123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
- package io.milvus;
- import io.milvus.param.R;
- import org.tensorflow.ndarray.buffer.ByteDataBuffer;
- import org.tensorflow.types.TBfloat16;
- import org.tensorflow.types.TFloat16;
- import java.nio.ByteBuffer;
- import java.util.*;
- public class CommonUtils {
- public static void handleResponseStatus(R<?> r) {
- if (r.getStatus() != R.Status.Success.getCode()) {
- throw new RuntimeException(r.getMessage());
- }
- }
- public static List<Float> generateFloatVector(int dimension) {
- Random ran = new Random();
- List<Float> vector = new ArrayList<>();
- for (int i = 0; i < dimension; ++i) {
- vector.add(ran.nextFloat());
- }
- return vector;
- }
- public static List<Float> generateFloatVector(int dimension, Float initValue) {
- List<Float> vector = new ArrayList<>();
- for (int i = 0; i < dimension; ++i) {
- vector.add(initValue);
- }
- return vector;
- }
- public static List<List<Float>> generateFloatVectors(int dimension, int count) {
- List<List<Float>> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- List<Float> vector = generateFloatVector(dimension);
- vectors.add(vector);
- }
- return vectors;
- }
- public static List<List<Float>> generateFixFloatVectors(int dimension, int count) {
- List<List<Float>> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- List<Float> vector = generateFloatVector(dimension, (float)n);
- vectors.add(vector);
- }
- return vectors;
- }
- public static ByteBuffer generateBinaryVector(int dimension) {
- Random ran = new Random();
- int byteCount = dimension / 8;
- ByteBuffer vector = ByteBuffer.allocate(byteCount);
- for (int i = 0; i < byteCount; ++i) {
- vector.put((byte) ran.nextInt(Byte.MAX_VALUE));
- }
- return vector;
- }
- public static List<ByteBuffer> generateBinaryVectors(int dimension, int count) {
- List<ByteBuffer> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- ByteBuffer vector = generateBinaryVector(dimension);
- vectors.add(vector);
- }
- return vectors;
- }
- public static ByteBuffer generateFloat16Vector(int dimension, boolean bfloat16) {
- Random ran = new Random();
- int byteCount = dimension*2;
- ByteBuffer vector = ByteBuffer.allocate(byteCount);
- for (int i = 0; i < dimension; ++i) {
- ByteDataBuffer bf;
- if (bfloat16) {
- TFloat16 tt = TFloat16.scalarOf((float)ran.nextInt(dimension));
- bf = tt.asRawTensor().data();
- } else {
- TBfloat16 tt = TBfloat16.scalarOf((float)ran.nextInt(dimension));
- bf = tt.asRawTensor().data();
- }
- vector.put(bf.getByte(0));
- vector.put(bf.getByte(1));
- }
- return vector;
- }
- public static List<ByteBuffer> generateFloat16Vectors(int dimension, int count, boolean bfloat16) {
- List<ByteBuffer> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- ByteBuffer vector = generateFloat16Vector(dimension, bfloat16);
- vectors.add(vector);
- }
- return vectors;
- }
- public static SortedMap<Long, Float> generateSparseVector() {
- Random ran = new Random();
- SortedMap<Long, Float> sparse = new TreeMap<>();
- int dim = ran.nextInt(10) + 1;
- for (int i = 0; i < dim; ++i) {
- sparse.put((long)ran.nextInt(1000000), ran.nextFloat());
- }
- return sparse;
- }
- public static List<SortedMap<Long, Float>> generateSparseVectors(int count) {
- List<SortedMap<Long, Float>> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- SortedMap<Long, Float> sparse = generateSparseVector();
- vectors.add(sparse);
- }
- return vectors;
- }
- }
|