|
@@ -0,0 +1,198 @@
|
|
|
+import argparse
|
|
|
+import glob
|
|
|
+import mimetypes
|
|
|
+import os
|
|
|
+import queue
|
|
|
+import shutil
|
|
|
+import torch
|
|
|
+from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
|
+from basicsr.utils.logger import AvgTimer
|
|
|
+from tqdm import tqdm
|
|
|
+
|
|
|
+from realesrgan import IOConsumer, PrefetchReader, RealESRGANer
|
|
|
+from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+ """Inference demo for Real-ESRGAN.
|
|
|
+ It mainly for restoring anime videos.
|
|
|
+
|
|
|
+ """
|
|
|
+ parser = argparse.ArgumentParser()
|
|
|
+ parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
|
|
|
+ parser.add_argument(
|
|
|
+ '-n',
|
|
|
+ '--model_name',
|
|
|
+ type=str,
|
|
|
+ default='RealESRGAN_x4plus',
|
|
|
+ help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus'
|
|
|
+ 'RealESRGANv2-anime-xsx2 | RealESRGANv2-animevideo-xsx2-nousm | RealESRGANv2-animevideo-xsx2'
|
|
|
+ 'RealESRGANv2-anime-xsx4 | RealESRGANv2-animevideo-xsx4-nousm | RealESRGANv2-animevideo-xsx4'))
|
|
|
+ parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
|
|
|
+ parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
|
|
|
+ parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored video')
|
|
|
+ parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
|
|
|
+ parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
|
|
|
+ parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
|
|
|
+ parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
|
|
|
+ parser.add_argument('--half', action='store_true', help='Use half precision during inference')
|
|
|
+ parser.add_argument('-v', '--video', action='store_true', help='Output a video using ffmpeg')
|
|
|
+ parser.add_argument('-a', '--audio', action='store_true', help='Keep audio')
|
|
|
+ parser.add_argument('--fps', type=float, default=None, help='FPS of the output video')
|
|
|
+ parser.add_argument(
|
|
|
+ '--alpha_upsampler',
|
|
|
+ type=str,
|
|
|
+ default='realesrgan',
|
|
|
+ help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
|
|
|
+ parser.add_argument(
|
|
|
+ '--ext',
|
|
|
+ type=str,
|
|
|
+ default='auto',
|
|
|
+ help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ # ---------------------- determine models according to model names ---------------------- #
|
|
|
+ args.model_name = args.model_name.split('.')[0]
|
|
|
+ if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
|
+ netscale = 4
|
|
|
+ elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
|
+ netscale = 4
|
|
|
+ elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
|
+ netscale = 2
|
|
|
+ elif args.model_name in [
|
|
|
+ 'RealESRGANv2-anime-xsx2', 'RealESRGANv2-animevideo-xsx2-nousm', 'RealESRGANv2-animevideo-xsx2'
|
|
|
+ ]: # x2 VGG-style model (XS size)
|
|
|
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
|
|
|
+ netscale = 2
|
|
|
+ elif args.model_name in [
|
|
|
+ 'RealESRGANv2-anime-xsx4', 'RealESRGANv2-animevideo-xsx4-nousm', 'RealESRGANv2-animevideo-xsx4'
|
|
|
+ ]: # x4 VGG-style model (XS size)
|
|
|
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
|
|
|
+ netscale = 4
|
|
|
+
|
|
|
+ # ---------------------- determine model paths ---------------------- #
|
|
|
+ model_path = os.path.join('experiments/pretrained_models', args.model_name + '.pth')
|
|
|
+ if not os.path.isfile(model_path):
|
|
|
+ model_path = os.path.join('realesrgan/weights', args.model_name + '.pth')
|
|
|
+ if not os.path.isfile(model_path):
|
|
|
+ raise ValueError(f'Model {args.model_name} does not exist.')
|
|
|
+
|
|
|
+ # restorer
|
|
|
+ upsampler = RealESRGANer(
|
|
|
+ scale=netscale,
|
|
|
+ model_path=model_path,
|
|
|
+ model=model,
|
|
|
+ tile=args.tile,
|
|
|
+ tile_pad=args.tile_pad,
|
|
|
+ pre_pad=args.pre_pad,
|
|
|
+ half=args.half)
|
|
|
+
|
|
|
+ if args.face_enhance: # Use GFPGAN for face enhancement
|
|
|
+ from gfpgan import GFPGANer
|
|
|
+ face_enhancer = GFPGANer(
|
|
|
+ model_path='https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth',
|
|
|
+ upscale=args.outscale,
|
|
|
+ arch='clean',
|
|
|
+ channel_multiplier=2,
|
|
|
+ bg_upsampler=upsampler)
|
|
|
+ os.makedirs(args.output, exist_ok=True)
|
|
|
+ # for saving restored frames
|
|
|
+ save_frame_folder = os.path.join(args.output, 'frames_tmpout')
|
|
|
+ os.makedirs(save_frame_folder, exist_ok=True)
|
|
|
+
|
|
|
+ if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file
|
|
|
+ video_name = os.path.splitext(os.path.basename(args.input))[0]
|
|
|
+ frame_folder = os.path.join('tmp_frames', video_name)
|
|
|
+ os.makedirs(frame_folder, exist_ok=True)
|
|
|
+ # use ffmpeg to extract frames
|
|
|
+ os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png')
|
|
|
+ # get image path list
|
|
|
+ paths = sorted(glob.glob(os.path.join(frame_folder, '*')))
|
|
|
+ if args.video:
|
|
|
+ if args.fps is None:
|
|
|
+ # get input video fps
|
|
|
+ import ffmpeg
|
|
|
+ probe = ffmpeg.probe(args.input)
|
|
|
+ video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
|
|
+ args.fps = eval(video_streams[0]['avg_frame_rate'])
|
|
|
+ elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file
|
|
|
+ paths = [args.input]
|
|
|
+ video_name = 'video'
|
|
|
+ else:
|
|
|
+ paths = sorted(glob.glob(os.path.join(args.input, '*')))
|
|
|
+ video_name = 'video'
|
|
|
+
|
|
|
+ timer = AvgTimer()
|
|
|
+ timer.start()
|
|
|
+ pbar = tqdm(total=len(paths), unit='frame', desc='inference')
|
|
|
+ # set up prefetch reader
|
|
|
+ reader = PrefetchReader(paths, num_prefetch_queue=4)
|
|
|
+ reader.start()
|
|
|
+
|
|
|
+ que = queue.Queue()
|
|
|
+ num_consumer = 4
|
|
|
+ consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(num_consumer)]
|
|
|
+ for consumer in consumers:
|
|
|
+ consumer.start()
|
|
|
+
|
|
|
+ for idx, (path, img) in enumerate(zip(paths, reader)):
|
|
|
+ imgname, extension = os.path.splitext(os.path.basename(path))
|
|
|
+ if len(img.shape) == 3 and img.shape[2] == 4:
|
|
|
+ img_mode = 'RGBA'
|
|
|
+ else:
|
|
|
+ img_mode = None
|
|
|
+
|
|
|
+ try:
|
|
|
+ if args.face_enhance:
|
|
|
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
+ else:
|
|
|
+ output, _ = upsampler.enhance(img, outscale=args.outscale)
|
|
|
+ except RuntimeError as error:
|
|
|
+ print('Error', error)
|
|
|
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
|
|
+
|
|
|
+ else:
|
|
|
+ if args.ext == 'auto':
|
|
|
+ extension = extension[1:]
|
|
|
+ else:
|
|
|
+ extension = args.ext
|
|
|
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
|
|
|
+ extension = 'png'
|
|
|
+ save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}')
|
|
|
+
|
|
|
+ que.put({'output': output, 'save_path': save_path})
|
|
|
+
|
|
|
+ pbar.update(1)
|
|
|
+ torch.cuda.synchronize()
|
|
|
+ timer.record()
|
|
|
+ avg_fps = 1. / (timer.get_avg_time() + 1e-7)
|
|
|
+ pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}')
|
|
|
+
|
|
|
+ for _ in range(num_consumer):
|
|
|
+ que.put('quit')
|
|
|
+ for consumer in consumers:
|
|
|
+ consumer.join()
|
|
|
+ pbar.close()
|
|
|
+
|
|
|
+ # merge frames to video
|
|
|
+ if args.video:
|
|
|
+ video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
|
|
|
+ if args.audio:
|
|
|
+ os.system(
|
|
|
+ f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}'
|
|
|
+ f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
|
|
|
+ else:
|
|
|
+ os.system(f'ffmpeg -i {save_frame_folder}/frame%08d_out.{extension} '
|
|
|
+ f'-c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
|
|
|
+
|
|
|
+ # delete tmp file
|
|
|
+ shutil.rmtree(save_frame_folder)
|
|
|
+ if os.path.isdir(frame_folder):
|
|
|
+ shutil.rmtree(frame_folder)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ main()
|