浏览代码

[DOCS] Clarifies description of num_top_feature_importance_values (#52246)

Co-Authored-By: Valeriy Khakhutskyy <1292899+valeriy42@users.noreply.github.com>
Lisa Cawley 5 年之前
父节点
当前提交
f41ebe47e3
共有 2 个文件被更改,包括 8 次插入9 次删除
  1. 8 2
      docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc
  2. 0 7
      docs/reference/ml/ml-shared.asciidoc

+ 8 - 2
docs/reference/ml/df-analytics/apis/put-dfanalytics.asciidoc

@@ -150,7 +150,10 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=randomize-seed]
 
 `analysis`.`classification`.`num_top_feature_importance_values`::::
 (Optional, integer)
-include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-feature-importance-values]
+Advanced configuration option. Specifies the maximum number of
+{ml-docs}/dfa-classification.html#dfa-classification-feature-importance[feature
+importance] values per document to return. By default, it is zero and no feature importance
+calculation occurs.
 
 `analysis`.`classification`.`training_percent`::::
 (Optional, integer)
@@ -233,7 +236,10 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=prediction-field-name]
 
 `analysis`.`regression`.`num_top_feature_importance_values`::::
 (Optional, integer)
-include::{docdir}/ml/ml-shared.asciidoc[tag=num-top-feature-importance-values]
+Advanced configuration option. Specifies the maximum number of
+{ml-docs}/dfa-regression.html#dfa-regression-feature-importance[feature importance] 
+values per document to return. By default, it is zero and no feature importance calculation
+occurs.
 
 `analysis`.`regression`.`training_percent`::::
 (Optional, integer)

+ 0 - 7
docs/reference/ml/ml-shared.asciidoc

@@ -906,13 +906,6 @@ total number of categories (in the {version} version of the {stack}, it's two)
 to predict then we will report all category probabilities. Defaults to 2.
 end::num-top-classes[]
 
-tag::num-top-feature-importance-values[]
-Advanced configuration option. If set, feature importance for the top
-most important features will be computed. Importance is calculated
-using the SHAP (SHapley Additive exPlanations) method as described in
-https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf[Lundberg, S. M., & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In NeurIPS 2017.].
-end::num-top-feature-importance-values[]
-
 tag::over-field-name[]
 The field used to split the data. In particular, this property is used for 
 analyzing the splits with respect to the history of all splits. It is used for