drv_rtc.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-07-29 zdzn first version
  9. */
  10. #include <rtthread.h>
  11. #include <rtdevice.h>
  12. #include <sys/time.h>
  13. #include "drv_rtc.h"
  14. #ifdef BSP_USING_RTC
  15. #define RTC_I2C_BUS_NAME "i2c0"
  16. #define RTC_ADDR 0x68
  17. static struct rt_device rtc_device;
  18. static struct rt_i2c_bus_device *i2c_bus = RT_NULL;
  19. rt_uint8_t buf[]=
  20. {
  21. 0x00, 0x00, 0x43, 0x15, 0x05, 0x01, 0x03, 0x19
  22. };
  23. rt_uint8_t i2c_write_read_rs(char* cmds, rt_uint32_t cmds_len, char* buf, rt_uint32_t buf_len)
  24. {
  25. rt_uint32_t remaining = cmds_len;
  26. rt_uint32_t i = 0;
  27. rt_uint8_t reason = BCM283X_I2C_REASON_OK;
  28. /* Clear FIFO */
  29. BCM283X_BSC_C(BCM283X_BSC0_BASE) |= (BSC_C_CLEAR_1 & BSC_C_CLEAR_1);
  30. /* Clear Status */
  31. BCM283X_BSC_S(BCM283X_BSC0_BASE) = BSC_S_CLKT | BSC_S_ERR | BSC_S_DONE;
  32. /* Set Data Length */
  33. BCM283X_BSC_DLEN(BCM283X_BSC0_BASE) = cmds_len;
  34. /* pre populate FIFO with max buffer */
  35. while (remaining && (i < BSC_FIFO_SIZE))
  36. {
  37. BCM283X_BSC_FIFO(BCM283X_BSC0_BASE) = cmds[i];
  38. i++;
  39. remaining--;
  40. }
  41. /* Enable device and start transfer */
  42. BCM283X_BSC_C(BCM283X_BSC0_BASE) |= BSC_C_I2CEN | BSC_C_ST;
  43. /* poll for transfer has started (way to do repeated start, from BCM2835 datasheet) */
  44. while (!(BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_TA))
  45. {
  46. /* Linux may cause us to miss entire transfer stage */
  47. if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_DONE)
  48. break;
  49. }
  50. remaining = buf_len;
  51. i = 0;
  52. /* Send a repeated start with read bit set in address */
  53. BCM283X_BSC_DLEN(BCM283X_BSC0_BASE) = buf_len;
  54. BCM283X_BSC_C(BCM283X_BSC0_BASE) = BSC_C_I2CEN | BSC_C_ST | BSC_C_READ;
  55. /* Wait for write to complete and first byte back. */
  56. // DELAYMICROS(i2c_byte_wait_us * (cmds_len + 1));
  57. /* wait for transfer to complete */
  58. while (!(BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_DONE))
  59. {
  60. /* we must empty the FIFO as it is populated and not use any delay */
  61. while (remaining && (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_RXD))
  62. {
  63. /* Read from FIFO, no barrier */
  64. buf[i] = BCM283X_BSC_FIFO(BCM283X_BSC0_BASE);
  65. i++;
  66. remaining--;
  67. }
  68. }
  69. /* transfer has finished - grab any remaining stuff in FIFO */
  70. while (remaining && (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_RXD))
  71. {
  72. /* Read from FIFO */
  73. buf[i] = BCM283X_BSC_FIFO(BCM283X_BSC0_BASE);
  74. i++;
  75. remaining--;
  76. }
  77. /* Received a NACK */
  78. if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_ERR)
  79. {
  80. reason = BCM283X_I2C_REASON_ERROR_NACK;
  81. }
  82. /* Received Clock Stretch Timeout */
  83. else if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_CLKT)
  84. {
  85. reason = BCM283X_I2C_REASON_ERROR_CLKT;
  86. }
  87. /* Not all data is sent */
  88. else if (remaining)
  89. {
  90. reason = BCM283X_I2C_REASON_ERROR_DATA;
  91. }
  92. BCM283X_BSC_C(BCM283X_BSC0_BASE) = (BSC_S_DONE &BSC_S_DONE);
  93. return reason;
  94. }
  95. rt_uint8_t i2c_write(rt_uint8_t* buf, rt_uint32_t len)
  96. {
  97. rt_uint32_t remaining = len;
  98. rt_uint32_t i = 0;
  99. rt_uint8_t reason = BCM283X_I2C_REASON_OK;
  100. /* Clear FIFO */
  101. BCM283X_BSC_C(BCM283X_BSC0_BASE) |= BSC_C_CLEAR_1 & BSC_C_CLEAR_1;
  102. /* Clear Status */
  103. BCM283X_BSC_S(BCM283X_BSC0_BASE) = BSC_S_CLKT | BSC_S_ERR | BSC_S_DONE;
  104. /* Set Data Length */
  105. BCM283X_BSC_DLEN(BCM283X_BSC0_BASE) = len;
  106. /* pre populate FIFO with max buffer */
  107. while (remaining && (i < BSC_FIFO_SIZE))
  108. {
  109. BCM283X_BSC_FIFO(BCM283X_BSC0_BASE) = buf[i];
  110. i++;
  111. remaining--;
  112. }
  113. /* Enable device and start transfer */
  114. BCM283X_BSC_C(BCM283X_BSC0_BASE) = BSC_C_I2CEN | BSC_C_ST;
  115. /* Transfer is over when BCM2835_BSC_S_DONE */
  116. while (!(BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_DONE))
  117. {
  118. while (remaining && (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_TXD))
  119. {
  120. /* Write to FIFO */
  121. BCM283X_BSC_FIFO(BCM283X_BSC0_BASE) = buf[i];
  122. i++;
  123. remaining--;
  124. }
  125. }
  126. /* Received a NACK */
  127. if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_ERR)
  128. {
  129. reason = BCM283X_I2C_REASON_ERROR_NACK;
  130. }
  131. /* Received Clock Stretch Timeout */
  132. else if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_CLKT)
  133. {
  134. reason = BCM283X_I2C_REASON_ERROR_CLKT;
  135. }
  136. /* Not all data is sent */
  137. else if (remaining)
  138. {
  139. reason = BCM283X_I2C_REASON_ERROR_DATA;
  140. }
  141. BCM283X_BSC_C(BCM283X_BSC0_BASE) = BSC_S_DONE & BSC_S_DONE;
  142. return reason;
  143. }
  144. static time_t raspi_get_timestamp(void)
  145. {
  146. struct tm tm_new = {0};
  147. buf[0] = 0;
  148. i2c_write_read_rs((char*)buf, 1, (char*)buf, 7);
  149. tm_new.tm_year = ((buf[6] / 16) + 0x30) * 10 + (buf[6] % 16) + 0x30;
  150. tm_new.tm_mon = ((buf[5] & 0x1F) / 16 + 0x30) + (buf[5] & 0x1F) % 16+ 0x30;
  151. tm_new.tm_mday = ((buf[4] & 0x3F) / 16 + 0x30) + (buf[4] & 0x3F) % 16+ 0x30;
  152. tm_new.tm_hour = ((buf[2] & 0x3F) / 16 + 0x30) + (buf[2] & 0x3F) % 16+ 0x30;
  153. tm_new.tm_min = ((buf[1] & 0x7F) / 16 + 0x30) + (buf[1] & 0x7F) % 16+ 0x30;
  154. tm_new.tm_sec = ((buf[0] & 0x7F) / 16 + 0x30) + (buf[0] & 0x7F) % 16+ 0x30;
  155. return timegm(&tm_new);
  156. }
  157. static int raspi_set_timestamp(time_t timestamp)
  158. {
  159. struct tm tblock;
  160. gmtime_r(&timestamp, &tblock);
  161. buf[0] = 0;
  162. buf[1] = tblock.tm_sec;
  163. buf[2] = tblock.tm_min;
  164. buf[3] = tblock.tm_hour;
  165. buf[4] = tblock.tm_wday;
  166. buf[5] = tblock.tm_mday;
  167. buf[6] = tblock.tm_mon;
  168. buf[7] = tblock.tm_year;
  169. i2c_write(buf, 8);
  170. return RT_EOK;
  171. }
  172. static rt_err_t raspi_rtc_init(rt_device_t dev)
  173. {
  174. i2c_bus = (struct rt_i2c_bus_device *)rt_device_find(RTC_I2C_BUS_NAME);
  175. raspi_set_timestamp(0);
  176. return RT_EOK;
  177. }
  178. static rt_err_t raspi_rtc_open(rt_device_t dev, rt_uint16_t oflag)
  179. {
  180. GPIO_FSEL(BCM_GPIO_PIN_0, BCM283X_GPIO_FSEL_ALT0); /* SDA */
  181. GPIO_FSEL(BCM_GPIO_PIN_1, BCM283X_GPIO_FSEL_ALT0); /* SCL */
  182. return RT_EOK;
  183. }
  184. static rt_err_t raspi_rtc_close(rt_device_t dev)
  185. {
  186. GPIO_FSEL(BCM_GPIO_PIN_0, BCM283X_GPIO_FSEL_INPT); /* SDA */
  187. GPIO_FSEL(BCM_GPIO_PIN_1, BCM283X_GPIO_FSEL_INPT); /* SCL */
  188. return RT_EOK;
  189. }
  190. static rt_err_t raspi_rtc_control(rt_device_t dev, int cmd, void *args)
  191. {
  192. RT_ASSERT(dev != RT_NULL);
  193. switch (cmd)
  194. {
  195. case RT_DEVICE_CTRL_RTC_GET_TIME:
  196. *(rt_uint32_t *)args = raspi_get_timestamp();
  197. break;
  198. case RT_DEVICE_CTRL_RTC_SET_TIME:
  199. raspi_set_timestamp(*(time_t *)args);
  200. break;
  201. default:
  202. return -RT_EINVAL;
  203. }
  204. return RT_EOK;
  205. }
  206. static rt_ssize_t raspi_rtc_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  207. {
  208. raspi_rtc_control(dev, RT_DEVICE_CTRL_RTC_GET_TIME, buffer);
  209. return size;
  210. }
  211. static rt_ssize_t raspi_rtc_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  212. {
  213. raspi_rtc_control(dev, RT_DEVICE_CTRL_RTC_SET_TIME, (void *)buffer);
  214. return size;
  215. }
  216. #ifdef RT_USING_DEVICE_OPS
  217. const static struct rt_device_ops raspi_rtc_ops =
  218. {
  219. .init = raspi_rtc_init,
  220. .open = raspi_rtc_open,
  221. .close = raspi_rtc_close,
  222. .read = raspi_rtc_read,
  223. .write = raspi_rtc_write,
  224. .control = raspi_rtc_control
  225. };
  226. #endif
  227. int rt_hw_rtc_init(void)
  228. {
  229. rt_err_t ret = RT_EOK;
  230. rtc_device.type = RT_Device_Class_RTC;
  231. rtc_device.rx_indicate = RT_NULL;
  232. rtc_device.tx_complete = RT_NULL;
  233. #ifdef RT_USING_DEVICE_OPS
  234. rtc_device.ops = &raspi_rtc_ops;
  235. #else
  236. rtc_device.init = raspi_rtc_init;
  237. rtc_device.open = raspi_rtc_open;
  238. rtc_device.close = raspi_rtc_close;
  239. rtc_device.read = raspi_rtc_read;
  240. rtc_device.write = raspi_rtc_write;
  241. rtc_device.control = raspi_rtc_control;
  242. #endif
  243. rtc_device.user_data = RT_NULL;
  244. /* register a rtc device */
  245. ret = rt_device_register(&rtc_device, "rtc", RT_DEVICE_FLAG_RDWR);
  246. return ret;
  247. }
  248. INIT_DEVICE_EXPORT(rt_hw_rtc_init);
  249. #endif /* BSP_USING_RTC */