Not needed
  44. * 1 - QE bit is at bit 6 in Status Register 1
  45. * 2 - QE bit is at bit1 in Status Register 2
  46. * 3 - QE bit is at bit7 in Status Register 2
  47. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  48. * [15:8] Dummy cycles
  49. * 0 - Auto-probed / detected / default value
  50. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  51. * [7:4] Misc.
  52. * 0 - Not used
  53. * 1 - SPI mode
  54. * 2 - Internal loopback
  55. * 3 - External DQS
  56. * [3:0] Frequency option
  57. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  58. *
  59. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  60. * [31:20] Reserved
  61. * [19:16] IO voltage
  62. * 0 - 3V / 1 - 1.8V
  63. * [15:12] Pin group
  64. * 0 - 1st group / 1 - 2nd group
  65. * [11:8] Connection selection
  66. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  67. * [7:0] Drive Strength
  68. * 0 - Default value
  69. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  70. * JESD216)
  71. * [31:16] reserved
  72. * [15:12] Sector Erase Command Option, not required here
  73. * [11:8] Sector Size Option, not required here
  74. * [7:0] Flash Size Option
  75. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  76. */
  77. #if defined(FLASH_XIP) && FLASH_XIP
  78. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  79. #endif
  80. void board_init_console(void)
  81. {
  82. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  83. console_config_t cfg;
  84. /* Configure the UART clock to 24MHz */
  85. clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
  86. cfg.type = BOARD_CONSOLE_TYPE;
  87. cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
  88. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
  89. cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
  90. init_uart_pins((UART_Type *) cfg.base);
  91. console_init(&cfg);
  92. #else
  93. while(1);
  94. #endif
  95. }
  96. void board_print_clock_freq(void)
  97. {
  98. printf("==============================\n");
  99. printf(" %s clock summary\n", BOARD_NAME);
  100. printf("==============================\n");
  101. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  102. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  103. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  104. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  105. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  106. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  107. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  108. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  109. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  110. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  111. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  112. printf("display:\t %luHz\n", clock_get_frequency(clock_display));
  113. printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
  114. printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
  115. printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
  116. printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
  117. printf("==============================\n");
  118. }
  119. void board_init_uart(UART_Type *ptr)
  120. {
  121. init_uart_pins(ptr);
  122. board_init_uart_clock(ptr);
  123. }
  124. void board_init_ahb(void)
  125. {
  126. clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
  127. }
  128. void board_print_banner(void)
  129. {
  130. const uint8_t banner[] = {"\n\
  131. ----------------------------------------------------------------------\n\
  132. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  133. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  134. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  135. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  136. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  137. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  138. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  139. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  140. ----------------------------------------------------------------------\n"};
  141. printf("%s", banner);
  142. }
  143. static void board_turnoff_rgb_led(void)
  144. {
  145. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  146. HPM_IOC->PAD[IOC_PAD_PB18].FUNC_CTL = IOC_PB18_FUNC_CTL_GPIO_B_18;
  147. HPM_IOC->PAD[IOC_PAD_PB19].FUNC_CTL = IOC_PB19_FUNC_CTL_GPIO_B_19;
  148. HPM_IOC->PAD[IOC_PAD_PB20].FUNC_CTL = IOC_PB20_FUNC_CTL_GPIO_B_20;
  149. HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
  150. HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
  151. HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
  152. }
  153. void board_init(void)
  154. {
  155. board_turnoff_rgb_led();
  156. board_init_clock();
  157. board_init_console();
  158. board_init_pmp();
  159. board_init_ahb();
  160. #if BOARD_SHOW_CLOCK
  161. board_print_clock_freq();
  162. #endif
  163. #if BOARD_SHOW_BANNER
  164. board_print_banner();
  165. #endif
  166. }
  167. void board_init_sdram_pins(void)
  168. {
  169. init_sdram_pins();
  170. }
  171. uint32_t board_init_femc_clock(void)
  172. {
  173. clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
  174. return clock_get_frequency(clock_femc);
  175. }
  176. void board_power_cycle_lcd(void)
  177. {
  178. /* turn off backlight */
  179. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  180. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 0);
  181. board_delay_ms(150);
  182. /* power recycle */
  183. gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
  184. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 0);
  185. board_delay_ms(20);
  186. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, 1);
  187. board_delay_ms(150);
  188. /* turn on backlight */
  189. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 1);
  190. }
  191. void board_init_lcd(void)
  192. {
  193. board_init_lcd_clock();
  194. init_lcd_pins(BOARD_LCD_BASE);
  195. board_power_cycle_lcd();
  196. }
  197. void board_panel_para_to_lcdc(lcdc_config_t *config)
  198. {
  199. const uint16_t panel_timing_para[] = BOARD_PANEL_TIMING_PARA;
  200. config->resolution_x = BOARD_LCD_WIDTH;
  201. config->resolution_y = BOARD_LCD_HEIGHT;
  202. config->hsync.pulse_width = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HSPW_INDEX];
  203. config->hsync.back_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HBP_INDEX];
  204. config->hsync.front_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HFP_INDEX];
  205. config->vsync.pulse_width = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VSPW_INDEX];
  206. config->vsync.back_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VBP_INDEX];
  207. config->vsync.front_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VFP_INDEX];
  208. config->control.invert_hsync = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HSSP_INDEX];
  209. config->control.invert_vsync = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VSSP_INDEX];
  210. config->control.invert_href = panel_timing_para[BOARD_PANEL_TIMEING_PARA_DESP_INDEX];
  211. config->control.invert_pixel_data = panel_timing_para[BOARD_PANEL_TIMEING_PARA_PDSP_INDEX];
  212. config->control.invert_pixel_clock = panel_timing_para[BOARD_PANEL_TIMEING_PARA_PCSP_INDEX];
  213. }
  214. void board_delay_ms(uint32_t ms)
  215. {
  216. clock_cpu_delay_ms(ms);
  217. }
  218. void board_timer_isr(void)
  219. {
  220. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  221. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  222. timer_cb();
  223. }
  224. }
  225. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  226. void board_timer_create(uint32_t ms, void *cb)
  227. {
  228. uint32_t gptmr_freq;
  229. gptmr_channel_config_t config;
  230. timer_cb = (board_timer_cb)cb;
  231. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  232. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  233. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  234. config.reload = gptmr_freq / 1000 * ms;
  235. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  236. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  237. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  238. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  239. }
  240. void board_i2c_bus_clear(I2C_Type *ptr)
  241. {
  242. init_i2c_pins_as_gpio(ptr);
  243. if (ptr == BOARD_CAP_I2C_BASE) {
  244. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  245. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  246. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  247. printf("CLK is low, please power cycle the board\n");
  248. while (1) {}
  249. }
  250. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  251. printf("SDA is low, try to issue I2C bus clear\n");
  252. } else {
  253. printf("I2C bus is ready\n");
  254. return;
  255. }
  256. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  257. for (uint8_t i = 0; i < 3; i++) {
  258. for (uint32_t j = 0; j < 9; j++) {
  259. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  260. board_delay_ms(10);
  261. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  262. board_delay_ms(10);
  263. }
  264. board_delay_ms(100);
  265. }
  266. printf("I2C bus is cleared\n");
  267. }
  268. }
  269. void board_init_i2c(I2C_Type *ptr)
  270. {
  271. hpm_stat_t stat;
  272. uint32_t freq;
  273. i2c_config_t config;
  274. board_i2c_bus_clear(ptr);
  275. init_i2c_pins(ptr);
  276. clock_add_to_group(clock_i2c0, 0);
  277. clock_add_to_group(clock_i2c1, 0);
  278. clock_add_to_group(clock_i2c2, 0);
  279. clock_add_to_group(clock_i2c3, 0);
  280. /* Configure the I2C clock to 24MHz */
  281. clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  282. config.i2c_mode = i2c_mode_normal;
  283. config.is_10bit_addressing = false;
  284. freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
  285. stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
  286. if (stat != status_success) {
  287. printf("failed to initialize i2c 0x%lx\n", BOARD_CAP_I2C_BASE);
  288. while (1) {}
  289. }
  290. }
  291. uint32_t board_init_uart_clock(UART_Type *ptr)
  292. {
  293. uint32_t freq = 0;
  294. clock_name_t clock_name = clock_uart0;
  295. bool need_init_clock = true;
  296. if (ptr == HPM_UART0) {
  297. clock_name = clock_uart0;
  298. } else if (ptr == HPM_UART1) {
  299. clock_name = clock_uart1;
  300. } else if (ptr == HPM_UART2) {
  301. clock_name = clock_uart2;
  302. } else if (ptr == HPM_UART3) {
  303. clock_name = clock_uart3;
  304. } else if (ptr == HPM_UART4) {
  305. clock_name = clock_uart4;
  306. } else if (ptr == HPM_UART5) {
  307. clock_name = clock_uart5;
  308. } else if (ptr == HPM_UART6) {
  309. clock_name = clock_uart6;
  310. } else if (ptr == HPM_UART7) {
  311. clock_name = clock_uart7;
  312. } else if (ptr == HPM_UART8) {
  313. clock_name = clock_uart8;
  314. } else if (ptr == HPM_UART9) {
  315. clock_name = clock_uart9;
  316. } else if (ptr == HPM_UART10) {
  317. clock_name = clock_uart10;
  318. } else if (ptr == HPM_UART11) {
  319. clock_name = clock_uart11;
  320. } else if (ptr == HPM_UART12) {
  321. clock_name = clock_uart12;
  322. } else if (ptr == HPM_UART13) {
  323. clock_name = clock_uart13;
  324. } else if (ptr == HPM_UART14) {
  325. clock_name = clock_uart14;
  326. } else if (ptr == HPM_UART15) {
  327. clock_name = clock_uart15;
  328. } else {
  329. /* Unsupported instance */
  330. need_init_clock = false;
  331. }
  332. if (need_init_clock) {
  333. clock_set_source_divider(clock_name, clk_src_osc24m, 1);
  334. clock_add_to_group(clock_name, 0);
  335. freq = clock_get_frequency(clock_name);
  336. }
  337. return freq;
  338. }
  339. uint32_t board_init_spi_clock(SPI_Type *ptr)
  340. {
  341. uint32_t freq = 0;
  342. if (ptr == HPM_SPI0) {
  343. /* SPI0 clock configure */
  344. clock_add_to_group(clock_spi0, 0);
  345. clock_set_source_divider(clock_spi0, clk_src_pll1_clk1, 5U);
  346. freq = clock_get_frequency(clock_spi0);
  347. }
  348. else if (ptr == HPM_SPI1) {
  349. /* SPI1 clock configure */
  350. clock_add_to_group(clock_spi1, 0);
  351. clock_set_source_divider(clock_spi1, clk_src_pll1_clk1, 5U);
  352. freq = clock_get_frequency(clock_spi1);
  353. }
  354. else if (ptr == HPM_SPI2) {
  355. /* SPI2 clock configure */
  356. clock_add_to_group(clock_spi2, 0);
  357. clock_set_source_divider(clock_spi2, clk_src_pll1_clk1, 5U);
  358. freq = clock_get_frequency(clock_spi2);
  359. }
  360. else if (ptr == HPM_SPI3) {
  361. /* SPI3 clock configure */
  362. clock_add_to_group(clock_spi3, 0);
  363. clock_set_source_divider(clock_spi3, clk_src_pll1_clk1, 5U);
  364. freq = clock_get_frequency(clock_spi3);
  365. }
  366. else {
  367. /* Invalid instance */
  368. }
  369. return freq;
  370. }
  371. void board_init_cap_touch(void)
  372. {
  373. init_cap_pins();
  374. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  375. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  376. board_delay_ms(1);
  377. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 1);
  378. board_delay_ms(10);
  379. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  380. gpio_set_pin_input(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  381. board_init_i2c(BOARD_CAP_I2C_BASE);
  382. }
  383. void board_init_gpio_pins(void)
  384. {
  385. init_gpio_pins();
  386. }
  387. void board_init_spi_pins(SPI_Type *ptr)
  388. {
  389. init_spi_pins(ptr);
  390. }
  391. void board_init_led_pins(void)
  392. {
  393. init_led_pins_as_gpio();
  394. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  395. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  396. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  397. }
  398. void board_led_toggle(void)
  399. {
  400. static uint8_t i;
  401. gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_G_GPIO_PIN);
  402. i++;
  403. i = i % 3;
  404. }
  405. void board_led_write(bool state)
  406. {
  407. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state ? BOARD_LED_ON_LEVEL : BOARD_LED_OFF_LEVEL);
  408. }
  409. void board_init_cam_pins(void)
  410. {
  411. init_cam_pins(HPM_CAM0);
  412. }
  413. void board_init_usb_pins(void)
  414. {
  415. /* set pull-up for USBx OC pins */
  416. init_usb_pins(HPM_USB0);
  417. /* configure USBx OC Flag pins as input function */
  418. gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
  419. }
  420. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  421. {
  422. }
  423. void board_init_pmp(void)
  424. {
  425. extern uint32_t __noncacheable_start__[];
  426. extern uint32_t __noncacheable_end__[];
  427. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  428. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  429. uint32_t length = end_addr - start_addr;
  430. if (length == 0) {
  431. return;
  432. }
  433. /* Ensure the address and the length are power of 2 aligned */
  434. assert((length & (length - 1U)) == 0U);
  435. assert((start_addr & (length - 1U)) == 0U);
  436. pmp_entry_t pmp_entry[1];
  437. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  438. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  439. pmp_entry[0].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  440. pmp_entry[0].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  441. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  442. }
  443. void board_init_clock(void)
  444. {
  445. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  446. hpm_core_clock = cpu0_freq;
  447. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  448. /* Configure the External OSC ramp-up time: ~9ms */
  449. HPM_PLLCTL->XTAL = PLLCTL_XTAL_RAMP_TIME_SET(32UL * 1000UL * 9U);
  450. /* Select clock setting preset1 */
  451. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  452. }
  453. /* Add most Clocks to group 0 */
  454. clock_add_to_group(clock_cpu0, 0);
  455. clock_add_to_group(clock_mchtmr0, 0);
  456. clock_add_to_group(clock_axi0, 0);
  457. clock_add_to_group(clock_axi1, 0);
  458. clock_add_to_group(clock_axi2, 0);
  459. clock_add_to_group(clock_ahb, 0);
  460. clock_add_to_group(clock_femc, 0);
  461. clock_add_to_group(clock_xpi0, 0);
  462. clock_add_to_group(clock_xpi1, 0);
  463. clock_add_to_group(clock_gptmr0, 0);
  464. clock_add_to_group(clock_gptmr1, 0);
  465. clock_add_to_group(clock_gptmr2, 0);
  466. clock_add_to_group(clock_gptmr3, 0);
  467. clock_add_to_group(clock_gptmr4, 0);
  468. clock_add_to_group(clock_gptmr5, 0);
  469. clock_add_to_group(clock_gptmr6, 0);
  470. clock_add_to_group(clock_gptmr7, 0);
  471. clock_add_to_group(clock_i2c0, 0);
  472. clock_add_to_group(clock_i2c1, 0);
  473. clock_add_to_group(clock_i2c2, 0);
  474. clock_add_to_group(clock_i2c3, 0);
  475. clock_add_to_group(clock_spi0, 0);
  476. clock_add_to_group(clock_spi1, 0);
  477. clock_add_to_group(clock_spi2, 0);
  478. clock_add_to_group(clock_spi3, 0);
  479. clock_add_to_group(clock_can0, 0);
  480. clock_add_to_group(clock_can1, 0);
  481. clock_add_to_group(clock_can2, 0);
  482. clock_add_to_group(clock_can3, 0);
  483. clock_add_to_group(clock_display, 0);
  484. clock_add_to_group(clock_sdxc0, 0);
  485. clock_add_to_group(clock_sdxc1, 0);
  486. clock_add_to_group(clock_camera0, 0);
  487. clock_add_to_group(clock_camera1, 0);
  488. clock_add_to_group(clock_ptpc, 0);
  489. clock_add_to_group(clock_ref0, 0);
  490. clock_add_to_group(clock_ref1, 0);
  491. clock_add_to_group(clock_watchdog0, 0);
  492. clock_add_to_group(clock_eth0, 0);
  493. clock_add_to_group(clock_eth1, 0);
  494. clock_add_to_group(clock_sdp, 0);
  495. clock_add_to_group(clock_xdma, 0);
  496. clock_add_to_group(clock_ram0, 0);
  497. clock_add_to_group(clock_ram1, 0);
  498. clock_add_to_group(clock_usb0, 0);
  499. clock_add_to_group(clock_usb1, 0);
  500. clock_add_to_group(clock_jpeg, 0);
  501. clock_add_to_group(clock_pdma, 0);
  502. clock_add_to_group(clock_kman, 0);
  503. clock_add_to_group(clock_gpio, 0);
  504. clock_add_to_group(clock_mbx0, 0);
  505. clock_add_to_group(clock_hdma, 0);
  506. clock_add_to_group(clock_rng, 0);
  507. clock_add_to_group(clock_mot0, 0);
  508. clock_add_to_group(clock_mot1, 0);
  509. clock_add_to_group(clock_mot2, 0);
  510. clock_add_to_group(clock_mot3, 0);
  511. clock_add_to_group(clock_acmp, 0);
  512. clock_add_to_group(clock_dao, 0);
  513. clock_add_to_group(clock_msyn, 0);
  514. clock_add_to_group(clock_lmm0, 0);
  515. clock_add_to_group(clock_lmm1, 0);
  516. clock_add_to_group(clock_adc0, 0);
  517. clock_add_to_group(clock_adc1, 0);
  518. clock_add_to_group(clock_adc2, 0);
  519. clock_add_to_group(clock_adc3, 0);
  520. clock_add_to_group(clock_i2s0, 0);
  521. clock_add_to_group(clock_i2s1, 0);
  522. clock_add_to_group(clock_i2s2, 0);
  523. clock_add_to_group(clock_i2s3, 0);
  524. /* Connect Group0 to CPU0 */
  525. clock_connect_group_to_cpu(0, 0);
  526. /* Add the CPU1 clock to Group1 */
  527. clock_add_to_group(clock_mchtmr1, 1);
  528. clock_add_to_group(clock_mbx1, 1);
  529. /* Connect Group1 to CPU1 */
  530. clock_connect_group_to_cpu(1, 1);
  531. /* Bump up DCDC voltage to 1200mv */
  532. pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
  533. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  534. printf("Failed to set pll0_clk0 to %luHz\n", BOARD_CPU_FREQ);
  535. while(1);
  536. }
  537. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  538. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  539. /* Connect Group1 to CPU1 */
  540. clock_connect_group_to_cpu(1, 1);
  541. }
  542. uint32_t board_init_cam_clock(CAM_Type *ptr)
  543. {
  544. uint32_t freq = 0;
  545. if (ptr == HPM_CAM0) {
  546. /* Configure camera clock to 24MHz */
  547. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  548. freq = clock_get_frequency(clock_camera0);
  549. } else if (ptr == HPM_CAM1) {
  550. /* Configure camera clock to 24MHz */
  551. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  552. freq = clock_get_frequency(clock_camera1);
  553. } else {
  554. /* Invalid camera instance */
  555. }
  556. return freq;
  557. }
  558. uint32_t board_init_lcd_clock(void)
  559. {
  560. uint32_t freq;
  561. clock_add_to_group(clock_display, 0);
  562. /* Configure LCDC clock to 29.7MHz */
  563. clock_set_source_divider(clock_display, clock_source_pll4_clk0, 20U);
  564. freq = clock_get_frequency(clock_display);
  565. return freq;
  566. }
  567. uint32_t board_init_adc12_clock(ADC12_Type *ptr)
  568. {
  569. uint32_t freq = 0;
  570. switch ((uint32_t) ptr) {
  571. case HPM_ADC0_BASE:
  572. /* Configure the ADC clock to 200MHz */
  573. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  574. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  575. freq = clock_get_frequency(clock_adc0);
  576. break;
  577. case HPM_ADC1_BASE:
  578. /* Configure the ADC clock to 200MHz */
  579. clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
  580. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  581. freq = clock_get_frequency(clock_adc1);
  582. break;
  583. case HPM_ADC2_BASE:
  584. /* Configure the ADC clock to 200MHz */
  585. clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
  586. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  587. freq = clock_get_frequency(clock_adc2);
  588. break;
  589. default:
  590. /* Invalid ADC instance */
  591. break;
  592. }
  593. return freq;
  594. }
  595. uint32_t board_init_dao_clock(void)
  596. {
  597. clock_add_to_group(clock_dao, 0);
  598. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  599. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud0_clk);
  600. return clock_get_frequency(clock_dao);
  601. }
  602. uint32_t board_init_pdm_clock(void)
  603. {
  604. clock_add_to_group(clock_pdm, 0);
  605. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  606. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  607. return clock_get_frequency(clock_pdm);
  608. }
  609. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  610. {
  611. if (ptr == HPM_I2S0) {
  612. clock_add_to_group(clock_i2s0, 0);
  613. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  614. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  615. return clock_get_frequency(clock_i2s0);
  616. } else {
  617. return 0;
  618. }
  619. }
  620. uint32_t board_init_adc16_clock(ADC16_Type *ptr)
  621. {
  622. uint32_t freq = 0;
  623. if (ptr == HPM_ADC3) {
  624. /* Configure the ADC clock to 200MHz */
  625. clock_set_adc_source(clock_adc3, clk_adc_src_ana1);
  626. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  627. freq = clock_get_frequency(clock_adc3);
  628. }
  629. return freq;
  630. }
  631. void board_init_can(CAN_Type *ptr)
  632. {
  633. init_can_pins(ptr);
  634. }
  635. uint32_t board_init_can_clock(CAN_Type *ptr)
  636. {
  637. uint32_t freq = 0;
  638. if (ptr == HPM_CAN0) {
  639. /* Set the CAN0 peripheral clock to 80MHz */
  640. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  641. freq = clock_get_frequency(clock_can0);
  642. } else if (ptr == HPM_CAN1) {
  643. /* Set the CAN1 peripheral clock to 80MHz */
  644. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  645. freq = clock_get_frequency(clock_can1);
  646. } else if (ptr == HPM_CAN2) {
  647. /* Set the CAN2 peripheral clock to 80MHz */
  648. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  649. freq = clock_get_frequency(clock_can2);
  650. } else if (ptr == HPM_CAN3) {
  651. /* Set the CAN3 peripheral clock to 80MHz */
  652. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  653. freq = clock_get_frequency(clock_can3);
  654. } else {
  655. /* Invalid CAN instance */
  656. }
  657. return freq;
  658. }
  659. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  660. {
  661. uint32_t freq = 0;
  662. if (ptr == HPM_GPTMR0) {
  663. clock_add_to_group(clock_gptmr0, 0);
  664. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  665. freq = clock_get_frequency(clock_gptmr0);
  666. }
  667. else if (ptr == HPM_GPTMR1) {
  668. clock_add_to_group(clock_gptmr1, 0);
  669. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  670. freq = clock_get_frequency(clock_gptmr1);
  671. }
  672. else if (ptr == HPM_GPTMR2) {
  673. clock_add_to_group(clock_gptmr2, 0);
  674. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  675. freq = clock_get_frequency(clock_gptmr2);
  676. }
  677. else if (ptr == HPM_GPTMR3) {
  678. clock_add_to_group(clock_gptmr3, 0);
  679. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  680. freq = clock_get_frequency(clock_gptmr3);
  681. }
  682. else if (ptr == HPM_GPTMR4) {
  683. clock_add_to_group(clock_gptmr4, 0);
  684. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
  685. freq = clock_get_frequency(clock_gptmr4);
  686. }
  687. else if (ptr == HPM_GPTMR5) {
  688. clock_add_to_group(clock_gptmr5, 0);
  689. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
  690. freq = clock_get_frequency(clock_gptmr5);
  691. }
  692. else if (ptr == HPM_GPTMR6) {
  693. clock_add_to_group(clock_gptmr6, 0);
  694. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
  695. freq = clock_get_frequency(clock_gptmr6);
  696. }
  697. else if (ptr == HPM_GPTMR7) {
  698. clock_add_to_group(clock_gptmr7, 0);
  699. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
  700. freq = clock_get_frequency(clock_gptmr7);
  701. }
  702. else {
  703. /* Invalid instance */
  704. }
  705. }
  706. /*
  707. * this function will be called during startup to initialize external memory for data use
  708. */
  709. void _init_ext_ram(void)
  710. {
  711. uint32_t femc_clk_in_hz;
  712. clock_add_to_group(clock_femc, 0);
  713. board_init_sdram_pins();
  714. femc_clk_in_hz = board_init_femc_clock();
  715. femc_config_t config = {0};
  716. femc_sdram_config_t sdram_config = {0};
  717. femc_default_config(HPM_FEMC, &config);
  718. config.dqs = FEMC_DQS_INTERNAL;
  719. femc_init(HPM_FEMC, &config);
  720. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  721. sdram_config.prescaler = 0x3;
  722. sdram_config.burst_len_in_byte = 8;
  723. sdram_config.auto_refresh_count_in_one_burst = 1;
  724. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  725. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  726. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  727. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  728. sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
  729. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  730. sdram_config.cke_off_in_ns = 42; /* Trcd */
  731. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  732. sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
  733. sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
  734. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  735. sdram_config.idle_timeout_in_ns = 6;
  736. sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
  737. sdram_config.cs = BOARD_SDRAM_CS;
  738. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  739. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  740. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  741. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  742. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  743. sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
  744. sdram_config.delay_cell_value = 29;
  745. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  746. }
  747. void board_init_sd_pins(SDXC_Type *ptr)
  748. {
  749. if (ptr == HPM_SDXC1) {
  750. init_sdxc_pins(ptr, false);
  751. init_sdxc_card_detection_pin(ptr);
  752. init_sdxc_vsel_pin(ptr);
  753. } else {
  754. while (1) {
  755. }
  756. }
  757. }
  758. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  759. {
  760. /* This feature is not supported by current board*/
  761. }
  762. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  763. {
  764. sdxc_switch_to_1v8_signal(ptr, true);
  765. init_sdxc_pins(ptr, true);
  766. }
  767. bool board_sd_detect_card(SDXC_Type *ptr)
  768. {
  769. return sdxc_is_card_inserted(ptr);
  770. }
  771. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq)
  772. {
  773. uint32_t actual_freq = 0;
  774. do {
  775. if (ptr != HPM_SDXC1) {
  776. break;
  777. }
  778. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  779. sdxc_enable_inverse_clock(ptr, false);
  780. sdxc_enable_sd_clock(ptr, false);
  781. /* Configure the clock below 400KHz for the identification state */
  782. if (freq <= 400000UL) {
  783. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  784. }
  785. /* configure the clock to 24MHz for the SDR12/Default speed */
  786. else if (freq <= 25000000UL) {
  787. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  788. }
  789. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  790. else if (freq <= 50000000UL) {
  791. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  792. }
  793. /* Configure the clock to 100MHz for the SDR50 */
  794. else if (freq <= 100000000UL) {
  795. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  796. }
  797. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  798. else if (freq <= 208000000UL) {
  799. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  800. }
  801. /* For other unsupported clock ranges, configure the clock to 24MHz */
  802. else {
  803. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  804. }
  805. sdxc_enable_inverse_clock(ptr, true);
  806. sdxc_enable_sd_clock(ptr, true);
  807. actual_freq = clock_get_frequency(sdxc_clk);
  808. } while (false);
  809. return actual_freq;
  810. }
  811. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  812. {
  813. /* set clock source */
  814. if (ptr == HPM_ENET0) {
  815. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  816. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  817. } else if (ptr == HPM_ENET1) {
  818. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
  819. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  820. } else {
  821. return status_invalid_argument;
  822. }
  823. return status_success;
  824. }
  825. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  826. {
  827. if (internal == false) {
  828. return status_success;
  829. }
  830. /* Configure Enet clock to output reference clock */
  831. if (ptr == HPM_ENET0) {
  832. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet0 */
  833. clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5);
  834. } else if (ptr == HPM_ENET1) {
  835. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet1 */
  836. clock_set_source_divider(clock_eth1, clk_src_pll2_clk1, 5); /* set 50MHz for enet1 */
  837. } else {
  838. return status_invalid_argument;
  839. }
  840. return status_success;
  841. }
  842. void board_init_rgb_pwm_pins(void)
  843. {
  844. init_led_pins_as_pwm();
  845. }
  846. void board_init_beep_pwm_pins(void)
  847. {
  848. init_beep_pwm_pins();
  849. }
  850. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  851. {
  852. init_enet_pins(ptr);
  853. if (ptr == HPM_ENET1) {
  854. gpio_set_pin_output_with_initial(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  855. } else {
  856. return status_invalid_argument;
  857. }
  858. return status_success;
  859. }
  860. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  861. {
  862. if (ptr == HPM_ENET1) {
  863. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  864. board_delay_ms(BOARD_ENET1_PHY_RST_TIME);
  865. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 1);
  866. } else {
  867. return status_invalid_argument;
  868. }
  869. return status_success;
  870. }
  871. uint8_t board_enet_get_dma_pbl(ENET_Type *ptr)
  872. {
  873. return enet_pbl_32;
  874. }