123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258 |
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
- package io.milvus.v1;
- import io.milvus.common.utils.Float16Utils;
- import io.milvus.param.R;
- import org.tensorflow.Tensor;
- import org.tensorflow.ndarray.Shape;
- import org.tensorflow.ndarray.buffer.ByteDataBuffer;
- import org.tensorflow.ndarray.buffer.DataBuffers;
- import org.tensorflow.types.TBfloat16;
- import org.tensorflow.types.TFloat16;
- import java.nio.ByteBuffer;
- import java.util.*;
- public class CommonUtils {
- public static void handleResponseStatus(R<?> r) {
- if (r.getStatus() != R.Status.Success.getCode()) {
- throw new RuntimeException(r.getMessage());
- }
- }
- public static List<Float> generateFloatVector(int dimension) {
- Random ran = new Random();
- List<Float> vector = new ArrayList<>();
- for (int i = 0; i < dimension; ++i) {
- vector.add(ran.nextFloat());
- }
- return vector;
- }
- public static List<Float> generateFloatVector(int dimension, Float initValue) {
- List<Float> vector = new ArrayList<>();
- for (int i = 0; i < dimension; ++i) {
- vector.add(initValue);
- }
- return vector;
- }
- public static List<List<Float>> generateFloatVectors(int dimension, int count) {
- List<List<Float>> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- List<Float> vector = generateFloatVector(dimension);
- vectors.add(vector);
- }
- return vectors;
- }
- public static List<List<Float>> generateFixFloatVectors(int dimension, int count) {
- List<List<Float>> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- List<Float> vector = generateFloatVector(dimension, (float)n);
- vectors.add(vector);
- }
- return vectors;
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////
- public static ByteBuffer generateBinaryVector(int dimension) {
- Random ran = new Random();
- int byteCount = dimension / 8;
- // binary vector doesn't care endian since each byte is independent
- ByteBuffer vector = ByteBuffer.allocate(byteCount);
- for (int i = 0; i < byteCount; ++i) {
- vector.put((byte) ran.nextInt(Byte.MAX_VALUE));
- }
- return vector;
- }
- public static List<ByteBuffer> generateBinaryVectors(int dimension, int count) {
- List<ByteBuffer> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- ByteBuffer vector = generateBinaryVector(dimension);
- vectors.add(vector);
- }
- return vectors;
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////
- public static TBfloat16 genTensorflowBF16Vector(int dimension) {
- Random ran = new Random();
- float[] array = new float[dimension];
- for (int n = 0; n < dimension; ++n) {
- array[n] = ran.nextFloat();
- }
- return TBfloat16.vectorOf(array);
- }
- public static List<TBfloat16> genTensorflowBF16Vectors(int dimension, int count) {
- List<TBfloat16> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- TBfloat16 vector = genTensorflowBF16Vector(dimension);
- vectors.add(vector);
- }
- return vectors;
- }
- public static ByteBuffer encodeTensorBF16Vector(TBfloat16 vector) {
- ByteDataBuffer tensorBuf = vector.asRawTensor().data();
- ByteBuffer buf = ByteBuffer.allocate((int)tensorBuf.size());
- for (long i = 0; i < tensorBuf.size(); i++) {
- buf.put(tensorBuf.getByte(i));
- }
- return buf;
- }
- public static List<ByteBuffer> encodeTensorBF16Vectors(List<TBfloat16> vectors) {
- List<ByteBuffer> buffers = new ArrayList<>();
- for (TBfloat16 tf : vectors) {
- ByteBuffer bf = encodeTensorBF16Vector(tf);
- buffers.add(bf);
- }
- return buffers;
- }
- public static TBfloat16 decodeTensorBF16Vector(ByteBuffer buf) {
- if (buf.limit()%2 != 0) {
- return null;
- }
- int dim = buf.limit()/2;
- ByteDataBuffer bf = DataBuffers.of(buf.array());
- return Tensor.of(TBfloat16.class, Shape.of(dim), bf);
- }
- public static TFloat16 genTensorflowFP16Vector(int dimension) {
- Random ran = new Random();
- float[] array = new float[dimension];
- for (int n = 0; n < dimension; ++n) {
- array[n] = ran.nextFloat();
- }
- return TFloat16.vectorOf(array);
- }
- public static List<TFloat16> genTensorflowFP16Vectors(int dimension, int count) {
- List<TFloat16> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- TFloat16 vector = genTensorflowFP16Vector(dimension);
- vectors.add(vector);
- }
- return vectors;
- }
- public static ByteBuffer encodeTensorFP16Vector(TFloat16 vector) {
- ByteDataBuffer tensorBuf = vector.asRawTensor().data();
- ByteBuffer buf = ByteBuffer.allocate((int)tensorBuf.size());
- for (long i = 0; i < tensorBuf.size(); i++) {
- buf.put(tensorBuf.getByte(i));
- }
- return buf;
- }
- public static List<ByteBuffer> encodeTensorFP16Vectors(List<TFloat16> vectors) {
- List<ByteBuffer> buffers = new ArrayList<>();
- for (TFloat16 tf : vectors) {
- ByteBuffer bf = encodeTensorFP16Vector(tf);
- buffers.add(bf);
- }
- return buffers;
- }
- public static TFloat16 decodeTensorFP16Vector(ByteBuffer buf) {
- if (buf.limit()%2 != 0) {
- return null;
- }
- int dim = buf.limit()/2;
- ByteDataBuffer bf = DataBuffers.of(buf.array());
- return Tensor.of(TFloat16.class, Shape.of(dim), bf);
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////
- public static ByteBuffer encodeFloat16Vector(List<Float> originVector, boolean bfloat16) {
- if (bfloat16) {
- return Float16Utils.f32VectorToBf16Buffer(originVector);
- } else {
- return Float16Utils.f32VectorToFp16Buffer(originVector);
- }
- }
- public static List<Float> decodeFloat16Vector(ByteBuffer buf, boolean bfloat16) {
- if (bfloat16) {
- return Float16Utils.bf16BufferToVector(buf);
- } else {
- return Float16Utils.fp16BufferToVector(buf);
- }
- }
- public static List<ByteBuffer> encodeFloat16Vectors(List<List<Float>> originVectors, boolean bfloat16) {
- List<ByteBuffer> vectors = new ArrayList<>();
- for (List<Float> originVector : originVectors) {
- if (bfloat16) {
- vectors.add(Float16Utils.f32VectorToBf16Buffer(originVector));
- } else {
- vectors.add(Float16Utils.f32VectorToFp16Buffer(originVector));
- }
- }
- return vectors;
- }
- public static ByteBuffer generateFloat16Vector(int dimension, boolean bfloat16) {
- List<Float> originalVector = generateFloatVector(dimension);
- return encodeFloat16Vector(originalVector, bfloat16);
- }
- public static List<ByteBuffer> generateFloat16Vectors(int dimension, int count, boolean bfloat16) {
- List<ByteBuffer> vectors = new ArrayList<>();
- for (int i = 0; i < count; i++) {
- ByteBuffer buf = generateFloat16Vector(dimension, bfloat16);
- vectors.add((buf));
- }
- return vectors;
- }
- /////////////////////////////////////////////////////////////////////////////////////////////////////
- public static SortedMap<Long, Float> generateSparseVector() {
- Random ran = new Random();
- SortedMap<Long, Float> sparse = new TreeMap<>();
- int dim = ran.nextInt(10) + 10;
- for (int i = 0; i < dim; ++i) {
- sparse.put((long)ran.nextInt(1000000), ran.nextFloat());
- }
- return sparse;
- }
- public static List<SortedMap<Long, Float>> generateSparseVectors(int count) {
- List<SortedMap<Long, Float>> vectors = new ArrayList<>();
- for (int n = 0; n < count; ++n) {
- SortedMap<Long, Float> sparse = generateSparseVector();
- vectors.add(sparse);
- }
- return vectors;
- }
- }
|