drv_sdio.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2020-10-27 bigmagic first version
  9. */
  10. #include "mbox.h"
  11. #include "raspi4.h"
  12. #include "drv_sdio.h"
  13. static rt_uint32_t mmc_base_clock = 0;
  14. static rt_uint32_t sdCommandTable[] = {
  15. SD_CMD_INDEX(0),
  16. SD_CMD_RESERVED(1),
  17. SD_CMD_INDEX(2) | SD_RESP_R2,
  18. SD_CMD_INDEX(3) | SD_RESP_R1,
  19. SD_CMD_INDEX(4),
  20. SD_CMD_RESERVED(5), //SD_CMD_INDEX(5) | SD_RESP_R4,
  21. SD_CMD_INDEX(6) | SD_RESP_R1,
  22. SD_CMD_INDEX(7) | SD_RESP_R1b,
  23. SD_CMD_INDEX(8) | SD_RESP_R1,
  24. SD_CMD_INDEX(9) | SD_RESP_R2,
  25. SD_CMD_INDEX(10) | SD_RESP_R2,
  26. SD_CMD_INDEX(11) | SD_RESP_R1,
  27. SD_CMD_INDEX(12) | SD_RESP_R1b | SD_CMD_TYPE_ABORT,
  28. SD_CMD_INDEX(13) | SD_RESP_R1,
  29. SD_CMD_RESERVED(14),
  30. SD_CMD_INDEX(15),
  31. SD_CMD_INDEX(16) | SD_RESP_R1,
  32. SD_CMD_INDEX(17) | SD_RESP_R1 | SD_DATA_READ,
  33. SD_CMD_INDEX(18) | SD_RESP_R1 | SD_DATA_READ | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  34. SD_CMD_INDEX(19) | SD_RESP_R1 | SD_DATA_READ,
  35. SD_CMD_INDEX(20) | SD_RESP_R1b,
  36. SD_CMD_RESERVED(21),
  37. SD_CMD_RESERVED(22),
  38. SD_CMD_INDEX(23) | SD_RESP_R1,
  39. SD_CMD_INDEX(24) | SD_RESP_R1 | SD_DATA_WRITE,
  40. SD_CMD_INDEX(25) | SD_RESP_R1 | SD_DATA_WRITE | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  41. SD_CMD_INDEX(26) | SD_RESP_R1 | SD_DATA_WRITE, //add
  42. SD_CMD_INDEX(27) | SD_RESP_R1 | SD_DATA_WRITE,
  43. SD_CMD_INDEX(28) | SD_RESP_R1b,
  44. SD_CMD_INDEX(29) | SD_RESP_R1b,
  45. SD_CMD_INDEX(30) | SD_RESP_R1 | SD_DATA_READ,
  46. SD_CMD_RESERVED(31),
  47. SD_CMD_INDEX(32) | SD_RESP_R1,
  48. SD_CMD_INDEX(33) | SD_RESP_R1,
  49. SD_CMD_RESERVED(34),
  50. SD_CMD_INDEX(35) | SD_RESP_R1, //add
  51. SD_CMD_INDEX(36) | SD_RESP_R1, //add
  52. SD_CMD_RESERVED(37),
  53. SD_CMD_INDEX(38) | SD_RESP_R1b,
  54. SD_CMD_INDEX(39) | SD_RESP_R4, //add
  55. SD_CMD_INDEX(40) | SD_RESP_R5, //add
  56. SD_CMD_INDEX(41) | SD_RESP_R3, //add, mov from harbote
  57. SD_CMD_RESERVED(42) | SD_RESP_R1,
  58. SD_CMD_RESERVED(43),
  59. SD_CMD_RESERVED(44),
  60. SD_CMD_RESERVED(45),
  61. SD_CMD_RESERVED(46),
  62. SD_CMD_RESERVED(47),
  63. SD_CMD_RESERVED(48),
  64. SD_CMD_RESERVED(49),
  65. SD_CMD_RESERVED(50),
  66. SD_CMD_INDEX(51) | SD_RESP_R1 | SD_DATA_READ,
  67. SD_CMD_RESERVED(52),
  68. SD_CMD_RESERVED(53),
  69. SD_CMD_RESERVED(54),
  70. SD_CMD_INDEX(55) | SD_RESP_R3,
  71. SD_CMD_INDEX(56) | SD_RESP_R1 | SD_CMD_ISDATA,
  72. SD_CMD_RESERVED(57),
  73. SD_CMD_RESERVED(58),
  74. SD_CMD_RESERVED(59),
  75. SD_CMD_RESERVED(60),
  76. SD_CMD_RESERVED(61),
  77. SD_CMD_RESERVED(62),
  78. SD_CMD_RESERVED(63)
  79. };
  80. static inline rt_uint32_t read32(rt_uint32_t addr)
  81. {
  82. return (*((volatile unsigned int*)(addr)));
  83. }
  84. static inline void write32(rt_uint32_t addr, rt_uint32_t value)
  85. {
  86. (*((volatile unsigned int*)(addr))) = value;
  87. }
  88. rt_err_t sd_int(struct sdhci_pdata_t * pdat, rt_uint32_t mask)
  89. {
  90. rt_uint32_t r;
  91. rt_uint32_t m = mask | INT_ERROR_MASK;
  92. int cnt = 1000000;
  93. while (!(read32(pdat->virt + EMMC_INTERRUPT) & (m | INT_ERROR_MASK)) && cnt--)
  94. DELAY_MICROS(1);
  95. r = read32(pdat->virt + EMMC_INTERRUPT);
  96. if (cnt <= 0 || (r & INT_CMD_TIMEOUT) || (r & INT_DATA_TIMEOUT))
  97. {
  98. write32(pdat->virt + EMMC_INTERRUPT, r);
  99. //qemu maybe can not use sdcard
  100. rt_kprintf("send cmd/data timeout wait for %x int: %x, status: %x\n",mask, r, read32(pdat->virt + EMMC_STATUS));
  101. return -RT_ETIMEOUT;
  102. }
  103. else if (r & INT_ERROR_MASK)
  104. {
  105. write32(pdat->virt + EMMC_INTERRUPT, r);
  106. rt_kprintf("send cmd/data error %x -> %x\n",r, read32(pdat->virt + EMMC_INTERRUPT));
  107. return -RT_ERROR;
  108. }
  109. write32(pdat->virt + EMMC_INTERRUPT, mask);
  110. return RT_EOK;
  111. }
  112. rt_err_t sd_status(struct sdhci_pdata_t * pdat, unsigned int mask)
  113. {
  114. int cnt = 500000;
  115. while ((read32(pdat->virt + EMMC_STATUS) & mask) && !(read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK) && cnt--)
  116. DELAY_MICROS(1);
  117. if (cnt <= 0)
  118. {
  119. return -RT_ETIMEOUT;
  120. }
  121. else if (read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK)
  122. {
  123. return -RT_ERROR;
  124. }
  125. return RT_EOK;
  126. }
  127. static rt_err_t raspi_transfer_command(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd)
  128. {
  129. rt_uint32_t cmdidx;
  130. rt_err_t ret = RT_EOK;
  131. ret = sd_status(pdat, SR_CMD_INHIBIT);
  132. if (ret)
  133. {
  134. rt_kprintf("ERROR: EMMC busy %d\n", ret);
  135. return ret;
  136. }
  137. cmdidx = sdCommandTable[cmd->cmdidx];
  138. if (cmdidx == 0xFFFFFFFF)
  139. return -RT_EINVAL;
  140. if (cmd->datarw == DATA_READ)
  141. cmdidx |= SD_DATA_READ;
  142. if (cmd->datarw == DATA_WRITE)
  143. cmdidx |= SD_DATA_WRITE;
  144. mmcsd_dbg("transfer cmd %x(%d) %x %x\n", cmdidx, cmd->cmdidx, cmd->cmdarg, read32(pdat->virt + EMMC_INTERRUPT));
  145. write32(pdat->virt + EMMC_INTERRUPT,read32(pdat->virt + EMMC_INTERRUPT));
  146. write32(pdat->virt + EMMC_ARG1, cmd->cmdarg);
  147. write32(pdat->virt + EMMC_CMDTM, cmdidx);
  148. if (cmd->cmdidx == SD_APP_OP_COND)
  149. DELAY_MICROS(1000);
  150. else if ((cmd->cmdidx == SD_SEND_IF_COND) || (cmd->cmdidx == APP_CMD))
  151. DELAY_MICROS(100);
  152. ret = sd_int(pdat, INT_CMD_DONE);
  153. if (ret)
  154. {
  155. return ret;
  156. }
  157. if (cmd->resptype & RESP_MASK)
  158. {
  159. if (cmd->resptype & RESP_R2)
  160. {
  161. rt_uint32_t resp[4];
  162. resp[0] = read32(pdat->virt + EMMC_RESP0);
  163. resp[1] = read32(pdat->virt + EMMC_RESP1);
  164. resp[2] = read32(pdat->virt + EMMC_RESP2);
  165. resp[3] = read32(pdat->virt + EMMC_RESP3);
  166. if (cmd->resptype == RESP_R2)
  167. {
  168. cmd->response[0] = resp[3]<<8 |((resp[2]>>24)&0xff);
  169. cmd->response[1] = resp[2]<<8 |((resp[1]>>24)&0xff);
  170. cmd->response[2] = resp[1]<<8 |((resp[0]>>24)&0xff);
  171. cmd->response[3] = resp[0]<<8 ;
  172. }
  173. else
  174. {
  175. cmd->response[0] = resp[0];
  176. cmd->response[1] = resp[1];
  177. cmd->response[2] = resp[2];
  178. cmd->response[3] = resp[3];
  179. }
  180. }
  181. else
  182. cmd->response[0] = read32(pdat->virt + EMMC_RESP0);
  183. }
  184. mmcsd_dbg("response: %x: %x %x %x %x (%x, %x)\n", cmd->resptype, cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], read32(pdat->virt + EMMC_STATUS),read32(pdat->virt + EMMC_INTERRUPT));
  185. return ret;
  186. }
  187. static rt_err_t read_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  188. {
  189. int c = 0;
  190. rt_err_t ret;
  191. int d;
  192. while (c < blkcount)
  193. {
  194. if ((ret = sd_int(pdat, INT_READ_RDY)))
  195. {
  196. rt_kprintf("timeout happens when reading block %d\n",c);
  197. return ret;
  198. }
  199. for (d=0; d < blksize / 4; d++)
  200. if (read32(pdat->virt + EMMC_STATUS) & SR_READ_AVAILABLE)
  201. buf[d] = read32(pdat->virt + EMMC_DATA);
  202. c++;
  203. buf += blksize / 4;
  204. }
  205. return RT_EOK;
  206. }
  207. static rt_err_t write_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  208. {
  209. int c = 0;
  210. rt_err_t ret;
  211. int d;
  212. while (c < blkcount)
  213. {
  214. if ((ret = sd_int(pdat, INT_WRITE_RDY)))
  215. {
  216. return ret;
  217. }
  218. for (d=0; d < blksize / 4; d++)
  219. write32(pdat->virt + EMMC_DATA, buf[d]);
  220. c++;
  221. buf += blksize / 4;
  222. }
  223. if ((ret = sd_int(pdat, INT_DATA_DONE)))
  224. {
  225. return ret;
  226. }
  227. return RT_EOK;
  228. }
  229. static rt_err_t raspi_transfer_data(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
  230. {
  231. rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz);
  232. rt_err_t ret = sd_status(pdat, SR_DAT_INHIBIT);
  233. if (ret)
  234. {
  235. rt_kprintf("ERROR: EMMC busy\n");
  236. return ret;
  237. }
  238. if (dat->blkcnt > 1)
  239. {
  240. struct sdhci_cmd_t newcmd;
  241. newcmd.cmdidx = SET_BLOCK_COUNT;
  242. newcmd.cmdarg = dat->blkcnt;
  243. newcmd.resptype = RESP_R1;
  244. ret = raspi_transfer_command(pdat, &newcmd);
  245. if (ret) return ret;
  246. }
  247. if(dlen < 512)
  248. {
  249. write32(pdat->virt + EMMC_BLKSIZECNT, dlen | 1 << 16);
  250. }
  251. else
  252. {
  253. write32(pdat->virt + EMMC_BLKSIZECNT, 512 | (dat->blkcnt) << 16);
  254. }
  255. if (dat->flag & DATA_DIR_READ)
  256. {
  257. cmd->datarw = DATA_READ;
  258. ret = raspi_transfer_command(pdat, cmd);
  259. if (ret) return ret;
  260. mmcsd_dbg("read_block %d, %d\n", dat->blkcnt, dat->blksz );
  261. ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  262. }
  263. else if (dat->flag & DATA_DIR_WRITE)
  264. {
  265. cmd->datarw = DATA_WRITE;
  266. ret = raspi_transfer_command(pdat, cmd);
  267. if (ret) return ret;
  268. mmcsd_dbg("write_block %d, %d", dat->blkcnt, dat->blksz );
  269. ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  270. }
  271. return ret;
  272. }
  273. static rt_err_t sdhci_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
  274. {
  275. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
  276. if (!dat)
  277. return raspi_transfer_command(pdat, cmd);
  278. return raspi_transfer_data(pdat, cmd, dat);
  279. }
  280. static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
  281. {
  282. struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
  283. struct sdhci_cmd_t cmd;
  284. struct sdhci_cmd_t stop;
  285. struct sdhci_data_t dat;
  286. rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t));
  287. rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t));
  288. rt_memset(&dat, 0, sizeof(struct sdhci_data_t));
  289. cmd.cmdidx = req->cmd->cmd_code;
  290. cmd.cmdarg = req->cmd->arg;
  291. cmd.resptype =resp_type(req->cmd);
  292. if (req->data)
  293. {
  294. dat.buf = (rt_uint8_t *)req->data->buf;
  295. dat.flag = req->data->flags;
  296. dat.blksz = req->data->blksize;
  297. dat.blkcnt = req->data->blks;
  298. req->cmd->err = sdhci_transfer(sdhci, &cmd, &dat);
  299. }
  300. else
  301. {
  302. req->cmd->err = sdhci_transfer(sdhci, &cmd, RT_NULL);
  303. }
  304. req->cmd->resp[3] = cmd.response[3];
  305. req->cmd->resp[2] = cmd.response[2];
  306. req->cmd->resp[1] = cmd.response[1];
  307. req->cmd->resp[0] = cmd.response[0];
  308. if (req->stop)
  309. {
  310. stop.cmdidx = req->stop->cmd_code;
  311. stop.cmdarg = req->stop->arg;
  312. cmd.resptype =resp_type(req->stop);
  313. req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL);
  314. }
  315. mmcsd_req_complete(host);
  316. }
  317. rt_int32_t mmc_card_status(struct rt_mmcsd_host *host)
  318. {
  319. return 0;
  320. }
  321. static rt_err_t sdhci_detect(struct sdhci_t * sdhci)
  322. {
  323. return RT_EOK;
  324. }
  325. static rt_err_t sdhci_setwidth(struct sdhci_t * sdhci, rt_uint32_t width)
  326. {
  327. rt_uint32_t temp = 0;
  328. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
  329. if (width == MMCSD_BUS_WIDTH_4)
  330. {
  331. temp = read32((pdat->virt + EMMC_CONTROL0));
  332. temp |= C0_HCTL_HS_EN;
  333. temp |= C0_HCTL_DWITDH; // always use 4 data lines:
  334. write32((pdat->virt + EMMC_CONTROL0), temp);
  335. }
  336. return RT_EOK;
  337. }
  338. static uint32_t sd_get_clock_divider(rt_uint32_t sdHostVer ,rt_uint32_t base_clock, rt_uint32_t target_rate)
  339. {
  340. rt_uint32_t targetted_divisor = 0;
  341. rt_uint32_t freq_select = 0;
  342. rt_uint32_t upper_bits = 0;
  343. rt_uint32_t ret = 0;
  344. if(target_rate > base_clock)
  345. targetted_divisor = 1;
  346. else
  347. {
  348. targetted_divisor = base_clock / target_rate;
  349. rt_uint32_t mod = base_clock % target_rate;
  350. if(mod)
  351. targetted_divisor--;
  352. }
  353. // Decide on the clock mode to use
  354. // Currently only 10-bit divided clock mode is supported
  355. // HCI version 3 or greater supports 10-bit divided clock mode
  356. // This requires a power-of-two divider
  357. // Find the first bit set
  358. int divisor = -1;
  359. for(int first_bit = 31; first_bit >= 0; first_bit--)
  360. {
  361. rt_uint32_t bit_test = (1 << first_bit);
  362. if(targetted_divisor & bit_test)
  363. {
  364. divisor = first_bit;
  365. targetted_divisor &= ~bit_test;
  366. if(targetted_divisor)
  367. {
  368. // The divisor is not a power-of-two, increase it
  369. divisor++;
  370. }
  371. break;
  372. }
  373. }
  374. if(divisor == -1)
  375. divisor = 31;
  376. if(divisor >= 32)
  377. divisor = 31;
  378. if(divisor != 0)
  379. divisor = (1 << (divisor - 1));
  380. if(divisor >= 0x400)
  381. divisor = 0x3ff;
  382. freq_select = divisor & 0xff;
  383. upper_bits = (divisor >> 8) & 0x3;
  384. ret = (freq_select << 8) | (upper_bits << 6) | (0 << 5);
  385. return ret;
  386. }
  387. static rt_err_t sdhci_setclock(struct sdhci_t * sdhci, rt_uint32_t clock)
  388. {
  389. rt_uint32_t temp = 0;
  390. rt_uint32_t sdHostVer = 0;
  391. int count = 100000;
  392. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)(sdhci->priv);
  393. while ((read32(pdat->virt + EMMC_STATUS) & (SR_CMD_INHIBIT | SR_DAT_INHIBIT)) && (--count))
  394. DELAY_MICROS(1);
  395. if (count <= 0)
  396. {
  397. rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n",read32(pdat->virt + EMMC_STATUS));
  398. return -RT_ERROR;
  399. }
  400. // Switch clock off.
  401. temp = read32((pdat->virt + EMMC_CONTROL1));
  402. temp &= ~C1_CLK_EN;
  403. write32((pdat->virt + EMMC_CONTROL1),temp);
  404. DELAY_MICROS(10);
  405. // Request the new clock setting and enable the clock
  406. temp = read32(pdat->virt + EMMC_SLOTISR_VER);
  407. sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT;
  408. int cdiv = sd_get_clock_divider(sdHostVer, mmc_base_clock, clock);
  409. temp = read32((pdat->virt + EMMC_CONTROL1));
  410. temp |= 1;
  411. temp |= cdiv;
  412. temp |= (7 << 16);
  413. temp = (temp & 0xffff003f) | cdiv;
  414. write32((pdat->virt + EMMC_CONTROL1),temp);
  415. DELAY_MICROS(10);
  416. // Enable the clock.
  417. temp = read32(pdat->virt + EMMC_CONTROL1);
  418. temp |= C1_CLK_EN;
  419. write32((pdat->virt + EMMC_CONTROL1),temp);
  420. DELAY_MICROS(10);
  421. // Wait for clock to be stable.
  422. count = 10000;
  423. while (!(read32(pdat->virt + EMMC_CONTROL1) & C1_CLK_STABLE) && count--)
  424. DELAY_MICROS(10);
  425. if (count <= 0)
  426. {
  427. rt_kprintf("EMMC: ERROR: failed to get stable clock %d.\n", clock);
  428. return -RT_ERROR;
  429. }
  430. mmcsd_dbg("set stable clock %d.\n", clock);
  431. return RT_EOK;
  432. }
  433. static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
  434. {
  435. struct sdhci_t * sdhci = (struct sdhci_t *)host->private_data;
  436. sdhci_setclock(sdhci, io_cfg->clock);
  437. sdhci_setwidth(sdhci, io_cfg->bus_width);
  438. }
  439. static const struct rt_mmcsd_host_ops ops =
  440. {
  441. mmc_request_send,
  442. mmc_set_iocfg,
  443. RT_NULL,
  444. RT_NULL,
  445. };
  446. static rt_err_t reset_emmc(struct sdhci_pdata_t * pdat)
  447. {
  448. rt_uint32_t control1;
  449. //Reset the controller
  450. control1 = read32((pdat->virt + EMMC_CONTROL1));
  451. control1 |= (1 << 24);
  452. // Disable clock
  453. control1 &= ~(1 << 2);
  454. control1 &= ~(1 << 0);
  455. //temp |= C1_CLK_INTLEN | C1_TOUNIT_MAX;
  456. write32((pdat->virt + EMMC_CONTROL1),control1);
  457. int cnt = 10000;
  458. do
  459. {
  460. DELAY_MICROS(10);
  461. cnt = cnt - 1;
  462. if(cnt == 0)
  463. {
  464. break;
  465. }
  466. } while ((read32(pdat->virt + EMMC_CONTROL1) & (0x7 << 24)) != 0);
  467. // Enable SD Bus Power VDD1 at 3.3V
  468. rt_uint32_t control0 = read32(pdat->virt + EMMC_CONTROL0);
  469. control0 |= 0x0F << 8;
  470. write32(pdat->virt + EMMC_CONTROL0, control0);
  471. rt_thread_delay(100);
  472. //usleep(2000);
  473. // Check for a valid card
  474. mmcsd_dbg("EMMC: checking for an inserted card\n");
  475. cnt = 10000;
  476. do
  477. {
  478. DELAY_MICROS(10);
  479. cnt = cnt - 1;
  480. if(cnt == 0)
  481. {
  482. break;
  483. }
  484. } while ((read32(pdat->virt + EMMC_STATUS) & (0x1 << 16)) == 0);
  485. rt_uint32_t status_reg = read32(pdat->virt + EMMC_STATUS);
  486. if((status_reg & (1 << 16)) == 0)
  487. {
  488. rt_kprintf("EMMC: no card inserted\n");
  489. return -1;
  490. }
  491. else
  492. {
  493. mmcsd_dbg("EMMC: status: %08x\n", status_reg);
  494. }
  495. // Clear control2
  496. write32(pdat->virt + EMMC_CONTROL2, 0);
  497. // Get the base clock rate //12
  498. mmc_base_clock = bcm271x_mbox_clock_get_rate(EMMC_CLK_ID);
  499. if(mmc_base_clock == 0)
  500. {
  501. rt_kprintf("EMMC: assuming clock rate to be 100MHz\n");
  502. mmc_base_clock = 100000000;
  503. }
  504. mmcsd_dbg("EMMC: setting clock rate is %d\n", mmc_base_clock);
  505. return RT_EOK;
  506. }
  507. #ifdef RT_MMCSD_DBG
  508. void dump_registers(struct sdhci_pdata_t * pdat)
  509. {
  510. rt_kprintf("EMMC registers:");
  511. int i = EMMC_ARG2;
  512. for (; i <= EMMC_CONTROL2; i += 4)
  513. rt_kprintf("\t%x:%x\n", i, read32(pdat->virt + i));
  514. rt_kprintf("\t%x:%x\n", 0x50, read32(pdat->virt + 0x50));
  515. rt_kprintf("\t%x:%x\n", 0x70, read32(pdat->virt + 0x70));
  516. rt_kprintf("\t%x:%x\n", 0x74, read32(pdat->virt + 0x74));
  517. rt_kprintf("\t%x:%x\n", 0x80, read32(pdat->virt + 0x80));
  518. rt_kprintf("\t%x:%x\n", 0x84, read32(pdat->virt + 0x84));
  519. rt_kprintf("\t%x:%x\n", 0x88, read32(pdat->virt + 0x88));
  520. rt_kprintf("\t%x:%x\n", 0x8c, read32(pdat->virt + 0x8c));
  521. rt_kprintf("\t%x:%x\n", 0x90, read32(pdat->virt + 0x90));
  522. rt_kprintf("\t%x:%x\n", 0xf0, read32(pdat->virt + 0xf0));
  523. rt_kprintf("\t%x:%x\n", 0xfc, read32(pdat->virt + 0xfc));
  524. }
  525. #endif
  526. int raspi_sdmmc_init(void)
  527. {
  528. rt_uint32_t virt;
  529. struct rt_mmcsd_host * host = RT_NULL;
  530. struct sdhci_pdata_t * pdat = RT_NULL;
  531. struct sdhci_t * sdhci = RT_NULL;
  532. #ifdef BSP_USING_SDIO0
  533. host = mmcsd_alloc_host();
  534. if (!host)
  535. {
  536. rt_kprintf("alloc host failed");
  537. goto err;
  538. }
  539. sdhci = rt_malloc(sizeof(struct sdhci_t));
  540. if (!sdhci)
  541. {
  542. rt_kprintf("alloc sdhci failed");
  543. goto err;
  544. }
  545. rt_memset(sdhci, 0, sizeof(struct sdhci_t));
  546. virt = MMC2_BASE_ADDR;
  547. pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t));
  548. RT_ASSERT(pdat != RT_NULL);
  549. pdat->virt = (rt_uint32_t)virt;
  550. reset_emmc(pdat);
  551. sdhci->name = "sd0";
  552. sdhci->voltages = VDD_33_34;
  553. sdhci->width = MMCSD_BUSWIDTH_4;
  554. sdhci->clock = 1000 * 1000 * 1000;
  555. sdhci->removeable = RT_TRUE;
  556. sdhci->detect = sdhci_detect;
  557. sdhci->setwidth = sdhci_setwidth;
  558. sdhci->setclock = sdhci_setclock;
  559. sdhci->transfer = sdhci_transfer;
  560. sdhci->priv = pdat;
  561. host->ops = &ops;
  562. host->freq_min = 400000;
  563. host->freq_max = 50000000;
  564. host->valid_ocr = VDD_32_33 | VDD_33_34;
  565. host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ | MMCSD_BUSWIDTH_4;
  566. host->max_seg_size = 2048;
  567. host->max_dma_segs = 10;
  568. host->max_blk_size = 512;
  569. host->max_blk_count = 1;
  570. host->private_data = sdhci;
  571. write32((pdat->virt + EMMC_IRPT_EN),0xffffffff);
  572. write32((pdat->virt + EMMC_IRPT_MASK),0xffffffff);
  573. #ifdef RT_MMCSD_DBG
  574. dump_registers(pdat);
  575. #endif
  576. mmcsd_change(host);
  577. #endif
  578. return RT_EOK;
  579. err:
  580. if (host) rt_free(host);
  581. if (sdhci) rt_free(sdhci);
  582. return -RT_EIO;
  583. }
  584. INIT_DEVICE_EXPORT(raspi_sdmmc_init);